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Abstract

In this talk, we discuss the effects of tempering the power law kernel of moving average

representation of a fractional Brownian motion (fBm) on some local and global properties of this

Gaussian stochastic process. Tempered fractional Brownian motion (TFBM) and tempered

fractional Brownian motion of the second kind (TFBMII) are the processes that are considered in

order to investigate the role of tempering. Tempering does not change the local properties of fBm

including the sample paths and p-variation, but it has a strong impact on the Breuer-Major theorem,

asymptotic behavior of the 3rd and 4th cumulants of fBm and the optimal fourth moment theorem.
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Motivation: Kolmogorov model

(a) (b)

Figure: Figure reproduced from Beaupuits et al. (2004)
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Motivation: Von Kármán model of continuous wind gusts

Figure: Von Kármán model of continuous wind gusts. Figure reproduced from Von Kármán (1948)
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Long Memory (LM) vs Semi-Long Memory (SLM)

(LM): A covariance stationary process {Xj} with autocovariance function γ(k) is

said to have long memory if ∑k∈Z |γ(k)|= ∞. If ∑k∈Z |γ(k)|< ∞ then {Xj}

has short memory.

(SLM): A stationary time sires {Xj} is called to have semi-long memory if its

covariance function which resembles the covariance function of a long memory

model for arbitrary large number of lags but eventually decays exponentially fast

(Giraitis et al. (2000)).
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ARTFIMA time series (with finite second innovations)

The discrete time stochastic process {Xt}t∈Z is called an autoregressive tempered

fractional integrated moving average time series, denoted by ARTFIMA(p,d,λ ,q), if

{Xt}t∈Z is a stationary solution with zero mean of the tempered fractional difference

equations

Φ(B)Xt =Θ(B)(1− e−λ B)−d Zt , (0.1)

where BYt = Yt−1 is back ward shift operator, {Zt}t∈Z is a white noise sequence (i.i.d.

with E[Zt ] = 0 and E[Z 2
t ] = σ 2), d /∈ Z, λ > 0, and

Φ(z) = 1−ϕ1z −ϕ2z2 − . . .−ϕpzp , and Θ(z) = 1+θ1z +θ2z2 + . . .+θqzq

are polynomials of degrees p,q ≥ 0 with no common zeros.
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The spectral density of Xt is given by

h(ν)=
σ 2

2π

∣∣∣∣Θ( e−iν)

Φ( e−iν)

∣∣∣∣2 (1−2 e−λ cosν+ e−2λ )−d , −π ≤ ν ≤ π.

The covariance function of X0,d,λ ,0 is given by

γd,λ (k) ==
e−λ kΓ(d + k)

Γ(d)Γ(k + 1)
2F1(d, k + d; k + 1; e−2λ ),

where 2F1(a,b; c; z) is the Gauss hypergeometric function. Moreover,

∑
k∈Z

∣∣γd,λ (k)
∣∣< ∞, ∑

k∈Z
γd,λ (k) = (1− e−λ )−2d

and γd,λ (k)∼ Akd−1 e−λ k , k → ∞, where A = (1− e−2λ )−dΓ(d)−1.
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Geophysical turbulence in water velocity data (cm/s) was measured in Lake Michigan, Lake Huron,

and the Red Cedar River in Michigan. The figure shows the periodogram and fitted

ARTFIMA(p,d,λ ,q) spectral density function for a data set from Saginaw Bay. (a) Setting

p = q = 0 for a tempered fractional noise, we also set d = 5/6 (from theory, Kolmogorov scaling

and this resulted in the parameter fit λ = 0.045 (0.00248) using the Whittle estimator.

(b)Without fixing d , the Whittle estimates are λ = 0.027 (.00229) and d = 0.752 (.00582). The

ARTFIMA model is stationary, and there is ample reason to consider the time series of velocity data

as stationary.
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A North American Regional Climate Change Assessment Program (NARCCAP) climate model was

used to generate 29 years of daily maximum temperature data at 16,100 spatial locations in North

America. We examine this data at one location, with sample size n = 10,585. We fit an

ARTFIMA(0,0.933,0.3,0) model to the standardized time series. An ARFIMA model fits the data

with d = 0.95 (not shown). As there is no evidence of nonstationarity in the standardized time

series, the stationary ARTFIMA model seems preferable to the ARFIMA model with d = 0.95,

since the latter has stationary increments.
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Functional limit theorem

A FBM BH(t) can be obtained as the weak convergence limit of normalized partial

sums of an ARFIMA(p,d,q):

1

NH

[Nt]

∑
k=1

Xd(k)
D[0,1]−→ Θq

ΦpΓ(d + 1)
BH(t), as N → ∞,

where H = d + 1
2
∈ (0,1).

