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HIGH-ORDER FACTORIZATION BASED HIGH-ORDER HYBRID
FAST SWEEPING METHODS FOR POINT-SOURCE EIKONAL

EQUATIONS∗

SONGTING LUO† , JIANLIANG QIAN‡ , AND ROBERT BURRIDGE§

Abstract. The solution for the eikonal equation with a point-source condition has an upwind
singularity at the source point as the eikonal solution behaves like a distance function at and near the
source. As such, the eikonal function is not differentiable at the source so that all formally high-order
numerical schemes for the eikonal equation yield first-order convergence and relatively large errors.
Therefore, it is a longstanding challenge in computational geometrical optics how to compute a uni-
formly high-order accurate solution for the point-source eikonal equation in a global domain. In this
paper, assuming that both the squared slowness and the squared eikonal are analytic near the source,
we propose high-order factorization based high-order hybrid fast sweeping methods for point-source
eikonal equations to compute just such solutions. Observing that the squared eikonal is differentiable
at the source, we propose to factorize the eikonal into two multiplicative or additive factors, one
of which is specified to approximate the eikonal up to arbitrary order of accuracy near the source,
and the other of which serves as a higher-order correction term. This decomposition is achieved by
using the eikonal equation and applying power series expansions to both the squared eikonal and the
squared slowness function. We develop recursive formulas to compute the approximate eikonal up
to arbitrary order of accuracy near the source. Furthermore, these approximations enable us to de-
compose the eikonal into two factors, either multiplicatively or additively, so that we can design two
new types of hybrid, high-order fast sweeping schemes for the point-source eikonal equation. We also
show that the first-order hybrid fast sweeping methods are monotone and consistent so that they
are convergent in computing viscosity solutions. Two- and three-dimensional numerical examples
demonstrate that a hybrid pth order fast sweeping method yields desired, uniform, clean pth order
convergence in a global domain by using a pth order factorization.
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schemes
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1. Introduction. We consider the eikonal equation with a point-source condi-
tion,

(1.1)
H(∇τ(x)) ≡ |∇τ(x)| = s(x), x ∈ Ω \ {x0},

τ(x0) = 0,

where Ω ⊂ Rm, x0 is the source point, τ(x) is the so-called eikonal (sometimes called
traveltime as well), and s(x) ≥ η > 0 is the slowness field with η a positive constant.
The eikonal equation (1.1) has a wide variety of applications ranging from classical me-
chanics to geosciences, geometrical optics, computer vision, and optimal control. One
specific example of the point-source eikonal equation arises from computing asymp-
totic Green functions for Helmholtz equations in the high frequency regime, which are
essential for seismic imaging and geophysical inverse problems. The particularity of
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the point-source eikonal equation is that the eikonal is not differentiable at the source
because it behaves like distance from the source in the travel-time metric. Without
special treatments at the source point, all formally high-order numerical schemes yield
only first-order convergence as the high-order Taylor expansion based local truncation
error analysis fails to hold at the source point. Therefore, solving the point-source
eikonal equation uniformly up to high-order accuracy near the source poses a challeng-
ing computational problem in Eulerian geometrical optics [4]. Assuming that both the
squared slowness and the squared eikonal are analytic near the sources, in this paper
we tackle this difficulty by proposing high-order factorization based high-order hybrid
sweeping schemes for point-source eikonal equations, and these new schemes enable
us to compute the point-source eikonal with uniform high-order accuracy globally.

To design efficient high-order schemes for point-source eikonals, we have to over-
come several obstacles. The first obstacle is how to explicitly extract the high-order
information of nondifferentiable eikonals at the source point. Observing that the
squared eikonal is differentiable at the source, we propose to carry out power-series
expansions for both the squared eikonal and squared slowness functions and utilize
the squared eikonal equation. The power-series expansion yields a recursive formula
for computing arbitrary order expansions of the squared eikonal, which in turn pro-
vides us with arbitrary order truncations of the eikonal itself at the source point.
This indirect expansion enables us to successfully extract high-order information of
the point-source eikonal at the source.

