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Abstract

We show that the motions of a linear thermoelastic beam
may be controlled exactly to zero in a finite time by a
single boundary control that acts on one end of the beam.
The optimal time of controllability depends upon the mo-
ment of inertia parameter of the beam and becomes arbi-
trarily small if this parameter is omitted, as in the Euler-
Bernoulli beam theory.

1 Introduction

Consider the following boundary value problem which
describes the small vibrations of a homogeneous, isotropic
thermoelastic beam:

x€(0,1), >0,

w— Pwax + Weper + agxx == Oa
0 = Opp — Aty = 0

(1.1)

with initial conditions
w(z,0) = wo(x), w(x,0) = wi(x), 0(x,0)=0y(x) (1.2)
and boundary conditions

w(0,1) = wpe(0,4) = 6(0,) =0, w(l,t)=0 (1.3)

wee (1,0) + aB(1, 1) = m(t),  0(1,¢) = 8(t) (1.4)

where v > 0, o > 0. The notation w, and w refer to differ-
entiation with respect to «# and ¢, respectively. The func-
tion w denotes the transverse displacement of the beam
and the thermal moment @ is proportional to the moment

of the temperature through the thickness of the beam.
The functions m and ¢ represent the applied bending mo-
ment and thermal moment, respectively, at the right end
of the beam. For details on the modeling of (1.1)-(1.4)
see Lagnese and Lions, [8].

Our results concern the exact null-controllability of the
system (1.1)-(1.4), regarding bending moment m or the
thermal moment § at an end as the control input. For
details and proofs of the results described herein, see [5].

We denote

= {(Ck)??’:l : Z lex|* < OO}~
k=1

For B € R, define

Sp = {i agsinkwz : (akkﬁ) € 12} . (1.5)

k=1

Sp beomes a Hilbert space with ||y||s, = [(axk®)||;2. Tt is
clear that

So = L*(0,1), Sy =Hi(0,1), Sy=H?0,1)NS;.

When 8 <0, S5 is the dual space to S)g.
The first result concerns regularity of the solutions of
the system (1.1)-(1.4).

Theorem 1.1 Suppose that wy =0, wy =0 and 5 = 0
in (1.2) and that m, § € L?(0,00) in (1.4). Then the
following regularity results for (1.1)-(1.4) are valid.

(i) If v > 0, m = 0 (the temperature is controlled) then
forany T >0

(w,1,0) € C([0,T],5 x S1 x S_12),  (1.6)

(ii) If v > 0, & = 0 (the bending moment is controlled)
then for any T >0

(w,u&,@) € C([O,T],SQ X Sl) X Sl, (17)



(iii) If vy =0, m = 0 (the temperature is controlled) then
for any T >0

(w,w,ﬁ) S C([O,T],S3/2 X 5_1/2 X 5_1/2), (18)
(iv) If v = 0, § = 0 (the bending moment is controlled)
then for any T > 0

(w, u';, 6) S C([O,T], 53/2 X 5_1/2 X 5_1/2). (19)
These results are optimal in the sense that the indices o
of the function spaces S, cannot be increased.

Our main controllability results follow.

Theorem 1.2 Let v >0, 0 < a < 1/y/2 and T > 2,/7.

(i) For the control problem (1.1)-(1.4) with m = 0,
gwen any (wo,w1,00) € Sz X S1 X S_y/5 there ex-
ists § € L*(0,T) such that (w,w,0) satisfies (1.6)
and (w,w,0)(T) = 0.

(ii) For the control problem (1.1)-(1.4) with § = 0,
given any (wo,w1,0p) € Sy x S; x Sy there exists
m € L%(0,T) such that (w,w,0) satisfies (1.7) and
(w,w,)(T) =0.

Theorem 1.3 Let vy =0, 0 < a < 1/v/2 and T > 0.

(i) For the control problem (1.1)-(1.4) with m = 0, given
any (wo, w1, 00) € Ssya X S_1/2 X S_1/2 there exists
§ € L*(0,7T) such that (w,w,0) satisfies (1.8) and
(w,w,0)(T) =0.

(ii) For the control problem (1.1)-(1.4) with § =0, given
any (wo, w1, 00) € Ssya X S_1/2 X S_1/2 there exists
m € L%(0,T) such that (w,w,0) satisfies (1.9) and
(w,w,)(T) =0.

Note that it is only necessary to utilize one control,
either m or ¢ to obtain exact null-controllability. This is
due to a sufficiently strong coupling between the thermal
and mechanical components of the solutions. When vy > 0
the control time I" must be larger than 2, /¥, while in the
case v = 0 we obtain null controllability in any time 7" > 0.
This is related to the fact that the system (1.1)-(1.4) has
infinite propagation speed when v = 0.