Question: What would be the weak convergence limit of scaled partial sums of

ARFIMA(p,d,λ ,q) ?

We answer this question by assuming that the tempering parameter λ ≡ λN may

depend on N so that it remains bounded as N increases and following limit exists:

lim
N→∞

NλN = λ∗ ∈ [0,∞].

Sabzikar, Farzad How does tempering affect the local and global properties of fractional Brownian motion?



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Functional limit theorem

A FBM BH(t) can be obtained as the weak convergence limit of normalized partial

sums of an ARFIMA(p,d,q):

1

NH

[Nt]

∑
k=1

Xd(k)
D[0,1]−→ Θq

ΦpΓ(d + 1)
BH(t), as N → ∞,

where H = d + 1
2
∈ (0,1).

Question: What would be the weak convergence limit of scaled partial sums of

ARFIMA(p,d,λ ,q) ?

We answer this question by assuming that the tempering parameter λ ≡ λN may

depend on N so that it remains bounded as N increases and following limit exists:

lim
N→∞

NλN = λ∗ ∈ [0,∞].

Sabzikar, Farzad How does tempering affect the local and global properties of fractional Brownian motion?



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Functional limit theorem

A FBM BH(t) can be obtained as the weak convergence limit of normalized partial

sums of an ARFIMA(p,d,q):

1

NH

[Nt]

∑
k=1

Xd(k)
D[0,1]−→ Θq

ΦpΓ(d + 1)
BH(t), as N → ∞,

where H = d + 1
2
∈ (0,1).

Question: What would be the weak convergence limit of scaled partial sums of

ARFIMA(p,d,λ ,q) ?

We answer this question by assuming that the tempering parameter λ ≡ λN may

depend on N so that it remains bounded as N increases and following limit exists:

lim
N→∞

NλN = λ∗ ∈ [0,∞].

Sabzikar, Farzad How does tempering affect the local and global properties of fractional Brownian motion?



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Let λ∗ = ∞, d ∈ R\N−, E|ζ (0)|p < ∞ for some p > 2. Then

N− 1
2 λ d

N S
d,λN
N (t)

D[0,1]−→ σ B(t),

where B is a standard Brownian motion and σ > 0 some constant.

Let λ∗ = 0 and H = d + 1
2
∈ (0,1). Moreover, if either 1/2 < H < 1, or

0 < H < 1/2 and E|ζ (0)|p < ∞(∃p > 1/H) hold, Then

N−H S
d,λN
N (t)

D[0,1]−→ Γ(d + 1)−1BH,0(t),

where BH,0 = BH is a multiple of fractional Brownian motion.

Let λ∗ ∈ (0,∞) and H = d + 1
2
> 0. Assume either 1/2 < H, or 0 < H < 1/2 and

E|ζ (0)|p < ∞(∃p > 1/H) hold. Then

N−H S
d,λN
N (t)

D[0,1]−→ Γ(d + 1)−1BII
H,α,λ∗(t),

where BII
H,α,λ∗ is a stochastic processes which is called tempered fractional Brownian

motion of the second kind (TFBM II).
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FBM: Mandelbrot-van-Ness representation

Mandelbrot-van-Ness representation of two-sided normalized fractional Brownian

motion (fBm) with Hurst index H ∈ (0,1)\{1/2} has a form

BH(t) = CH

∫ (
(t − x)

H− 1
2

+ − (−x)
H− 1

2

+

)
B(dx),

where CH = (Γ(2H+1)sin(πH))1/2

Γ(H+1/2) .
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TFBM I

Given an independently scattered Gaussian random measure B(dx) on R with control

measure dx , for any H > 0 and λ > 0, the stochastic process BI
H,λ = {BI

H,λ (t)}t∈R

defined by the Wiener integral

BI
H,λ (t) :=

∫ [
e−λ (t−x)+(t − x)

H− 1
2

+ − e−λ (−x)+(−x)
H− 1

2
+

]
B(dx), (0.2)

where 00 = 0, is called the tempered fractional Brownian motion (TFBM).