The second obstacle is how to effectively utilize high-order truncations of the
point-source eikonal to design efficient numerical schemes. We propose to factorize the
eikonal into two multiplicative or additive factors,1 one of which is specified to approx-
imate the eikonal up to arbitrary order of accuracy near the source by using high-order
truncations of the point-source eikonal, and the other of which serves as a high-order
correction term. These two factorizations allow us to design efficient schemes to com-
pute the correction term with uniform order of accuracy near the source.

The third obstacle is how to design high-order numerical schemes to compute the
point-source eikonal with globally uniform high-order accuracy. Since the truncated
high-order expansion of the point-source eikonal is only valid near the source point,
upon which the high-order factorizations are based, we propose to partition the com-
putational domain into two parts, one of which, called the source domain, is a small
neighborhood of the source including the source point, and the other of which, called
the nonsource domain, is the complement of the source domain. In the source do-
main, we solve the factorized eikonal equation; in the nonsource domain, we solve the
original eikonal equation. The factorization formula serves as the bridge to link the
two solutions obtained from the two versions of the eikonal equations. This strategy
allows us to design hybrid, new, efficient high-order weighted essentially nonoscilla-
tory (WENO) scheme based Lax–Friedrichs sweeping methods for solving point-source
eikonal equations.

1.1. Related work. Because of the tremendous number of its applications, the
eikonal equation has been tackled from many different perspectives, resulting in the
vast literature on the topic; see [21, 35, 20, 34, 30, 6, 9, 23, 24, 25, 26, 33, 10, 12, 40, 39,
8, 27, 28, 11, 14, 5, 29, 2, 1, 38, 15] and references therein. When applied to the point-
source eikonal equation, all of these algorithms yield polluted first-order accuracy
without special treatments of the source point. To observe correct convergence order

1For brevity we shall use the words “factor,” “factorize,” etc., even when the eikonal is split
additively.
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of a numerical algorithm for point-source eikonal equations, one has to initialize the
eikonal analytically near the source by imposing a grid-independent region of constant
velocity near the source [36, 35, 30, 23, 25, 10, 40, 39, 8, 11, 14, 29, 1, 38] and measure
the convergence order only for the solution outside that small region. Consequently,
this special treatment of the point source has two essential drawbacks: (1) the slowness
function may not be constant near the source, and (2) the convergence order is not
globally uniform. In principle, highly accurate ray-tracing methods may be used to
alleviate the first difficulty, but the second remains: nonuniformly convergent eikonal
may hinder further application of the numerical eikonal to computing other quantities,
such as amplitudes and takeoff angles [24, 17, 19]. Other approaches to computing
the point-source eikonal to high-order accuracy include the adaptive grid refinement
method [24], which compensates for the loss of accuracy near the source point, but
the convergence order is still not globally uniform.

The factorization idea of dealing with the point-source eikonal equation has first
appeared as the celerity transform in [22] and has been further developed in [37, 7, 17,
19, 18]; however, why the celerity transform yields highly accurate numerical solutions
for the eikonal equation has not been fully understood until now. Our analysis-
inspired high-order factorizations build a framework for dealing with the point-source
eikonal up to arbitrary order of accuracy near the source, and they include the celerity
transform as a special case. Moreover, in comparison to the related works in [7, 17,
19, 18], our current work has advanced factorization based fast sweeping methods in
the following aspects: (a) it provides a theoretical basis for validity and performance
of the factorization method in that the underlying mechanism of extraction of high-
order information of the eikonal near the source is fully analyzed; (b) it extends
the factorization techniques with both multiplicative and additive factors to higher
order; and (c) it offers a systematic and efficient strategy to initialize the point-source
condition for higher-order schemes when the exact solution is not available.

The hybrid, high-order WENO based Lax–Friedrichs sweeping methods are built
upon the fast sweeping method [6, 10, 40], the first-order Lax–Friedrichs sweeping
method [10], and the high-order WENO based Lax–Friedrichs sweeping method [39,
29]. Since the Lax–Friedrichs sweeping scheme [10] can handle convex and nonconvex
Hamiltonians with ease, we choose the Lax–Friedrichs numerical Hamiltonian as one
of the building blocks in designing hybrid high-order sweeping methods.