To prove Theorems 1.2 and 1.3 we use a moment prob-
lem approach. In the case v > 0 we decompose the dy-
namics into a part that is parabolic and a part that is
hyperbolic. The control problem can then be reduced to
a coupled moment problem for which the results of [4]
can be applied. In the case ¥ = 0 all the eigenvalues lie
in a sector of the negative real axis and hence results of
[2] concerning parabolic moment problems can be directly
applied.

Past literature (in addition to those mentioned) on the
topic of controllability of thermoelastic systems includes
Lagnese [7], where the problem of controlling only the me-
chanical portion of the system (i.e., partial controllability)

is considered, and Zuazua [12] and de Teresa and Zuazua
[9], where exact controllability of the mechanical portion
of the state together with approximate controllability of
the thermal portion is considered using controls supported
in a neighborhood of the boundary.

Although our approach is limited to one dimensional
problems, we are able to obtain a much stronger result
with the optimal controllability spaces and the optimal
control times.

2 Semigroup formulation

Let A denote 8% and J, = (I —yA)~!, which is the inverse
of the operator I —~yA with Dirichlet boundary condition,
and

dw
dt
Then (1.1) may be written as

g: (Aw’ ’9)/ = (ylay2ay3)/~

= 1Y
We denote by H the complex Hilbert space
H = L*(0,1) x Vy x L*(0,1)
where
HY0,1) if >0
Vy =
L2(0,1) ify=0

equipped with the norm
19I5, = (1 = ¥2) 2y, (1 = 7A) *y) 120 1)
for any y € V,. We define the operator A by
Ay=r1y
on D(A), where D(A) is given by

DA)={FeH: AGeH, §0)=§1)=0}. (2.4)

It is easily checked that

S1 X S X S if’y>0
D(A) = (2.5)
So X Sy x Sy if’y:O.

When m = § = 0 in (1.4), the initial-boundary value
problem (1.1)-(1.4) can be written as the following evolu-
tion equation.

j(t) = Ag(),

y(0) = go (2.6)



where ¢y = (Awp, wy, By)".

The operator A defined by (2.3)-(2.4) is easily seen (by
the Lumer-Phillips Theorem) to be the generator of a
strongly continuous semigroup W(t) of contractions on H.
Consequently, for any § € M, (2.6) has a unique solution
y(t) € C([0, 00); H).

Let H, = D(A) endowed with the graph norm and let
H_1 = (H1)*, where the duality is with respect to Hg :=
H. Define b, and bs as elements of #_; by

< bmag>: _nyZ(l)a < béag>: Dl‘y3(1)a

for all ¥ € #,1. The boundary value problem (1.1)-(1.4)
may be represented as
7= AG+ bnm(l) + b56(1),

¥(0) =9 € H. (2.7)

One can easily obtain the following result.

Proposition 2.1 Given T > 0, suppose that wg =
0, wy = 0 and 6y = 0 in (1.2) and that m,d €
L2(0,T). Then the initial-boundary value problem (1.1)-
(1.4) has a unique solution (w,0) for which (Aw,w,0) €
C([0, T]; H-1). In addition, the solution continuously de-
pends on its boundary values in corresponding spaces.

However, the regularity obtained in the above proposi-
tion is what one obtains from the semigroup theory, con-
sidering b, and b5 as elements of H_;. An important
step in obtaining our controllability results is to obtain
the optimal regularity given in Theorem 1.1.

3 Spectral properties

A set of vectors {fi; } are said to form a Riesz basis for the
Hilbert space X if there exists a bounded and invertible
operator L : X onto X such that fi = Leg, where {eg} is
an orthonormal basis for X. We refer the reader to [11]
for details.

An examination of the spectrum of A leads to the fol-
lowing.

Proposition 3.1 The eigenfunctions of A (A*), as given
. Proposition 3.1, form a Riesz basis for the space H.
Furthermore, the eigenvalues of A all belong to the left half
of the complex plane, with the distance to the imaginary
aris bounded away from zero. If (in addition) v = 0 then
larg (—A)| < @ < /2 for every eigenvalue A.

As a result of the above proposition, we can prove have
the following result, which shows that the energy in a
thermoelastic beam decays at a uniform exponential rate.