It is easy to check that the function

gI
H,λ ,t(x) := e−λ (t−x)+(t − x)

H− 1
2

+ − e−λ (−x)+(−x)
H− 1

2
+

is square integrable over the entire real line for any H > 0, so that TFBM is well-defined.

Note that it is defined for H = 1/2 as well, in contrast to the Mandelbrot-van-Ness

representation, and equals

BI
1/2,λ (t) = e−λ t

∫ t

−∞
eλ x B(dx)−

∫ 0

−∞
eλ x B(dx).

However, in what follows, we shall consider mostly H ̸= 1/2.Sabzikar, Farzad How does tempering affect the local and global properties of fractional Brownian motion?
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TFBM II

For H ̸= 1/2, the kernel (t − x)
H− 1

2
+ − (−x)

H− 1
2

+ can be represented as

(t − x)
H− 1

2
+ − (−x)

H− 1
2

+ = (H − 1/2)
∫ t

0
(s− x)

H− 3
2

+ ds.

Moderating respectively the integrand by the same exponent, integrating by parts and

ignoring normalizing constant, we get another tempered stochastic process: Given an

independently scattered Gaussian random measure B(dx) on R with control measure dx ,

for any H > 0 and λ > 0, the stochastic process BII
H,λ = {BII

H,λ (t)}t∈R defined by the

Wiener integral

BII
H,λ (t) :=

∫
gII

H,λ ,t(x)B(dx), (0.3)

where

gII
H,λ ,t(x) := (t − x)

H− 1
2

+ e−λ (t−x)+ − (−x)
H− 1

2
+ e−λ (−x)+

+λ
∫ t

0
(s− x)

H− 1
2

+ e−λ (s−x)+ ds, x ∈ R.
(0.4)

is called the tempered fractional Brownian motion of the second kind (TFBMII).
Sabzikar, Farzad How does tempering affect the local and global properties of fractional Brownian motion?
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Scaling property & Second moment structure

TFBM (0.2) and TFBMII (0.3) are Gaussian stochastic processes with stationary

increments, having the following scaling property: for any scaling factor c > 0

{
XH,λ (ct)

}
t∈R,

{
cH XH,cλ (t)

}
t∈R (0.5)

where XH,λ could be BI
H,λ or BII

H,λ .

Using the scaling property (0.5) and the fact that XH,λ (|t|) has the same

distribution as |t|H XH,λ |t|(1), it is easy to see that

E[(XH,λ (|t|))2] = |t|2HE[(XH,λ |t|(1))2] =: |t|2H C2
t .
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(a) Let XH,λ = BI
H,λ . Then the function C2

t = (CI
t )

2 = E[(BI
H,λ |t|(1))2] has the

expression

(CI
t )

2 =
2Γ(2H)

(2λ |t|)2H
−

2Γ(H + 1
2
)

√
π

1

(2λ |t|)H
KH(λ |t|), (0.6)

where t ̸= 0 and Kν(z) is the modified Bessel function of the second kind (see Appendix A

for the definition of Kν(z)).

Let XH,λ = BII
H,λ . Then the function C2

t = (CII
t )

2 = E[(BII
H,λ |t|(1))2] has the

expression

(CII
t )

2 =
(1− 2H)Γ(H + 1

2
)Γ(H)(λ t)−2H

√
π

[
1− 2F3

(
{1,−1/2},{1−H,1/2,1},λ 2t2/4

)]
+

Γ(1−H)Γ(H + 1
2
)

√
πH22H 2F3

(
{1,H − 1/2},{1,H + 1,H + 1/2},λ 2t2/4

)
,

(0.7)

where 2F3 is the generalized hypergeometric function.
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The TFBM (0.2) with parameters H > 0 and λ > 0 satisfies

lim
t→+∞

E[BI
H,λ (t)]2 =

2Γ(2H)

(2λ )2H
. (0.8)

The TFBMII (0.3) with parameters H > 0 and λ > 0 satisfies

lim
t→+∞

E
[BII

H,λ (t)
√

t

]2

= λ 1−2HΓ2
(

H +
1

2

)
. (0.9)

Since TFBM is a Gaussian stochastic process with zero mean, it follows from (0.8) that