We mention that high-order accurate eikonals are also important in solving lin-
earized eikonal equations with respect to the velocity that arises in traveltime tomog-
raphy [13, 32]. In these linearized eikonal equations, the traveltime gradient appears as
the coefficient which usually is obtained by numerically differentiating computed trav-
eltimes, and thus high-order accurate traveltimes will be crucial for solving linearized
eikonal equations with high accuracy. Therefore, the high-order schemes for eikonals
proposed here will be useful in many applications, such as computational geometrical
optics [24, 4, 19], traffic congestion equilibria [16], and traveltime tomography [13, 32].

A natural question is this: what are the advantages of the proposed high-order
schemes for eikonals? The advantages are at least twofold. First, to achieve a certain
specified accuracy, a high-order scheme needs a much coarser mesh than a first-order
scheme does, thus high-order schemes are much more efficient than first-order schemes
in terms of computational cost. Second, high-order accurate eikonals can be numeri-
cally differentiated to yield reliable eikonal gradients while first-order accurate eikonals
cannot, as demonstrated in [24]; consequently, our proposed high-order schemes for
point-source eikonal equations will be significant for solving linearized eikonal equa-
tions in traveltime tomography [13, 32] and other applications.
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1.2. Layout. The rest of the paper is organized as follows. In section 2, we
first present arbitrary order expansions of the squared eikonals, which are followed by
high-order truncations of the eikonals and related applications to multiplicative and
additive factorizations. In section 3, we present hybrid, new, high-order numerical
schemes for computing the point-source eikonal and show that the hybrid, first-order
scheme is monotone, consistent, and thus convergent. In section 4, we use several
two-dimensional (2-D) and three-dimensional (3-D) examples to demonstrate the per-
formance and desired convergence order of the new schemes. Concluding remarks are
given in section 5.

2. High-order factored eikonal equations.

2.1. Arbitrary order expansion of squared eikonals. Without loss of gen-
erality, we assume that the source point is at the origin: x0 = 0. We first derive the
eikonal equation for τ2 and then proceed to solve it by power series about the origin.
We assume that T ≡ τ2 is analytic and zero at the source, and S ≡ s2 is analytic
at the source. As shown in [31], the eikonal is locally smooth near the source except
the source point itself; therefore, the analyticity assumption of the squared eikonal is
reasonable. Let us expand T and S as power series,

(2.1)

T (x) =

∞∑
ν=0

Tν(x),

S(x) =

∞∑
ν=0

Sν(x),

where Tν(x) and Sν(x) are homogeneous polynomials of degree ν in x. Since

(2.2) ∇T = ∇τ2 = 2τ∇τ,

we find that the eikonal equation in terms of T is

(2.3) |∇T |2 = 4τ2|∇τ |2 = 4ST.

We write this in the form

(2.4) ST =
1

4
|∇T |2.

Hence

(2.5)
∞∑
ν=0

Sν(x)
∞∑
ν=0

Tν(x) =
1

4

( ∞∑
ν=0

∇Tν(x)

)2

.

Since τ(0) = 0, we find that T0 = 0. So we may write

(2.6)

( ∞∑
ν=0

Sν(x)

) ( ∞∑
μ=1

Tμ(x)

)
=

1

4

( ∞∑
ν=1

∇Tν(x)

)2

.

Comparing the constant terms we find that

(2.7) 0 =
1

4
|∇T1|2

so that, since T1(x) is linear in x,

(2.8) T1(x) = 0.
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Hence we rewrite (2.6) as

(2.9)

( ∞∑
ν=0

Sν(x)

) ( ∞∑
μ=2

Tμ(x)

)
=

1

4

( ∞∑
ν=2

∇Tν(x)

)2

.

Let us consider the quadratic term

(2.10) S0T2(x) =
1

4
|∇T2(x)|2.

But since T2(x) is a quadratic form we may write it as

(2.11) T2(x) = xTAx with ∇T2(x) = 2Ax ,

where A is a symmetric matrix. So

(2.12) S0A = A2.

