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Abstract

Consider the group SL(2) over the ring of algebraic integers of a num-
ber field K. Define the height of a matrix to be the maximum over all the
conjugates of its entries in absolute value. Let N(t) be the number of ma-
trices in SL(2) with height bounded by t. We determine the asymptotic
behaviour of N(t) as t goes to infinity including an error term,

N(t) = Ct2n + O(t2n−η)

with n being the degree of K. The constant C involves the discriminant
of K, an integral depending only on the signature of K and the value
of the Dedekind zeta function of K at s=2. We use the theory of uni-
form distribution and discrepancy to obtain the error term. Then we
will make connections to counting problems concerning units in certain
integral group rings and integral normal bases.
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1 Introduction and Background

Let K be a number field of degree n over Q. For a ∈ K define the height of a
by

ht(a) := max
σ

|σ(a)|,

where σ runs over all n complex embeddings of K. For any matrix A with
entries in K, let ht(A) be the maximum of the heights of its entries. It is an old
problem to estimate the number of matrices

N(t) := {A ∈ SLm(OK) : ht(A) ≤ t}

as t tends to infinity. We also ask the same question with GLm(OK) in place
of SLm(OK).
For m = 2 and K = Q, this is known as the ’hyperbolic circle problem’ because
it has a beautiful interpretation in hyperbolic geometry, see Beardon (1983).
The best known error term in this case is O(t2/3+ε), due to A. Selberg, see Lax
and Phillips (1982).
Duke/Rudnick/Sarnak have proved a very general theorem (see Duke et al.
(1993)) which, as an ’application’, answers the question in case K = Q for
arbitrary m.

Theorem 1 (Duke/Rudnick/Sarnak)
Write ‖g‖2 for the usual 2-norm of a matrix with real entries. For all m ≥ 1,

#{g ∈ SLm(Z) : ‖g‖2 ≤ t} ∼ cmtm
2−m (1)

where

cm =
πm2/2

Γ
(

m2−m+2
2

)
Γ

(
m
2

)
ζ(2) · · · ζ(m)

.

The following theorem is the main result of this paper, valid for arbitrary number
fields, but only in case m = 2. It is a strenghtening of an asymptotic result in
Roettger (2000). This thesis is available on-line at

http://www.mth.uea.ac.uk/admissions/graduate/phds.html

Theorem 2
Let m = 2. For any positive η < 1/(20n− 5),

N(t) = 4EKDKt2n + O(t2n−η) (2)

where DK depends only on the signature of K and

EK :=
1

ζK(2)|disc(K)|3/2
. (3)

Here, ζK denotes the Dedekind zeta function of K and disc(K) the discriminant
of K.
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Remark 3

1. Theorem 2 holds for arbitrary cosets of SL2(OK) in GL2(OK) with the
same limit and error term.

2. The constant DK is given by

DK = 23sK

∫
B

g(x) dx, (4)

where sK , B and the function g are defined as follows. Let K have rK

real and 2sK complex embeddings into C. Let V = RrK ⊕CsK and define
for x = (xi) ∈ V the ‘height’ ‖x‖∞ = max |xi|. Now B is the unit ball
corresponding to ‖.‖∞ in V , and

g(x) := 4rK π2sK‖x‖n
∞

rK∏
i=1

(
1 + log

(
‖x‖∞
|xi|

))
rK+sK∏
i=rK+1

(
‖x‖∞
|xi|

+ 2 log
(
‖x‖∞
|xi|

))
(5)

for those x ∈ V such that all coordinates xi are nonzero. Note that g has
singularities!

3. Note the appearance of the zeta function in the denominator in both
Theorems 1 and 2. This is not unexpected, since ζ(2)...ζ(m) is the volume
of the quotient space SLm(R)/SLm(Z) for all m ≥ 2, see Siegel (1989).

2 Notation and Basic Definitions

The embeddings σ : K → C can be grouped together to give an one-to-one
algebra homomorphism Σ : K → V ,

Σ(a) := (σ1(a), . . . , σk(a))

Here, we have ordered the embeddings so that σi is real for 1 ≤ i ≤ rK and
complex for rK < i ≤ rK + sK . We write k := rK + sK . In the rest of this
paper, we will always identify K and Σ(K), that is we will consider K as a
subset of V . Thus, we may say that K is dense in V and OK is a full lattice
in V . All the usual maps NK/Q, TrK/Q and indeed σi have unique continuous
extensions from K to V , which we will denote by the same name as the original.
We also extend the height function to V . When we want to emphasize that this
extension is a Euclidean norm on V , we will denote it by ‖x‖∞. The height of
a vector is defined as the maximum of the heights of its entries. We use the
Vinogradov notation f(t) � g(t) and f(t) = O(g(t)) both in the sense that
there is an implicit constant C such that f(t) ≤ Cg(t) for all t > 0.
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We will need the notion of covolume. Given a lattice L in Rs, the covolume
cov(L) is the volume of a fundamental parallelotope F for L. As an example,
the lattice OK in V has covolume

cov(OK) =
|disc(K)|1/2

2sK
(6)

(for a proof, see a textbook like eg Samuel (1970)). We will always use a, b for
elements of OK and u, v, x, y, z for elements of V . A matrix A ∈ SL2(OK) is
always understood to have entries a, b, c, d.

3 Strategy of the Proof

We will emphasize the role of uniform distribution and discrepancy in the proof,
since this is the part which goes beyond the thesis Roettger (2000). These
concepts are used in sections 5 and 6, respectively, to derive estimates which
are needed for the first counting method as outlined in subsection 3.1. Section
4 contains the results about lattice point counting needed for both counting
methods, and section 7 is about an estimate of a crucial volume.