BI
H,λ (t) converges in law to a normal random variable with zero mean and variance

2Γ(2H)(2λ )−2H as t → ∞, unlike fBm, whose variance diverges to infinity. In contrast,

relation (0.9) shows that TFBMII is stochastically unbounded as t → ∞.
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Sample paths properties and local times

Let X stand for be a TFBM BI
H,λ from (0.2) or for a TFBMII BII

H,λ from (0.3) both with

0 < H < 1 and λ > 0. Then there exist positive constants C1 and C2 such that

C1 |t − s|2H ≤ E[|X(t)−X(s)|2]≤ C2 |t − s|2H
(0.10)

for any s, t ∈ [0,1].

Inequalities mean that both processes, TFBM and TFBMII, are quasi-hélices,

according to geometric terminology of J.-P. Kahane, see [3].

The inequality (0.10) holds for any fixed interval [0,T ] with constants Ci depending

on T .
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TFBMI/TFBMII : Local time

Next, we discuss the existence of local times for TFBM and TFBMII. We also show

that these tempered fractional processes are locally nondeterministic on any open

interval.

Suppose X = {X(t)}t≥0 is a real-valued separable random process with Borel

sample functions. The random Borel measure

µB(A) =
∫

B
I{X(s) ∈ A} ds

defined for Borel sets A ⊆ R, B ⊆ R+ is called the occupation measure of X on

B. If µB is absolutely continuous with respect to Lebesgue measure on R+, then

the Radon-Nikodym derivative of µB with respect to Lebesgue measure is called the

local time of X on B, denoted by L(B, x). See Boufoussi et al. [2] for more detail.

For brevity, we denote L(t, x) := L([0, t], x).
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Let X be either TFBM (0.2) or TFBMII (0.3). Then for 0 < H < 1 and λ > 0, X

has a local time L(t, x) that is continuous in t for a.e. x ∈ R, and square integrable

with respect to x .

(The idea of the proof): It follows from Boufoussi et al. in [2, Theorem 3.1] that a

stochastic process X = {X(t)}t∈[0,T ] has a local time L(t, x) that is continuous

in t for a.e. x ∈ R, and square integrable with respect to x , if X satisfies the

following condition:

(H ): There exist positive numbers (ρ0,H) ∈ (0,∞)× (0,1) and a positive

function ψ ∈ L1(R) such that for all

κ ∈ R,T > 0, t, s ∈ [0,T ],0 < |t − s|< ρ0 we have∣∣∣∣∣E
[
exp
(

iκ
X(t)−X(s)

|t − s|H
)]∣∣∣∣∣≤ ψ(κ).
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TFBMI/TFBMII: LND property

A zero mean Gaussian process {X(t)}t∈R is locally nondeterministic (LND) on some

interval T= (a,b) if X satisfies condition (A) consisting of the following three

assumptions:

(A) (i) E[X 2(t)]> 0 for all t ∈ T;

(ii) E[(X(t)−X(s))2]> 0 for all t, s ∈ T sufficiently close;

(iii) for any m ≥ 2,

liminf
ε↓0

Vm =
Var{X(tm)−X(tm−1)|X(t1), . . . ,X(tm−1)}

Var{X(tm)−X(tm−1)}
> 0, (0.11)

where the liminf is taken over distinct, ordered t1 < t2 < .. . < tm ∈ T with

|t1 − tm|< ε .

Let X be either TFBM (0.2) or TFBMII (0.3). Then for any 0 < H < 1 and λ > 0, X is LND

on every interval (0,T) for 0 < T < ∞.
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TFBMI/TFBMII: p-variation

Fix a time interval [a,b]⊂ R, and consider the uniform partition

πn = {a = tn
0 < tn

1 < .. . < tn
n = b},

where tn
i = a+ i

n
(b− a) for i = 0, . . . ,n. Let β ≥ 1 and X = {Xt , t ∈R} be

a continuous stochastic process. Moreover, we define ∆n
i X = X(tn

i )−X(tn
i−1).