We reject the zero solution and assume that A is invertible. Then

(2.13) A = S0I,

where I is the identity matrix, and hence

(2.14) T2(x) = S0 x
2.

Here and in the following, without confusion we use the nonstandard notation y2 to
denote y2 = yTy, where y is any column vector in Rm.

Let us now equate the terms of Pth degree on the left and right of (2.9),

(2.15)

P−2∑
ν=0

Sν(x)TP−ν(x) =
1

4

P−1∑
ν=1

∇Tν+1(x) · ∇TP−ν+1(x)

= S0 x · ∇TP (x) +
1

4

P−2∑
ν=2

∇Tν+1(x) · ∇TP−ν+1(x)

= P S0 TP (x) +
1

4

P−2∑
ν=2

∇Tν+1(x) · ∇TP−ν+1(x),

using Euler’s theorem on homogeneous functions in the last step. Separating the term
ν = 0 on the left and rearranging we find that

(2.16) (P − 1)S0 TP (x) =

P−2∑
ν=1

Sν(x)TP−ν(x) − 1

4

P−2∑
ν=2

∇Tν+1(x) · ∇TP−ν+1(x).

Since the right side of this contains only Tν for ν < P , we may solve this system
recursively starting with P = 3 (for which the second term on the right does not
arise).

For example, we can set P = 3 in (2.16) to get

(2.17) 2S0 T3 = S1 T2,

so that

(2.18) T3 =
1

2S0
S1 T2 =

1

2
S1 x2.
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For P = 4, (2.16) becomes

(2.19) 3S0 T4 = S1 T3 + S2 T2 − 1

4
(∇T3)

2.

By computing ∇T3 from (2.18), we obtain the following:

(2.20) T4 =
x2

48S0

[
16S0 S2 − x2 (∇S1)

2
]
.

We may proceed to obtain further terms in a similar way. For example,

(2.21) T5 =
(x2)2

96S2
0

[
−2S0∇S1·∇S2 + S1 (∇S1)

2
]
+

1

4
x2 S3.

2.2. High-order truncation of eikonals. With the above recursive formulas
at our disposal, we can now truncate the analytical expansion of the squared eikonal,

(2.22) τ̃2N (x) ≡ T̃N(x) =

N∑
v=2

Tv(x),

where N ≥ 2 is a user-specified positive integer. It is this truncation that allows us
to extract high-order information of the eikonal τ in a neighborhood of the source.

For future reference we note that as r ≡ |x| → 0, we see from (2.14) that

(2.23) T = O(r2) and τ =
√
T = O(r),

and we also have

(2.24) T̃N = O(r2) and τ̃N =
√
T̃N = O(r).

For example, with N = 2, we have

(2.25) τ̃22 (x) = T̃2(x) = T2(x) = S0x
2,

where τ̃2 is the distance function satisfying

(2.26) |∇τ̃2| = s̃, τ̃2(0) = 0

with s̃ ≡ √
S0 =

√
S(0).

And with N = 3, we have

(2.27) τ̃23 (x) = T̃3(x) = T2(x) + T3(x) =

(
S0 +

1

2
S1

)
x2.

Then,

(2.28) 2τ̃3∇τ̃3 = ∇T̃3 = x2∇
(
S0 +

1

2
S1

)
+ 2

(
S0 +

1

2
S1

)
x

and

(2.29) 4τ̃23 |∇τ̃3|2 =
1

4
(x·x)2∇S1 ·∇S1+2x·xS1

(
S0 +

1

2
S1

)
+4

(
S0 +

1

2
S1

)2

x·x.
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Thus, we have
(2.30)

|∇τ̃3|2 =
1

16(S0 +
1
2S1)

(
(x · x)∇S1 · ∇S1 + 8S1

(
S0 +

1

2
S1

)
+ 16

(
S0 +

1

2
S1

)2
)
.

In general, for N ≥ 2 we have the following to hold:

(2.31) |∇τ̃N |2 = f(x;S),

where the function f(x;S) depends on both x and the function S. However, we do
not need to actually solve the above eikonal equation, as we know the solution τ̃N
already by the above power series expansions.