3.1 Counting Matrices With One Fixed Entry

Fix some nonzero a ∈ OK and count the set of matrices in SL2(OK)

Ma :=
{(

a b
c d

)
: ht(b, c, d) ≤ ht(a)

}
(7)

which have this fixed entry a in top left position. Writing

Qa :=
{

(b, c) :
−bc ≡ 1(a),
ht(b, c, 1+bc

a ) ≤ ht(a)

}
,

we have #Ma = #Qa. Rather than summing #Qa, we will deal with

Pa := {(b, c) : bc ≡ 1(a), ht(b, c, bc/a) ≤ ht(a)}.

We will show in Proposition 12 that the difference between #Qa and #Pa can
be estimated by ∑

ht(a)≤t

|#Qa −#Pa| = O(tn−η) (8)

and so we can deal with the sets Pa from now on. Rewrite the conditions
defining Pa geometrically. Define for all units x ∈ V a subset Hx of V 2 by

Hx :=
{

(y, z) : y, z, yz ∈ ht(x)
x

B
}

(9)
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There is some sloppiness in the notation. Real numbers like ht(x) act by multi-
plication on V in the obvious way, whereas multiplication by x−1 means multi-
plication by different factors in each coordinate, namely by x−1

i . Note that all
0 6= a ∈ K are units of V , so Ha is defined. Using Ha, we can write

Pa =
{

(b, c) : bc ≡ 1(a),
(

b

a
,
c

a

)
∈ Ha

}
.

The points
(

b
a , c

a

)
are spread around Ha irregularly, but ’on average’ uniformly.

The concept of uniform distribution makes this precise. Define for every nonzero
a ∈ OK a sampling functional ma as follows.

ma(f) :=
cov(OK)2

φ(a)

∑
bc≡1(a)

f

(
b

a
,
c

a

)
(10)

The summation is over all b, c ∈ OK such that bc ≡ 1 (mod a). This functional
is defined for all functions with compact support in V 2. Obviously,

#Pa =
φ(a)

cov(OK)2
ma(1Ha

) (11)

We will prove in Theorem 17 that for all Riemann-integrable sets H in V 2

lim
φ(a)→∞

ma(1H) = Vol(H) (12)

where limφ(a) means a limit for all sequences of elements a ∈ OK such that
φ(a) tends to infinity. To prove Theorem 17, we use the Weyl criterion. This
leads us to estimating ’Fourier coefficients’ which turn out to be very natural
generalizations of the classical Kloosterman sums. See section 5 for more details.
Equation (12) seems to suggest

ma(1Ha) ≈ Vol(Ha) (13)

However, the ’target’ H in (12) is supposed to be fixed, independent of a, which
is the parameter of the sampling functional. We aim for a ’moving target’ Ha,
and so we need an estimate for the error in the approximation (13). The classical
theory of discrepancy comes into play here. Writing r(a) for the diameter of Ha

and using (11), we get an error bound from Theorem 20.∣∣∣∣#Pa −
φ(a)

cov(OK)
Vol(Ha)

∣∣∣∣ � φ(a)r(a)2n−1|NK/Q(a)|−δ (14)

for the error in equation (13), valid for all δ < 1/(5n). This bound is too crude
to be summed over all a of height less than t. However, if we choose a small
exponent e and consider only those elements a such that |NK/Q(a)| ≥ ht(a)n−e,
the strategy still works. For these elements, minσ |σ(a)| ≥ ht(a)1−e and

r(a) =
2ht(a)

minσ |σ(a)|
≤ 2ht(a)e
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So we define

Ke(t) := {x ∈ V : |NK/Q(x)| ≥ ht(x)n−e
, ht(x) ≤ t} (15)

We want to sum the error bound (14) over all 0 6= a ∈ Ke(t). Replacing φ(a)
by |NK/Q(a)|, we have for the sum over these ’nice’ elements a∑

a

|NK/Q(a)|1−δht(a)(2n−1)e = O(t2n−nδ+(2n−1)e). (16)

In Theorem 8, we will prove for all γ < 1/2

1
cov(OK)2

∑
a∈Ke(t)

φ(a)Vol(Ha) = CKt2n + O(t2n−γ) (17)

where

CK :=
23sK

ζK(2)|disc(K)|3/2

∫
B
|NK/Q(x)|Vol(Hx) dx (18)

It is not hard to calculate |NK/Q(x)|Vol(Hx) = g(x) with the function g defined
in (5). Therefore CK = DKEK with the constants DK , EK defined in (4) and
(3). Together with the error estimate (16), this shows∑

a∈Ke(t)

#Ma = CKt2n + O(t2n−γ + t2n−nδ+(2n−1)e) (19)

The factor 4 in equation (2) comes from the four possibilities for the position
of the maximal entry of a matrix. By Proposition 13, the number of matrices
where two or more entries have maximal height is O(t2n−η) and goes into the
error term.
Now we have to deal with the elements a 6∈ Ke(t) such that |NK/Q(a)| is very
small in comparison to ht(a), eg units of OK . We will employ an entirely
different counting strategy.