For any β ≥ 1 the β -variation of X on the interval [a,b], denoted by ⟨X⟩β ,[a,b], is

the limit in probability of

S
[a,b]
β ,n (X) :=

n

∑
i=1

|∆n
i X |β ,

if the limit exists. We say that the β -variation of X on [a,b] exists in Lp if the above

limit exists in Lp for some p ≥ 1.
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Let X be either a TFBM BH,λ with parameters H ∈ (0,1) and λ > 0, defined by

(0.2) or a TFBMII BII
H,λ given by (0.3). Then

⟨BH,λ ⟩ 1
H
,[a,b] = cH(b− a)

in probability, where cH = C(H)−
1
H E[|Z | 1

H ] and Z is a N (0,1)-random

variable.

The p-variation of a TFBM and a TFBMII equals zero or infinity, depending on

whether p is greater or less than 1/H.
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Tempered fractional Gaussian noises

Denote α = H − 1
2

. Given a TFBM (0.2), we define tempered fractional Gaussian noise

(TFGN) X I
α,λ (j) = BI

H,λ (j + 1)−BI
H,λ (j) for j ∈ Z. It follows easily from (0.2) that

TFGN has the moving average representation:

X I
α,λ (j) =

∫
R

gI
λ ,α,j(x)B(dx)

=
∫
R

[
e−λ (j+1−x)+(j + 1− x)α

+− e−λ (j−x)+(j − x)α
+

]
B(dx).

(0.12)

A tempered fractional Gaussian noise of the second kind (TFGNII) can be defined as

X II
α,λ (j) = BII

H,λ (j + 1)−BII
H,λ (j) for j ∈ Z. It follows from (0.4) that a TFGNII has the

moving average representation

X II
α,λ (j) =

∫
R

gII
λ ,α,j(x)B(dx) =

∫
R

[
e−λ (j+1−x)+(j + 1− x)α

+− e−λ (j−x)+(j − x)α
+

+λ
∫ j+1

j
e−λ (s−x)+(s− x)α

+ds

]
B(dx).

(0.13)
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let X I
α,λ (j) and X II

α,λ (j) be the stationary sequences given by (0.12) and (0.13)

respectively. Denote

γ J(k) : = E[X J
α,λ (0)X J

α,λ (k)]

= |k + 1|2H (CJ
|k|+1)

2 − 2 |k|2H (CJ
|k|)

2 + |k − 1|2H (CJ
|k−1|)

2, J = I, II,

(0.14)

where the normalizing constants CJ
t are presented as before.

Let λ > 0. TFGN is negatively correlated when H ∈ (0, 1
2
] meaning that for every

0 ̸= k ∈ Z

γ I(k)< 0. (0.15)

Let λ > 0. Then for every k ∈ Z and H > 1/2,

γ II(k)> 0. (0.16)

Moreover, when H = 1/2, it holds γ II(0)> 0, and γ II(k) = 0 for every 0 ̸= k ∈ Z.
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Asymptotic behavior of covariances of TFGNI/TFGNII

For any α >− 1
2

,

γ I(j)∼−2Γ(α + 1)(coshλ − 1)

(2λ )α+1
e−λ j jα (0.17)

as j → ∞. It means that asymptotically TFGN has negative correlation for any

α >− 1
2

. In particular, γ I ∈ ℓq(Z) for every q ≥ 1.

For any α >− 1
2

,

γ II(j)∼ (2eλ − 1)(2λ )−α−1Γ(α + 1)e−λ j jα−1

as j → ∞. It means that asymptotically TFGNII has positive correlation. In

particular, γ II ∈ ℓq(Z) for every q ≥ 1.
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Asymptotic behavior of covariances of TFGNI/TFGNII

Let Y I(j) = (CI
1)
−1X I

α,λ (j) and Y II(j) = (CII
1)

−1X II
α,λ (j) be normalized tempered

fractional Gaussian noises with associated normalizing constants CI
1 and CII

1 . Let

V J
n,q =

1√
n ∑n

k=1 Hq(Y J(k)), J = I, II, where Hq stands for the qth Hermite polynomial.

Then

σ 2
n,J,q := Var

(
V J

n,q

)
=

q!

n
(CJ

1)
−2q

n

∑
k,l=1

(γ J(k − l))q

−→ σ 2
J,q,H,λ := q! (CJ

1)
−2q ∑

k∈Z
(γ J(k))q <+∞.

(0.18)

Furthermore we can guarantee this value is strictly positive provided that

(a) J = I, II and q is even.

(b) J = I, H ∈ (0,1/2] and q > 1.