Proposition 3.2 The operator A defined in (2.3)-(2.4)
is the generator of an exponentially stable semigroup W (1)
on the space H which salisfies

W)l < Me™ ¥ >0

for some M > 1 where

sup ReA < 0.
A€o (A)

—y =

If in addition, v = 0, then W extends to an analytic semi-
group in the sector |arg (t)| < m/2—0, where 0 is the angle
wn Proposition 3.1.

Remark 3.2 Actually, Proposition 3.3 remains valid for
the case of a thermoelastic plate on a bounded domain
with § = w = Aw = 0 on the boundary. In this case A
represents the Dirichlet Laplacian on a bounded domain.
Our same proof applies to the case of a thermoelastic plate
by simply replacing the eigenvalues (my) and eigenfunc-
tions (sinmgz) of the one dimensional Dirichlet Lapla-
cian by those of the two-dimensional Dirichlet Laplacian.
(Multiple eigenvalues do not matter).

The following result is essential in proving the control-
lability.

Proposition 3.3 All the eigenvalues of A are simple and
posess a minimum uniform separation if 0 < o < 1/\/5

The proof is similar to a proof in [4] if ¥ = 0, however
this approach doesn’t apply when v > 0. Our proof for
that case involves an examination of the roots of an asso-
ciated three dimensional system, which depend upon the
mode number k. We replace k& by a continuous index s
and obtain monotonicity results for these roots that rule
out the possibility of repeated roots.

We will refer to the eigenvalues of A as (A ;), k& =
1,2,..., 3 = 1,2,3. The 5 = 3 branch consists of the
sequence of negative eigenvalues and the j =1 and j = 2
branches are complex conjugate pairs.

For any set J C C we can define an associated spectral
projection P(J) € L(H,H) by

1

Py = 5=

R(\: A) 7dA
omi Jp (A 4) g da,

VyeH

where R(A, A) is the resolvent operator of A and T is an
appropriate contour which encloses the eigenvalues in J.
Let us denote P = P(R), @ =1 — P(R) where I denotes
the identity operator on H. Let A = PH and ¥ = QH.
Since the projections are continuous, it follows that H is
the direct sum the spaces A and X:

H=A+2X.

It is therefore straight-forward to prove the following re-
sult.

Proposition 3.4 Let v > 0 and let W(t) denote the
semigroup generated by the operator A on H. Then for
t>0,
W(t)y=SH)P+G(t)Q

where G(t) extends to a strongly continuous group defined
fort € R and S(t) extends to an analytic semigroup de-
fined on Ret > 0. The infinitesimal generators of S(t)
and G(t) are given by the restriction of A, A|a and Als,
respectively.



4 Well-posedness and Regularity

Consider the case v > 0. According to the previous propo-
sition, the dynamics of our control problem decouple into
a hyperbolic part and an analytic part. The optimal regu-
larity of each separate part may be obtained by a variety of
methods. (We use the Carleson measure criterion of Ho
and Russell [6], Weiss [10] together with interpolation).
We obtain the following result.

Theorem 4.1 Let v > 0 and 4o = 0. If m = 0 and
§ € L?*(0,00) then the solution to the system (2.7) be-
longs to C([0,00), So x S1 x S_q12). If & = 0 and
m € L?(0,00) then the solution to the system (2.7) be-
longs to C([0,00), Sy x Sy x S1). Furthermore the indices
B an the spaces Sp are the largest possible.

In the case v = 0 the problem is entirely parabolic and
we obtain is the following.

Theorem 4.2 Let v = 0 and 4o = 0. If m = 0 and
§ € L*0,00) or if § = 0 and m € L?(0,00) then the
solution to the system (2.7) belongs to

C([0,00), 7‘[_1/4) = C([0,00), 8_1/2 X 8_1/2 X 8_1/2).

Furthermore the indices 3 in the spaces Sg are the largest
possible.

Note that the particular control used (m or J) makes
no difference in the regularity.

Theorem 4.1 together with Theorem 4.2 prove Theorem
1.1.

5 Controllability results

Before discussing Theorems 1.2 and 1.3 it will be conve-
nient to review some facts about moment problems.

Consider the moment problem: Find u € L?(0,T) such
that

T
Ch :/ e Fu(t) dt VkeN (5.1)
0
where (sg) and (ci) are given sequences of complex num-
bers. The moment space of (5.1) is the set of sequences
(¢x) for which there exist at least one solution u to (5.1).
Let us first recall a result from [2] concerning moment
problems of “parabolic type”.

Proposition 5.1 Suppose that there exist positive M, €
and 0 < 0 < w/2 for which (sy) satisfies

(P1) |arg(—sk)| <@ VEkeN,
(P2) |sp — sj| > e|k? — j*| Vk,jeN,
(P3) M~ k? <|si| < Mk* VYkeN.