3.2 Counting Matrices With Two Fixed Entries

Given a, b ∈ OK such that ht(b) ≤ ht(a) and aOK + bOK = OK , let

R(a, b) := {(c, d) ∈ O2
K : ad− bc = 1, ht(c, d) ≤ ht(a, b)} (20)

If we sum #R(a, b) over all b such that aOK +bOK = OK and ht(b) ≤ ht(a), we
get

∑
b #R(a, b) = #Ma, with the set of matrices Ma defined in (7). This is the

connection between the two counting strategies. Consider the lattice (a, b)OK

of rank n inside V 2. Let cov(a, b) be its covolume. We will prove in Proposition
5 that

#R(a, b) = O

(
ht(a, b)n

cov(a, b)

)
(21)

with an implicit constant independent of a and b. From Proposition 4 follows
that there exists a constant factor C so that cov(a, b) ≤ Cht(a, b)n for all a, b.
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For convenience, suppose cov(a, b) ≤ ht(a, b)n for all a, b - one could also redefine
ht(a, b) or cov(a, b), but a constant factor never affects the magnitude of our
error bounds. Define for positive integers µ, ν

Kµ(t) :=
{

(x, y) ∈ V 2 :
1

µ + 1
≤ cov(x, y)

ht(x, y)n ≤ 1
µ

, ht(y) ≤ ht(x) ≤ t

}
Kµν(t) :=

{
(x, y) ∈ Kµ(t) :

1
ν + 1

≤
|NK/Q(x)|

ht(x)n ≤ 1
ν

}
(22)

Then we split the sum over #R(a, b) according to the values of cov(a, b) and
|NK/Q(a)|. ∑

a,b

#R(a, b) = S1(t) + S2(t) + S3(t) with (23)

S1(t) =
∑
µ≤te

∞∑
ν≤te

∑
(a,b)∈Kµν(t)

#R(a, b)

S2(t) =
∑
µ≤te

∞∑
ν>te

∑
(a,b)∈Kµν(t)

#R(a, b)

S3(t) =
∑
µ>te

∑
(a,b)∈Kµ(t)

#R(a, b)

We will show that S1(t) has the stated asymptotic behavior and that S2(t), S3(t)
go into the error term.
For S2(t), use (21) and Theorem 6. This says

S2(t) �
∑
µ≤te

µ
[
Vol2n(Kµν(1))t2n + O(t2n−1/2)

]
with an implicit constant independent of µ. Therefore the sum over the terms
O(t2n−1) can be bounded by summing t2n−1+e over µ ≤ te, giving a term of
size O(t2n−1+2e). For the main term of S2(t), we want to use Theorem 21 with
ε = 1/µ, ε = 1/(µ + 1) and δ = 1/ν. Note that this covers all the summands in
the summation over ν. For the definition of Kµν(t), we used the height function
and for the definition of K(ε, δ, e) in Theorem 21, a different Euclidean norm.
Since these are bounded in terms of each other, there is no change in the order
of magnitude of the given bounds. Theorem 21 implies

Vol2n(Kµν(1)) �
(

1
µ
− 1

µ + 1

)
1
ν

log(ν)m

and so the whole sum S2(t) is bounded by

S2(t) � O(t2n−1+2e) +
∑
µ≤te

1
µ

t2n−e log(t)m = O(t2n−1+2e + t2n−e log(t)m+1)
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For S3(t), use first the estimate (21) and then Proposition 11 to count the
summands. This gives

S3(t) �
∑
µ>te

∑
(a,b)∈Kµ(t)

ht(a, b)n

cov(a, b)
= O(t2n−e/2 logk−1(t)) (24)

The summand S1(t) agrees with the sum in equation (19) except that it does
not run over any pairs (a, b) in Kµ(t) for µ > te. These exceptions went into
S3(t), and therefore their contribution can be subsumed in the error term.
The exponent e can be chosen to be any number less than 2/(20n − 5) to give
an error term as stated in Theorem 2.

4 Counting Lattice Points

4.1 Homogeneous Counting Problems

Proposition 4
Let cov(a, b) be the covolume of the lattice L = (a, b)OK as before. Then

cov(a, b) = cov(OK)
k∏

i=1

(|σi(a)|2 + |σi(b)|2)ei/2

and there exists a fundamental domain F for L with diameter less than Ccov(a, b)1/n

for some constant C independent of (a, b).

Proof of Proposition 4. The evaluation of cov(a, b) is fairly straightforward and
we omit it here. For details, see Roettger (2000). For the second assertion, start
with the fact that there exists a constant C ′ > 0, independent of L, and at least
one nonzero vector v ∈ L such that ht(v) ≤ C ′cov(a, b)1/n. This follows for
example from Theorem 29 in Siegel (1989) and the commensurability of ht(.)
with the maximum norm on V . By definition of L, there exists r ∈ OK such
that v = (ar, br). For any fixed Z-basis v1, . . . , vn of OK , the vectors

(arv1, brv1), . . . , (arvn, brvn)

form a Z-basis for the sublattice rL of L. The height of each of these vectors is
O(cov(a, b)1/n). Hence they define a fundamental parallelotope for rL of diam-
eter O(cov(a, b)1/n), and it contains at least one fundamental parallelotope for
L. �

Proposition 5
Given a, b ∈ OK such that aOK +bOK = OK , let R(a, b) be the set of all pairs
(c, d) ∈ O2

K such that ad− bc = 1. Then

#{(c, d) ∈ R(a, b) : ht(c, d) ≤ ht(a, b)} = O

(
ht(a, b)n

cov(a, b)

)
,

with an implicit constant independent of a, b.
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Proof of Proposition 5. Since aOK + bOK = OK , there exist c0 and d0 in OK

such that ad0 − bc0 = 1. It is then easy to see that

R(a, b) = (c0, d0) + (a, b)OK .

This is a coset of the lattice L = (a, b)OK considered in Proposition 4. Let U
be the subspace of V 2 spanned by L, and let B be the unit cube in V 2. Define
the number N(t) by

N(t) := #{(c, d) ∈ R(a, b) : ht(c, d) ≤ t}.