Moreover, we have the following Lemma.
Lemma 2.1. The truncation τ̃N approximates τ in the following way:

(2.32) τ = τ̃N +O(|x|N )

near the source, where N ≥ 2 is a given arbitrary integer.
On dividing (2.32) by τ̃N and invoking (2.24), we have the following.
Lemma 2.2.

(2.33)
τ

τ̃N
= 1 +O(|x|N−1).

To prove Lemma 2.1, we write

τ − τ̃N =
T − T̃N

τ + τ̃N
=

T − T̃N

τ(1 + τ̃N
τ )

=

∑∞
k=N+1 Tk(ω)r

k−1

(1 + τ̃N
τ )
√∑∞

k=2 Tk(ω)rk−2
.(2.34)

Since T2(ω) 	= 0, we have τ − τ̃N = O(rN ).
To facilitate further discussion, we introduce the following definition.
Definition 2.3. Let τh be a numerical approximation to the eikonal τ which is

obtained by a certain numerical method on a computational mesh of size h. We say
that the numerical method is of order k if the following estimate holds:

(2.35) ‖τ − τh‖ ≤ C hk,

where ‖·‖ is either �1 or �∞ norm, k is a positive integer, and C is a positive constant
independent of h and k.

According to Definition 2.3, Lemma 2.1 implies that

(2.36) ‖τ − τ̃N‖ ≤ C hN

holds in a small neighborhood Ωα = {|x| ≤ αh} of the source, where C is a positive
constant independent of h and N , and α is a small positive integer. Therefore, τ̃N
approximates τ with Nth order accuracy near the source.

2.3. Applications of truncated eikonals. With the above high-order expan-
sions of the eikonal near the source, we present the factored eikonal equations.
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2.3.1. Multiplicative factorization of eikonal equations. Since τ̃N is an
Nth order approximation to the eikonal τ in a neighborhood of the source, by Lem-
ma 2.2 u = τ

τ̃N
= 1 +O(rN−1) can be approximated by the constant function 1 with

(N−1)th order accuracy in that neighborhood. This leads us to consider the following
multiplicative factorization in a neighborhood of the source:

(2.37) τ = u τ̃N ,

where τ̃N is specified according to (2.22), and the unknown correction u should satisfy
the factored eikonal equation

(2.38) |∇τ | =
√
τ̃2N |∇u|2 + 2τ̃Nu∇τ̃N · ∇u+ u2|∇τ̃N |2 = s.

The point-source boundary condition for u is

(2.39) lim
x→0

u(x) = lim
x→0

τ(x)

τ̃N (x)
= 1.

Now that the function u is smooth with up to Nth order derivatives at the source
due to the singularity cancellation and in fact can be approximated by the constant
function 1 with (N−1)th order accuracy in a small neighborhood of the point source,
an Nth order scheme is effective for solving the factored eikonal equation with Nth
order convergence in a neighborhood of the source so that τ can be recovered from
τ = u τ̃N with Nth order accuracy.

In particular, if N = 2, we have τ̃2 = s(0)|x|, which is the distance function
corresponding to a homogeneous medium. This particular case has been discovered as
the so-called celerity transform in [22] for obtaining highly accurate finite-difference
solutions for the eikonal equation, which has been further developed in [37, 7, 17,
19, 18]. According to our derivation and analysis above, we now understand why
the celerity transform is effective for the point-source eikonal equations: it yields a
second-order approximation to the eikonal in a neighborhood of the source point.

2.3.2. Eikonal equations for additive splitting. We can also decompose τ
into two additive factors,

τ = τ̃N + u,

where τ̃N is specified according to (2.22), and the unknown correction u is to be
determined. Substituting the factorization into the eikonal equation (1.1), we have
the following factored eikonal equation:

(2.40) |∇τ | =
√
|∇u|2 + 2∇τ̃N · ∇u+ |∇τ̃N |2 = s.

Since τ̃N captures the source singularities, u is differentiable up to Nth order near
the source. In addition, we know

(2.41) lim
x→0

u(x) = lim
x→0

(τ(x) − τ̃N (x)) = 0.

Thus we can solve (2.40) for u with an Nth order accurate scheme so as to recover τ
with Nth order accuracy.