Then for any T > 0 the moment space to (5.1) contains
all sequences (cx) with the property that for some p > 0

lex|eP® — 0 as k — oo. (5.2)

Now consider another moment problem: Find u €
L2(0,T) such that
T
d;, = / e“Flu(t) dt VkecZ. (5.3)
0

From [4] (or also see [11] for similar results) we have the
following result concerning moment problems of “hyper-
bolic type”.

Proposition 5.2 Suppose that there exists § € C, ¢ > 0
and (vg)kez € 12 for which (wy) satisfies

(H1) wy = B+ ckmi+ v, Y k€L,

(H2) wi # w; unless j = k.
Then if T > 2/c the moment space of (5.3) is exactly 1%

We will also be interested in solving moment prob-
lems that have both a parabolic component and a hy-
perbolic component. In this case, the problem is to find
u € L?(0,T) which simultaneously solves (5.1) and (5.3).
From [4] we have the following result.

Proposition 5.3 Suppose that {(wi) ez N{(sk) tken =
§ and (sy) satisfies the hypothesis of Proposition 5.1 and
(wi) satisfies the hypothesis of Proposition 5.2. Further-
more assume that

(C1) (ci) satisfies the decay condition (5.2),
(C2) (dy) €12

Then, for any time T > 2/c there exists u € L*(0,T)
which simultaneously solves the moment problems (5.1)

and (5.3). This is not true if T < 2/c.
Let us now return to our control problem. Consider

J(t) = AGE) + bu(T —t), 0<t<T; §(0) =g, (5.4)
where A is defined in (2.3)-(2.4), u € L?(0,T), b represents
b, or bs. If we wish to find a control that drives the initial
state iy to 0 in time 7', the variation of parameters formula
must hold (on an appropriate space):

0=W(T)o -I-/O W (s)bu(s) ds. (5.5)

If a u can be found that solves (5.5) then the corresponding
control m or d§ is given by m(t) = w(T —t) or d(t) =
u(T — 1), as the case may be.

First let us consder the case where v = 0.

When (5.5) is integrated against the eigenfunctions of
A* one obtains the moment problem:

T
C,w:/ Hitu(tydt keN, j=1,2,3, (5.6)
0]



where (A ;) are the eigenvalues of A,

Ak, ;T =g _
—etkil l‘o,’l/)Ak)j >

< b, 1/);\“ >

, (5.7)

Ck,j =

and ¢, 1s an eigenfunction of A* corresponding to the
eigenvalue s.

We are able to show that the moment problem (5.6)
satisfies all the hypothesis of Proposition 5.1 when the
initial data is picked in the space of optimal regularity.

Now consider the case v > 0. Using the same decom-
position as in Proposition 3.4, we must have

=S(T)#y :/0 S(r)Pbu(r) dr, (5.8)

T
—G(T) % :/ G(7)Qbu(r) dr, (5.9)
0
where #y = Py, Zo = Qip. When (5.8) and (5.9) are
integrated against the eigenfunctions of A* we obtain the
following coupled moment problem: Find u € L2(0,T)
such that

T
Ch :/ e Fu(t) dt VkeN (5.10)
0
T
@:/)WWMMt keZ— {0}, (5.11)
0
where
Sk =Ak3, Wp=Ag1, Wop = Ag2 vVkeN
and
—esxT < 50a1/)sk > —ewrT < ZOa’l/)w_k >
cp = ; = .

< byt > < b, >

To complete the proof we show that for 7" > 2,/ the
hypothesis of Proposition 5.2 is satisfied.

6 Conclusions

Our result is that the state of a linear thermoelastic beam
may be exactly controlled to zero by controlling only one
boundary condition at one of the beam. Our general ap-
proach is identical to the approach used in [4] to obtain
a similar result for the longitudinal vibrations of a one
dimensional thermoelastic. However in the present case,
the proof of the eigenvalue separation (Proposition 3.3)
required more analysis.

Our method applies to more general boundary condi-
tions than those condidered here, however (it seems) , we
are restricted to those cases in which all the eigenfunc-
tions can be expressed as sines and cosines. For example,
our approach does not apply to the case of a beam that is
clamped at one end.

We also mention that Proposition 3.2 concerning the
uniform exponential decay for the case v > 0 was unknown
(for any boundary conditions, even in one dimension) until
recently; see Avalos and Lasiecka [1]. Our proof will not
apply to the boundary conditions they consider, but is
much simpler.
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