This number can be rewritten as the number of points in L lying in (tB −
(c0, d0) ∩ U . Since L has rank n, U is an n-dimensional subspace of V 2. It is
not hard to prove that

Voln((tB− (c0, d0) ∩ U) = tnVoln((B− t−1(c0, d0) ∩ U) = O(tn) (25)

with an implicit constant independent of (c0, d0) and U , i. e. independent of a
and b. Choose a fundamental domain F for L in U with diam(F ) ≤ Ccov(L)1/n.
By Proposition 4, it is possible to do this with a constant C independent of (a, b).
From Proposition 4, we also get

cov(L) ≤ cov(OK)(ht(a)2 + ht(b)2)n/2,

and this allows us to bound diam(F ).

diam(F ) ≤ Ccov(L)
1
n ≤ Ccov(OK)

1
n

√
ht(a)2 + ht(b)2

= O(ht(a, b)) (26)

Now compare the number N(t) to the volume of (tB− (c0, d0))∩U . Using (25)
and (26),

N(t)Voln(F ) ≤ Voln(((t+diam(F ))B−(c0, d0))∩U) = O((t+ht(a, b))n). (27)

From Voln(F ) = cov(L) follows N(t) = O((t + ht(a, b))n/cov(L)), with an im-
plicit constant independent of t, (c0, d0) and (a, b). Finally, put t = ht(a, b) to
complete the proof of proposition 5. �

Note that finding a fundamental domain F of diameter bounded by Ccov(L)1/n

with a uniform constant C is not possible for arbitrary families of lattices.

Theorem 6
Let D be a Riemann-integrable conical domain in V 2. Let ∂D be the boundary
of D and Uε(∂D) an ε-neighbourhood of it. Define the number S(t) by

S(t) :=
{
(a, b) ∈ O2

K : (a, b) ∈ D, ht(a, b) ≤ t
}

If Vol2n(Uε(∂D) ∩ B2) ≤ C1ε for all ε > 0 sufficiently small, then

S(t) =
Vol(D ∩ B2)
cov(OK)2

t2n + O(t2n−1/2)

with an implicit constant depending only on C1, not on D.
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For a proof, see Roettger (2000). The shape of the main term is to be expected,
the intricacy lies in getting an error term which depends only loosely on D.

Theorem 7
For every ε > 0, let

CK,ε :=
23sK

ζK(2)cov(OK)3

∫
B∩Nε

|NK/Q(x)|Vol(Hx) dx (28)

with the set Hx as defined in (9) and

Nε :=
{
x ∈ V : |NK/Q(x)| ≥ εht(x)n

, ht(x) ≤ t
}

Then for all γ < 1/2

1
cov(OK)2

∑
a∈Nε

φ(a)Vol(Ha) = CK,εt
2n + O

(
t2n−γ

)
(29)

with an implicit constant independent of t and ε.

Sketch of proof. Use the Möbius function µK of K. Just as the well-known
Möbius function for Z, it satisfies

φ(a) =
∑
I|(a)

µK(I)NK/Q(I−1a)

Insert this into (29) and use that NK/Q(.) is strongly multiplicative. Invert the
order of summation. An analogue of Theorem 6 gives∑
a∈I∩Nε

|NK/Q(a)|Vol(Ha) =
t2n

NK/Q(I)cov(OK)

∫
B∩Nε

|NK/Q(x)|Vol(Hx) dx(30)

+O(NK/Q(I)1−η
t2n−γ). (31)

for some η > 0. The general shape of this asymptotic behaviour is to be ex-
pected, the crucial fact is that the implicit constant can be chosen independent
of I and ε. This can be proven using elementary arguments similar to and in-
cluding Proposition 4. See Roettger (2000) for details. Finally, dividing (30) by
NK/QI and summing it over all ideals I produces equation (29) and in particular
the factor 1/ζK(2). �

4.2 Non-Homogeneous Counting Problems

The goal of the subsection is to prove Propositions 8 and 11. The counting
problems in the previous sections involve homogeneous functions like |NK/Q|
and Vol(Hx) and lattice points in conical sets. The problems in this subsection
do not fit this pattern. This means that we have to employ different techniques.
However, the classical geometry of numbers again provides elegant answers.
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Theorem 8
Recall the set Ke(t) defined in (15) and the constant CK defined in (18). For

all 0 < e < 1 and all γ < e/2,

1
cov(OK)2

∑
a∈Ke(t)

φ(a)Vol(Ha) = CKt2n + O(t2n−γ) (32)

Proof of Theorem 8. Since the implicit constant in the error term of Theorem 7
does not depend on ε, we may substitute ε = t−e with e as in section 3. For this
value of ε, Ke(t) is contained in Nε. We may also substitute ε = t−e/2. Suppose
x ∈ Nε for this second value of ε. Then either x ∈ Ke(t) or |NK/Q(x)| <

ht(x)n−e. Together with |NK/Q(x)| ≥ t−e/2ht(x)n, this implies

ht(x) < t1/2

meaning Nε is contained in Ke(t) except for some x of small height. Compare
the sum of φ(a)Vol(Ha) over Ke(t) with the corresponding sums over Nε for
ε = t−e and ε = t−e/2. Writing S(t, e) and S(t, e/2) for the latter two, we can
summarize

S(t, e) ≥
∑

a∈Ke(t)

φ(a)Vol(Ha) (33)

S(t, e) = CK,εt
2n + O(t2n−γ) with ε = t−e (34)

S(t, e/2) ≤ O(tn+e/2) +
∑

a∈Ke(t)

φ(a)Vol(Ha)

The O(tn+e/2)-term in the last inequality comes from summing φ(a)Vol(Ha)
over those a ∈ Nε which are not in Ke(t), using

Vol(Ha) ≤ Vol
(

ht(a)
a

B2

)
=

ht(a)2n

(|NK/Q(a)|)2
Vol(B)2

The last ingredient is

0 ≤ CK − CK,ε � ε| logn(ε)| (35)

This is best seen by considering CK,ε as a function of ε. This function is differ-
entiable, and the derivative is the surface integral

d

dε
CK,ε =

23sK

ζK(2)cov(OK)3

∫
∂Nε∩B

|NK/Q(x)|Vol(Hx) dS(x)

which is a O(| logn(ε)|) by looking at (28) and (5). The estimates (33)-(35)
together complete the proof of Theorem 8. �

Note that after establishing the inequality (35), we can be sure that CK is
actually finite, even though it is defined by an improper integral.