In particular, whenN = 2, the corresponding factorization has been first proposed
in [18].

Next we design hybrid numerical schemes to make use of the above two factor-
izations.

3. Hybrid high-order fast sweeping methods. For the factored eikonal
equations, when N = 2, the choice of τ̃2 coincides with the one used in [22, 37,
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Fig. 3.1. Domain and mesh (2-D). (a) Domain Ω and different regions Ωu and Ωτ . (b) Local
mesh of point C. (c) and (d) A triangle/simplex across two regions, Ωu and Ωτ .

7, 17, 19, 18]; in this case, T̃2 and τ̃2 are guaranteed to be nonnegative in the whole
domain.

For N > 2, T̃N is not guaranteed to be nonnegative in the whole domain Ω
except near the source, which implies that τ̃N may not be defined away from the
source; therefore the factored eikonal equation (2.38) or (2.40) cannot be applied
in the whole domain. In order to resolve this issue, we propose a hybrid strategy:
solving the factored eikonal equations locally in a neighborhood of the source where
the nonnegativity of T̃N is guaranteed while switching to the original eikonal equation
away from this neighborhood. The setup is illustrated in Figure 3.1(a): Ω = Ωu ∪Ωτ ,
where Ωu is closed and Ωτ is open. The intersection of the two regions is Γ = Ωu∩Ω̄τ ;
in region Ωu, we solve the factored eikonal equations; in region Ωτ , we solve the original
eikonal equation.

We present both first-order and high-order hybrid sweeping methods.

3.1. First-order fast sweeping schemes. To set up the stage for further de-
velopment, we summarize the fast sweeping scheme for the original eikonal equation
(1.1) and factored eikonal equations (2.38) and (2.40) with N = 2, on a rectangular
mesh Ωh with grid size h covering the domain Ω. (Also see [40, 27, 28, 7, 18] and refer-
ences therein.) Without loss of generality, let us consider Hamilton–Jacobi equations
in the following generic form in two dimensions:

(3.1) F (x, z, u, ux, uz) = f(x, z),

where F is convex in the gradient variable.
Taking a local mesh of point C = (xC , zC) as shown in Figure 3.1(b), we consider

discretizations on the triangle with neighbors A = (xA, zA) and B = (xB , zB),

(3.2) ∇u(C) ≈
(
u(C)− u(A)

xC − xA
,
u(C)− u(B)

zC − zB

)
,

which defines the numerical Hamiltonian F̂ as
(3.3)

F̂ (C, u(C), u(A), u(B)) ≡ F

(
C, u(C),

u(C)− u(A)

xC − xA
,
u(C)− u(B)

zC − zB

)
− f(C) = 0.
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Given u(A) and u(B), we wish to solve (3.3) for u(C). There are only three
scenarios due to the convexity of F :

Scenario 1: There is no solution for u(C) from (3.3).
Scenario 2: There is one solution for u(C) from (3.3).
Scenario 3: There are two solutions for u(C) from (3.3).
In Scenario 1, we enforce the characteristic equation for the Hamilton–Jacobi

equation along the edges rAC and rBC to get possible values of u(C), where rAC is the
vector from A to C, and rBC is the vector from B to C; see [27, 28, 7, 18]. In Scenario
2 or 3, we need to further check whether a candidate value for u(C) that is consistent
with (3.1) satisfies the following causality condition: the characteristic passing through
C is in between the two vectors rAC and rBC . This is a crucial condition for the
monotonicity of the scheme. We call a value u(C) a possible candidate if it satisfies
both the consistency and causality conditions. We can use the same procedure to
find possible candidates for u(C) from other triangles with C as one of their vertices.
If there is more than one candidate, we choose the minimum among all possible
candidates.

We summarize the method into the following algorithm.
Algorithm 1. First-order fast sweeping method [40, 27, 28, 7, 18].

1. Initial guess (enforce the boundary condition):
For vertices on or near the boundary, values are set according to the given
boundary condition. All other vertices are assigned a large value, for instance,
infinity, initially.