(c) J = II, H ≥ 1/2 and q > 1.
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Breuer–Major theorem for tempered fractional Gaussian noises

Let γ(dx) = 1√
2π e−x2/2dx denote the standard Gaussian measure on the real line.

Assume that f ∈ L2(R,γ) be a centered function, i.e. Eγ [f ] = 0, with Hermite rank

d ≥ 1, meaning that, f admits the Hermite expansion f(x) = ∑∞
j=d aj Hj(x) with ad ̸= 0.

We have that

V J
n,d,H,λ :=

1√
n

n

∑
k=1

f(Y J
j )

d−→ N (0,σ 2
J,H,λ ,d),

with

σ 2
J,H,λ ,d =

∞

∑
q=d

q!

2q
a2

qσ 2
J,q,H,λ ∈ [0,∞), (0.19)

where σ 2
J,q,H,λ is introduced in (0.18).

In any of the following cases: (a) J = I, II and aq ̸= 0 for at least one of even q; (b) J = I

and H ≤ 1/2; (c) J = II and H ≥ 1/2 we claim that σ 2
J,H,λ ,d > 0.
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The message of last theorem is that tempering always fulfills the sufficient condition

in the Breuer-Major Theorem without assuming any extra condition on the Hurst

parameter H or/and the tempering parameter λ . This is in contract to the classical

setup of the fractional Gaussian noise where often there is a phase transition for the

validity of CLT, see [25, Theorem 7.4.1].
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A quantitative version of the CLTs for TFGNI/TFGNII

For given random elements F and G the total variation distance, denoted by dTV ,

between the laws of F and G defined as

dTV(F ,G) := sup
A

∣∣∣P(F ∈ A)−P(G ∈ A)
∣∣∣

where the supremum is taken over all the Borel subsets A ∈ B(R) on the real

line.

We introduce the Sobolev space Dp,k(R,γ), where p ≥ 1 and k ∈ N, that is the

closure of all polynomial mapping f : R→ R with respect to the norm

∥f∥p,k :=

[
k

∑
i=0

∫
R
|f (i)(x)|pγ(dx)

] 1
p

.

Here f (0) = f , and f (i) stands for the i th derivative of f , i = 1, . . . , k .
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Let the random variable N ∼ N (0,1), γ(dx) = 1√
2π e−x2/2dx denote the

standard Gaussian measure on the real line. Assume that f ∈ L2(R,γ) be a

centered function, i.e. Eγ [f ] = 0, with Hermite rank d ≥ 1, meaning that, f admits

the Hermite expansion f(x) = ∑∞
j=d aj Hj(x) with ad ̸= 0, and σ 2

J,H,λ ,d > 0. If

f ∈ L2(R,γ) with Eγ [f ] = 0 and belongs to Sobolev space D1,4(R,γ), then

dTV

(
V J

n√
Var(V J

n )
,N

)
= O

n−
1
2

(
∑
|ν |≤n

∣∣∣γ J(ν)
∣∣∣) 3

2

 , n → ∞.

(0.20)

So, dTV

(
V J

n√
Var(V J

n )
,N

)
≤ C n−

1
2 for some constant C, and n ≥ 1. Here

J = I, II.
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Asymptotic behavior of the third and fourth cumulants of TFGNI/TFGNII

Let F be a real-valued random variable with E|F |n < ∞ for n ≥ 1. Let

ϕF(t) = E[eitF ] be the characteristic function of F . Then

κj(F) = (−i)j d j

dt j
logϕF(t)|t=0

is called the j th cumulant of F. For every n ≥ 1, define

F J
n =

V J
n√

Var(V J
n )

=
1√

nVar(V J
n )

n

∑
k=1

Hq(Y J(k)), J = I, II. (0.21)
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Let q ≥ 2 be an integer. Consider sequence (F J
n : n ≥ 1) given by relation (0.21)

where Hq denote the Hermite polynomial of degree q. Then, as n tends to infinity,

(a) For any even integer q ≥ 2, it holds that κ3(F J
n )≍ n−

1
2 .

(b) For any integer q ≥ 2, it holds that κ4(F J
n )≍ n−1 provided that either q is even, or

J = I, H ∈ (0,1/2], or J = II, H ≥ 1/2.