11



Lemma 9
Let K be a number field of degree n and let 0 ≤ α < n be fixed. Then

#{a ∈ OK : |NK/Q(a)| ≤ tα, ht(a) ≤ t} = O(tα logk−1(t)),

where k − 1 is the Z-rank of the unit group of OK .

Proof. It is well known that the number of ideals I of norm NK/Q(I) ≤ tα is of
order O(tα). For each principal ideal I = (a), there are O(logk−1(t)) generators
of height less than t. To see this, use the Dirichlet map D from K∗ to Rk defined
by

D(a) := (log |σ1(a)|, . . . , log |σk(a)|)

with the notation of section 2. �

Lemma 10
Let K be a number field of degree n and cov(a, b) the covolume of the lattice

(a, b)OK as before. We claim that for any 0 ≤ α < n and any C > 0 holds

#{(a, b) ∈ O2
K : cov(a, b) ≤ Ctα, ht(a, b) ≤ t} = O(t2α logn−1(t)). (36)

Proof of Lemma 10. Clearly, there exists a natural number p > 0 such that
−p has no square root in K. Consider the field L := K(

√
−p) and let R :=

OK [
√
−p]. Pairs (a, b) ∈ O2

K correspond bijectively to elements a + b
√
−p in

the ring R. Also, R is contained in the ring OL of integers of L. The degree
of L is 2n, and Galois theory tells us that every embedding σi : K → C can
be extended to L in exactly two ways, characterised by the value on

√
−p. The

conjugates of x := a + b
√
−p in C are given by

σi(a)± σi(b)
√
−p, i = 1, . . . , n.

With a suitably chosen constant C1 > 0,∣∣σi(a)± σi(b)
√
−p

∣∣ ≤ |σi(a)|+√
p|σi(b)| ≤ C1

√
|σi(a)|2 + |σi(b)|2 (37)

for all a, b ∈ OK and for all i = 1, . . . , n. Multiply this inequality over all i with
both + and − on the left-hand side. This gives

|NL/Q(x)| = |NL/Q(a + b
√
−p)| ≤ C2n

1 cov(a, b)2. (38)

Now ht(a, b) ≤ t implies ht(x) ≤ (1+
√

p)t. In view of inequality (38), cov(a, b) ≤
Ctα implies |NL/Q(x)| ≤ C2t

2α with a suitable constant C2. Finally the unit
rank of L is n− 1, since L is totally complex. We are ready to apply Lemma 9
with L, C2 and 2α in place of K, C and α, respectively. This gives the required
estimate. �
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Proposition 11
Let cov(a, b) be the function defined in Proposition 4. For any given e > 0,∑

ht(a, b) ≤ t
cov(a, b) ≤ tn−e

ht(a, b)n

cov(a, b)
= O(t2n−e/2 logn−1(t)) (39)

where the implicit constant depends only on e. The pair (a, b) = (0, 0) should
be omitted from the summation.

Proof of Proposition 11. For any 0 ≤ α < β < n, consider the subsum Sα,β of
the one in equation (39), ranging only over those summands satisfying

tα < cov(a, b) ≤ tβ .

In view of Lemma 10,

Sα,β = O(t2β+n−α logn−1(t)). (40)

Now cover the interval [0, n − e] by finitely many intervals [αj , βj ] of length
e/2. The maximum of all βj is therefore n− e. For each corresponding subsum
Sαj ,βj

, the exponent in equation (40) is

2βj + n− αj = βj + n +
e

2
≤ 2n− e

2
.

Summing over all j will give a O(t2n−e/2 logn−1(t)). This completes the proof
of Proposition 11. �

The following proposition gives an upper bound on the number of matrices which
are in Pa, but not in Qa or vice versa as claimed in equation (8). For these
matrices, use the fact that the function ht(.) satisfies the triangle inequality.
This gives

|ht(bc/a)− ht(a)| ≤ ht(1/a) (41)

Proposition 12
Define a set of matrices in SL2(OK) by

Ra := {A ∈ SL2(OK) : ht(A) = ht(a), |ht(bc/a)− ht(a)| ≤ ht(1/a)}

Then
∑

ht(a)≤t
#Ra = O(t2n−η) with η as in Theorem 2.

Proof of Proposition 12. Pursuing the first counting strategy as in subsection
3.1, one arrives at a subset Ga of V 2 such that (b/a, c/a) ∈ Ga if and only if it
stems from a matrix A ∈ Ra. For all a ∈ Ke(t), the height ht(1/a) tends to zero
as ht(a) tends to infinity, therefore Vol(Ga) tends to zero. The same uniform
distribution argument as before shows that the sum over #Ra goes into the
error term of Theorem 2. For a 6∈ Ke(t), look again at the proof of Theorem 8.

13



There we have actually proved that the total number of matrices in SL2(OK)
of height less than t with maximal entry a 6∈ Ke(t) goes into the error term of
Theorem 2. �

Proposition 13
The number of matrices A ∈ SL2(OK) such that two entries have maximal

height is O(t2n−η) with η as in Theorem 2.