2. Gauss–Seidel iterations with alternating orderings (sweepings):
• Update during each iteration: at a vertex C, the updated value unew(C)
at C is

(3.4) unew(C) = min{uold(C), ucomp(C)},
where uold(C) is the current value at C and ucomp(C) is the value at C
computed from the current given neighboring values according to (3.3)
and the procedure detailed as above.

• Orderings: four alternating orderings are needed,

(3.5)
(1) i = 1 : I; j = 1 : J ; (2) i = I : 1; j = 1 : J ;
(3) i = I : 1; j = J : 1; (4) i = 1 : I; j = J : 1.

3.2. First-order hybrid fast sweeping schemes. With the first-order fast
sweeping scheme at our disposal, we present first-order hybrid fast sweeping methods
for the 2-D case only, as an extension to the 3-D case is not difficult. A first-order
hybrid scheme is in general structured as follows, referring to Figure 3.1:

• In region Ωu, we first solve the factored-eikonal equations for u, and we then
recover τ corresponding to different factorizations.

• In region Ωτ , we solve the original equation for τ .
Similarly, for the local mesh of point C as shown in Figure 3.1(b), without loss

of generality, let us also focus on the triangle with neighbors A and B. We consider
discretizations corresponding to different regions and equations:

• For the original eikonal equation (1.1) in Ωτ , ∇τ is approximated as

(3.6) ∇τ(C) ≈
(
τ(C) − τ(A)

xC − xA
,
τ(C) − τ(B)

zC − zB

)
.

When C is near or on Γ, A or B may be in region Ωu (see Figure 3.1(c)).
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In this case, for example, if A is in region Ωu, then τ(A) should be given by
τ̃2(A) and u(A) corresponding to the specific factorization used since τ̃2 and
u are known at A, .

• For the factored eikonal equation (2.38) in Ωu, ∇τ is given as

(3.7) ∇τ(C) = ∇τ̃2(C)u(C) + τ̃2(C)∇u(C)

with ∇u approximated as

(3.8) ∇u(C) ≈
(
u(C)− u(A)

xC − xA
,
u(C)− u(B)

zC − zB

)
;

thus,

(3.9) ∇τ(C) ≈
⎛
⎝τ(C) − τ(A)

τ̃2(A) τ̃2(C)

xC − xA
,
τ(C) − τ(B)

τ̃2(B) τ̃2(C)

zC − zB

⎞
⎠+

τ(C)

τ̃2(C)
∇τ̃2(C).

When C is near or on Γ, A or B may be in region Ωτ (see Figure 3.1(d)).
In this case, for example, if A is in region Ωτ , then u(A) should be given as
τ(A)
τ̃2(A) since τ̃2 and τ are known at A.

• For the factored eikonal equation (2.40) in Ωu, ∇τ is given as

(3.10) ∇τ(C) = ∇τ̃2(C) +∇u(C)

with ∇u(C) as in (3.8); therefore,

(3.11)

∇τ(C) ≈
(
τ(C) − τ(A)

xC − xA
,
τ(C) − τ(B)

zC − zB

)

−
(
τ̃2(C) − τ̃2(A)

xC − xA
,
τ̃2(C) − τ̃2(B)

zC − zB

)
+∇τ̃2(C).

When C is near or on Γ, A or B may be in region Ωτ (see Figure 3.1(d)).
In this case, for example, if A is in region Ωτ , then u(A) should be given as
τ(A) − τ̃2(A) since τ̃2 and τ are known at A.

With the above discretizations, let us define the numerical Hamiltonian Ĥ as

(3.12) Ĥ(C, τ(C), τ(A), τ(B)) ≡ H(∇τ(C)) − s(C) = 0

with ∇τ(C) approximated according to the above different cases.
As indicated in section 3.1, the causality condition enforced in the first-order fast

sweeping scheme for the eikonal and factored eikonal equations is

(3.13) ∇τ(C) · rAC ≥ 0 and ∇τ(C) · rBC ≥ 0,

since in this particular case the characteristic direction is in the same direction as
∇τ(C).

Using the above causality condition, we show that the scheme (3.12) is monotone
and consistent.