Therefore, if q ≥ 2 is an even integer, then there exist two constants C1,C2 > 0

(independent of n) so that for every n ≥ 1, the following optimal third moment

estimate holds:

C2

∣∣E[(F J
n )

3]
∣∣≤ dTV(F J

n ,N)≤ C1

∣∣E[(F J
n )

3]
∣∣. (0.22)
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The tempering parameter λ manifests its role in the optimal fourth moment

theorem. In fact, the optimal rates of convergence of the third and fourth cumulants

of F J
n are valid for any H > 0 and λ > 0 for even q. This is in contrast with the

case of fractional Brownian motion where κ3(Fn)≍ n−
1
2 provided

H ∈ (0,1− 2
3q
) with an even integer q ≥ 2 and κ4(Fn)≍ n−1 provided

H ∈ (0,1− 3
4q
) with q ∈ 2,3, see Propositions 6.6 and 6.7 in [1].

It is also worth to mention that for q even the sequence (F J
n : n ≥ 1) given by

(0.21) exhibits the interesting scenario that κ3(F J
n )≈ (κ4(F J

n ))
1
2 , and hence the

third cumulant κ3(F J
n ) asymptotically dominates the fourth cumulant as n tends to

infinity. A similar phenomenon appears in [4] as well, in which, convergence of third

cumulants to zero implies the convergence of the fourth cumulants to zero.
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Summary

TFBMI/TFBMII

Sample paths and LND properties

p-variation

TFGNI/TFGNII

Breuer–Major theorem for TFGNI/TFGNII

Optimal fourth moment for TFGNI/TFGNII
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Thank You!
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A tempered fractional stable motion, TFSM, is a stochastic processes defined by

ZH,α,λ (t) =
∫
R

(
(t − y)

H− 1
α

+ e−λ(t−y)+ − (−y)
H− 1

α
+ e−λ(−y)+

)
Mα(dy),

for 0 < α ≤ 2,0 < H < 1,λ > 0 and symmetric α -stable Lévy process Mα .

For λ = 0 both TFSM and TFSM II agree with fractional stable motion.
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For any λ > 0 and κ > 0, we define the (positive and negative) tempered

fractional integrals (TFI) of a function f by

Iκ,λ
± f(y) =

1

Γ(κ)

∫
R

f(u)(u− y)κ−1
± e−λ(u−y)±du.

For 0 < κ < 1 and λ > 0, we define the (positive and negative) tempered

fractional derivatives (TFD) of a function f by

Dκ,λ
± f(y) = λ κ f(y)+

κ
Γ(1−κ)

∫
R

f(y)− f(u)

(y − u)κ+1
±

e−λ(y−u)±du.
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The variance and covariance of TFBM II BII
H,λ (H > 0,λ > 0) has the form

C2
t = E

[
(BII

H,λ (t))2
]
=

1

2π

∫
R

∣∣∣eiω t − 1

iω
(λ + iω)

1
2
−H
∣∣∣2 dω

=
Γ(−1/2)Γ(H)

πΓ(H − 1
2
)λ 2H

[
1− 2F3

(
{1,−1/2},{1−H,1/2,1}, λ 2t2

4

)]
+ 21−2Hπ−1Γ(H)t2H

2F3

(
{1,H − 1

2
},{1,H + 1,H +

1

2
}, λ 2t2

4

)
,

(0.23)

and

Cov
[

BII
H,λ (t),BII

H,λ (s)
]
=

1

2

[
C2

t +C2
s −C2

t−s

]
, s, t ∈ R, (0.24)

where C2
t is given in (0.23) and 2F3 is the generalized hypergeometric function.
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We can extend the definition of tempered fractional derivatives to a suitable class of

functions in L2(R). For any κ > 0 and λ > 0 we may define the fractional

Sobolev space

W κ,2(R) := {f ∈ L2(R) :
∫
R
(λ 2 +ω2)κ |̂f(ω)|2 dω < ∞},

which is a Banach space with norm ∥f∥κ,λ = ∥(λ 2 +ω2)κ/2̂f(ω)∥2.

Let κ > 0 and f ∈ L1(R) (or L2(R)). Then Iκ,λ
− f(t) has the Fourier transform

Îκ,λ
± f(ω) = f̂(ω)(λ ± iω)−κ

for λ > 0. For f ∈ W κ,2(R),

D̂κ,λ
± f(ω) = f̂(ω)(λ ± iω)κ
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