Proof of Proposition 13. Consider only matrices A ∈ SL2(OK) is such that
ht(A) = ht(a) = ht(b). Pursuing the first counting strategy as in subsection
3.1, we see that (b/a, c/a) is then in the boundary ∂Ha for Ha as defined in (9).
The same argument as before gives a main term involving the volume of this
boundary, namely zero, and an error term as before. The second possibility is
ht(a) = ht(d) > ht(b),ht(c). This leads to inequality (41), and matrices satisfy-
ing (41) have already been dealt with in Proposition 12. �

5 Uniform Distribution

The statement of Theorem 17 means that the set of pairs (b/a, c/a) used in
defining ma in (10) is uniformly distributed in F 2 (more precisely, this is a
sequence of sets, and the distribution becomes more and more uniform). To
prove Theorem 17, we will need certain generalized Kloosterman sums.
The bound for these sums given in Corollary 16 will not only be used for proving
Theorem 17. We will rely directly on this bound rather than Theorem 17 to
obtain the error term in equation (19). Now let us define the aforementioned
Kloosterman sums.

Definition 14
Consider the symmetric bilinear form 〈., .〉 on V defined by

〈u, v〉 = TrK/Q(uv). (42)

It is well-known that 〈., .〉 is non-degenerate. Let ÔK be the lattice dual to OK

with respect to 〈., .〉. The lattice ÔK is a fractional ideal in K. Its inverse is an
integral ideal, known as the different of K. For all 0 6= a ∈ OK and u, v ∈ ÔK

define the Kloosterman sum

K(u, v; a) :=
∑
b,c

exp(2πiTrK/Q((bu + cv)/a)).

Here the summation is over all residue classes b, c modulo a such that bc ≡ 1
(mod a).

14



Theorem 15
There exists a constant C > 0, depending only on the number field K, such

that for all nonzero u, v ∈ ÔK and all nonzero a ∈ OK

|K(u, v; a)| ≤ C 2ω(a)
√
|NK/Q((u, v, a))|

√
|NK/Q(a)|.

Here, ω(a) denotes the number of prime ideals dividing aOK and (u, v, a) =
uOK + vOK + aOK (this a fractional ideal with bounded denominator).

A proof may be found in (Bruggeman and Miatello, 1995, section 5). In fact,
Bruggeman and Miatello give a far more precise statement. Odoni and Spain
(1995) prove a more general uniform distribution result about rational functions
of arbitrarily many variables. Patterson (1997) studies the angular distribution
of K(x, y; a) and more general sums. Theorem 15 can be derived from Propo-
sition 2.1 of that article (let n = 1 and S be the set of all infinite places of
K).
The hypothesis in Theorem 15 that both of x, y are non-zero can be relaxed to at
least one of them being non-zero. The sums K(u, 0; a) are equal to the Möbius
function of K except for a finite number of cases. For this and a discussion
of algebraic properties of Kloosterman sums, see Pacharoni (1998). For fixed
u, v ∈ ÔK , we have therefore the corollary

Corollary 16
For all ε > 0 and u, v ∈ ÔK not both zero, there is a constant Cu,v,ε such that

|K(u, v; a)| ≤ Cu,v,ε|NK/Q(a)|1/2+ε

for all 0 6= a ∈ OK .

Theorem 17
Recall the sampling functional ma defined in (10). It satisfies for all Riemann-
integrable functions f on V 2 with compact support

lim
φ(a)

ma(f) =
∫

V 2
f(x, y) dx dy

where limφ(a) means a limit for all sequences of elements a ∈ OK such that φ(a)
tends to infinity. In particular, for every Riemann-integrable subset H of V 2,

lim
φ(a)

ma(1H) = Vol(H)

Proof of Theorem 17. Use the Weyl criterion, see Hlawka (1979) or Kuipers
and Niederreiter (1974). To test for the phenomenon of uniform distribution, it
is enough to consider as test functions f all characters of the compact abelian
group V 2/O2

K , restricted to some fixed fundamental domain F 2 for O2
K in

V 2. Every such character can be written as exp(2πiTrK/Q(xu + yv)) for some
u, v ∈ ÔK .
Up to the normalizing factor cov(OK)2, the value of the sampling functional
ma at this character is precisely the Kloosterman sum K(u, v; a). Corollary 16,
together with the Weyl criterion implies the statement of Theorem 17. �
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6 Discrepancy

In our setting, the discrepancy D(a) is the error when approximating the volume
of a cube by the sampling functional ma as defined in (7), maximized over all
cubes inside the fundamental domain F 2 for V 2/O2

K .
The following theorem of Hlawka (1961) has been adapted to our situation. It
shows how the discrepancy gives a bound on the approximation error in (13)
which depends only mildly on Ha.

Theorem 18 (HLAWKA)
Let H be a Riemann–integrable subset of F 2 such that for any straight line L in
V 2, L∩H consists of at most h intervals and the same is true for all orthogonal
projections of H. Then

|ma(1H)−Vol(H)| ≤ (12h)2nD(a)1/(2n).

For the sets Ha defined in (9), the number h is uniformly bounded by Proposition
19.

Proposition 19
For all 0 6= a ∈ OK and all straight lines L in V 2, L ∩Ha consists of at most

12k − 1 intervals. The same is true for all orthogonal projections of Ha.

Proof of Proposition 19. Consider xi, yi and xiyi as real or complex-valued
functions on a straight line L in V 2. They are linear or quadratic functions of
one real parameter. The sets Ha are defined by bounds on the absolute value
of these functions. Since an inequality on the absolute value of a quadratic
function can be tight for at most four values of the parameter, the line L can
hit the boundary of Ha at most 12k times. This proves that L ∩Ha consists of
at most 12k − 1 intervals.
Now let π be an orthogonal projection of V 2 onto a ρ-dimensional subspace.
After a suitable linear coordinate change, π projects any point onto its last ρ
coordinates. The inequalities defining Ha are still linear and quadratic after
changing coordinates. So even if more of them than before might become tight
on a given line L through πHa, there are still at most 3k inequalities defining
πHa, and each of them becomes sharp at most 4 times. Therefore 12k − 1 is a
uniform bound for the number of intervals in L ∩ π(Ha). �

It is usually hard to calculate D(a) exactly, but we get an upper bound on
it from the famous inequality of Erdös/Turán/Koksma and the estimate for
Kloosterman sums quoted in Theorem 16. This inequality states the following.
For every integer M > 300 and any finite set of points A in X = [0, 1[s, the
discrepancy DA for the corresponding sampling functional mA is bounded in
terms of the values of mA at characters of (R/Z)s.

D(A) ≤ 2s · 300
M

+ 30s
∑

0 6=|h|≤M

mA(χh)R(h)−1 (43)
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where h = (h1, . . . , hs) ∈ Zs, |h| = max(|h1|, . . . , |hs|), R(h) =
∏s

j=1 max(1, |hj |)
and χh = exp(2πi〈h, .〉) runs through the characters of (R/Z)s.
To apply this to our setting, we identify O2

K with Z2n by choosing a basis B.

The dual lattice ÔK

2
is spanned by the basis B′ dual to B with respect to

TrK/Q(., .). Characters may be parametrized by χh = exp(2πiTrK/Q(ux + vy))
where (u, v) has the coordinate vector h with respect to B′. The compact
group V 2/OK

2 is identified with X and the dimension s = 2n. The volume is
normalized so that Vol(F ) = 1, and our set A is the set of pairs (b/a, c/a) where
(b, c) runs through those residue classes modulo a where bc ≡ 1 ± a. Then the
sum ma(χh) is just the Kloosterman sum K(u, v; a). Estimate the second term
by taking the absolute value of each summand and use the bound (15) for the
Kloosterman sums. Estimate |NK/Q((u, v, a))| simply by |NK/Q(u)| = O(|h|n),
replace R(h)−1 by |h|−1. This gives

D(a) � 1
M

+
1

φ(a)

∑
0 6=|h|≤M

2ω(a)|h|n/2−1
√
|NK/Q(a)|

� 1
M

+ M2n+n/2−1|NK/Q(a)|−1/2+ε (44)

The optimal choice for M balances the two summands of the right-hand side
of (44), so put M = [|NK/Q(a)|(1−2ε)/(5n)]. Rewriting this, we get for every
δ < 1/(5n)

D(a) = O
(
|NK/Q(a)|−δ

)
. (45)

Unfortunately, our sets Ha are spread over more than one copy of F 2. This
means we have to break Ha up into pieces Ha ∩ ((u, v) + F 2) and use Theorem
18 for those pieces which are neither empty nor entirely filled (in that case, the
approximation error is zero). Writing r(a) for the diameter of Ha, the number
of such pieces is a O(r(a)2n−1) (the order of magnitude of the surface of Ha).
Thus, we have shown the following theorem.

Theorem 20
For all 0 6= a ∈ OK , the error in equation (13) is bounded by

|ma(1Ha)−Vol(Ha)| � r(a)2n−1|NK/Q(a)|−δ

with an implicit constant depending on δ < 1/(5n), but independent of a.

7 Calculation of a Volume

Define the subset K(ε, δ, e) of V 2 by

K(ε, δ, e) :=
{
(x, y) : cov(x, y) ≤ ε‖x, y‖n

2 , |NK/Q(x)| ≤ δ‖x, y‖n
2

}
where e = (e1, ..., ek) is a vector with ei = 1 if the embedding σi of K into C is
real and ei = 2 otherwise. Recall k = rK +sK , n = [K : Q] = rK +2sK with rK

being the number of real embeddings, sK the number of complex embeddings
of K and ‖x, y‖2 := maxi{|xi|2 + |yi|2}.
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Theorem 21
Write log+(x) := max{log(x), 0}. The volume of K(ε, δ, e) as a function of ε, δ
is continuous and differentiable with respect to ε almost everywhere. Wherever
its partial derivative exists, it is bounded for all ε, δ > 0 and satisfies

∂

∂ε
Vol2n(K(ε, δ, e)) = O(min{1, δ log+(1/δ)m)})

for some integer m. In particular, the volume of K(ε, δ, e) is Lipschitz-continuous
in ε with a Lipschitz constant of order O(min{1, δ log+(1/δ)m)}). The implicit
constant in the O-term and the integer m only depend on the vector e.

Proof of Theorem 21. Write out the conditions defining K(ε, δ, e) in coordinates.
These are

k∏
i=1

(|xi|2 + |yi|2)ei/2 ≤ ε‖x, y‖n
2

k∏
i=1

|xi|ei ≤ δ‖x, y‖n
2

‖x, y‖2 ≤ 1 (46)

Reduce to xi, yi > 0 for all 1 ≤ i ≤ rK and pass to polar coordinates (xi, yi) →
(ri, θi, si, φi) for all rK +1 ≤ i ≤ k. The angles θi and φi do not occur anywhere
in the integral, so we can perform these integrations. Afterwards, we change ri

back to xi and si to yi for ease of notation. This gives

Vol(K(ε, δ, e)) = c

∫ 1

0

...

∫ 1

0

1C(x, y)
∏

i>rK

xiyi dV

with c = 4rK (2π)2sK and a domain C = C(ε, δ, e) in R2k defined by

C(ε, δ, e) :=

{
(x, y) : 0 < xi, yi < 1,

∏k
i=1(x

2
i + y2

i )ei/2 ≤ ε‖x, y‖n
2 ,∏k

i=1 xei
i ≤ δ‖x, y‖n

2

}
(47)

Define a subset E of R2k and a function ge(ε, δ) by

E :=
{

(s, θ) ∈ R2k :
0 ≤ sk ≤ ... ≤ s1 ≤ 1, 0 ≤ θi ≤ π/2,∏k

i=1 sei
i < ε,

∏k
i=1(si cos(θi))ei ≤ δ

}

g(ε, δ) := ge(ε, δ) :=
∫

E

k∏
i=1

s2ei−1
i (cos(θi) sin(θi))ei−1 dV (48)

This is designed so that by changing to polar coordinates a second time,

1
ck!

Vol2n(K(ε, δ, e)) = g(ε, δ) (49)
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The factor k! comes in because we suppose the coordinates to be in descending
order in E. From now on, we will deal with the function g instead of the original
volume. In case k = 1, it is not hard to verify the following table, which serves
to show that g is not simple to describe in general.

Conditions g(ε, δ)
Case e1 = 1
δ ≥ 1, ε ≥ 1 π/4
δ ≥ 1, ε ≤ 1 πε2/4
δ ≤ 1, ε ≥ 1 [π/2− arccos(δ) + δ

√
1− δ2]/2

ε ≤ δ ≤ 1 πε2/4
δ ≤ ε ≤ 1 [πε2/2− ε2 arccos(δ/ε) + δ

√
ε2 − δ2]/2

Case e1 = 2
δ ≥ 1, ε ≥ 1 1/8
δ ≥ 1, ε ≤ 1 ε2/8
δ ≤ 1, ε ≥ 1 δ(2− δ)/8
ε ≤ δ ≤ 1 ε2/8
δ ≤ ε ≤ 1 δ(2ε− δ)/8

Note that this is a continuous function of ε and δ, differentiable almost every-
where. The partial derivative with respect to ε is O(δ) in all cases in the table,
wherever it exists. Now use induction over k. Write g̃ for the function corre-
sponding to g for the shorter parameter vector (e2, ..., ek) (the ’tail’ of e), so
that g̃ has two fewer variables than g. There is an obvious recurrence relation
between g and g̃.

g(ε, δ) =
∫ 1

0

∫ π/2

0

s2e1−1
1 (cos(θ1) sin(θ1))e1−1g̃ (ε/se1

1 , δ/(s1 cos(θ1))e1) dθ1 ds1

(50)
Write h̃ for the partial derivative of g̃ with respect to ε, h for that of g. From
(50) and the equality

∂

∂ε
g̃(ε/se1 , δ/(s cos(θ)e1) =

1
se1

h̃(ε/se1 , δ/(s cos(θ)e1),

valid almost everywhere, we get a corresponding recurrence relation for the
functions h and h̃.

h(ε, δ) =
∫ 1

0

∫ π/2

0

se1−1(cos(θ) sin(θ))e1−1h̃ (ε/se1
1 , δ/(s cos(θ))e1) dθ ds (51)

(hence for k > 1, g is in fact continously differentiable with respect to ε). Using
the induction hypothesis for h̃,

h̃(ε, δ) = O(min{1, δ log+(1/δ)m)}) (52)

we get the desired upper bound for h. We will demonstrate this in case e1 = 2.
Without loss of generality, 0 < δ < 1. In this case, substituting u = cos(θ)
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simplifies equation (51) to

h(ε, δ) =
∫ 1

0

∫ 1

0

su h̃(ε/s2, δ/(su)2) du ds (53)

Split off the integrals
∫√δ

0

∫ 1

0
... du ds and

∫ 1√
δ

∫√δ/s

0
... du ds from (53), using

that h̃ is bounded. Both integrals are O(δ log(δ)) for 0 < δ < 1. The remaining
integral ∫ 1

√
δ

∫ 1

√
δ/s

su h̃(ε/s2, δ/(su)2) du ds

can be bounded using the induction hypothesis (52), which gives a term of mag-
nitude O

(
δ log(δ)m+2

)
. The calculations in case e1 = 1 are more tedious, but

entirely similar. �

8 Related Problems

We list three problems which are related to the one we treated in this paper.

1. Counting elements of GL2(OK)
Our methods can be used to obtain

t2n logr(t) � GL2(OK)(t) � t2n logr(t)

with r = rK + sK − 1 being the unit rank of OK .

2. Counting units in integral group rings
For any finite group Γ such that all absolutely irreducible representations
can be realized over the ring of integers in the field Ki generated by their
character values, the group of units in ZΓ embeds into⊕

GLni
(OKi)

such that the image has finite index. If OKi = Z or ni = 2, the theorem
of [DRS] respectively theorem 2 can be used.

3. Counting integral normal bases
Let K/Q be a Galois extension with Galois group Γ. If any integral normal
basis exists, then the set of all integral normal bases is in 1-1 bijection
with ZΓ∗. Counting them with respect to a bound for their absolute
norm requires results from diophantine approximation. Precise results are
known for abelian Galois groups Γ, see Everest (1983), Everest and Györy
(1997), Everest (1998),Bushnell (1979). We have an asymptotic result for
K not real, Γ = S3, see Roettger (1999).
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9 Conclusion

The methods presented here are certainly inferior to those of Duke et al. since
they are not capable of generalization beyond SL2(OK). They do settle at least
this case and give an error term which might still be improved. The group
GL2(OK) could possibly also be treated in this way. An additional feature
is that these elementary methods provide a veritable showcase for beautiful
concepts of classical number theory like higher-dimensional uniform distribution,
discrepancy, geometry of lattices and Möbius inversion.
It seems odd that both counting methods should really be necessary - even if
the first method is less robust with regard to error terms, the second one should
be accessible to an analysis using uniform distribution etc. We have tried to do
this without success.
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