Lemma 3.1. The scheme (3.12) under the causality condition (3.13) is consistent
and monotone, that is,

(3.14)
∂Ĥ(C, τ(C), τ(A), τ(B))

∂τ(C)
≥ 0;

∂Ĥ(C, τ(C), τ(A), τ(B))

∂{τ(A), τ(B)} ≤ 0.
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Proof. The consistency is obvious. We prove monotonicity. Denote p = (p1, p2) ≡
∇τ(C). The causality condition (3.13) given on a rectangular mesh is

(3.15) p1(xC − xA) ≥ 0 and p2(zC − zB) ≥ 0.

For the discretization of the original eikonal equation with ∇τ as given in (3.6),
we have

(3.16)

∂Ĥ

∂τ(C)
=

1

s(C)

(
p1

xC − xA
+

p2
zC − zB

)
≥ 0;

∂Ĥ

∂τ(A)
= − 1

s(C)

p1
(xC − xA)

≤ 0;

∂Ĥ

∂τ(B)
= − 1

s(C)

p2
(zC − zB)

≤ 0.

For the discretization of the factored eikonal equation with multiplicative factors
and ∇τ(C) as given in (3.9), the causality condition (3.15) gives

(3.17)

τ(C) − τ(A)

τ̃2(A)
τ̃2(C) +

τ(C)

τ̃2(C)
τ̃2,x(C)(xC − xA) ≥ 0,

τ(C) − τ(B)

τ̃2(B)
τ̃2(C) +

τ(C)

τ̃2(C)
τ̃2,z(C)(zC − zB) ≥ 0,

which imply that

(3.18)

1 +
τ̃2,x(C)

τ̃2(C)
(xC − xA) ≥ τ̃2(C)

τ(C)

τ(A)

τ̃2(A)
≥ 0,

1 +
τ̃2,z(C)

τ̃2(C)
(zC − zB) ≥ τ̃2(C)

τ(C)

τ(B)

τ̃2(B)
≥ 0.

Then the following results hold:

(3.19)

∂Ĥ

∂τ(C)
=

1

s(C)

{
p1

xC − xA

(
1 +

τ̃2,x(C)

τ̃2(C)
(xC − xA)

)}

+
1

s(C)

{
p2

zC − zB

(
1 +

τ̃2,z(C)

τ̃2(C)
(zC − zB)

)}
≥ 0,

∂Ĥ

∂τ(A)
= − 1

s(C)
p1

τ̃2(C)

τ̃2(A)(xC − xA)
= − p1

s(C)(xC − xA)

τ̃2(C)

τ̃2(A)
≤ 0,

∂Ĥ

∂τ(B)
= − 1

s(C)
p2

τ̃2(C)

τ̃2(B)(zC − zB)
= − p2

s(C)(zC − zB)

τ̃2(C)

τ̃2(B)
≤ 0.

For the discretization of the factored eikonal equation with additive factors and
∇τ(C) as given in (3.11), we have

(3.20)

∂Ĥ

∂τ(C)
=

1

s(C)

(
p1

xC − xA
+

p2
zC − zB

)
≥ 0;

∂Ĥ

∂τ(A)
= − 1

s(C)

p1
xC − xA

≤ 0;

∂Ĥ

∂τ(B)
= − 1

s(C)

p2
zC − zB

≤ 0.

Therefore, we prove the monotonicity.
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By the convergence theorem of Barles–Souganidis [3], Lemma 3.1 guarantees that
the numerical solution of a hybrid, first-order fast sweeping scheme will converge to
the viscosity solution of the eikonal equation as the mesh size goes to zero.

We summarize the new, first-order hybrid fast sweeping methods into the following
algorithm.

Algorithm 2. Hybrid first-order fast sweeping method.

1. Initial guess (enforce the boundary condition):
For grid points on or near the point source, values are set to be 1 for mul-
tiplicative factors and 0 for additive factors. All other points are assigned a
large value, for example, infinity, initially.

2. Gauss–Seidel iterations with alternating orderings (sweepings):
• Update during each iteration: at a vertex C,

– in region Ωu, the updated value unew(C) at C is

(3.21) unew(C) = min{uold(C), ucomp(C)},

where uold(C) is the current value at C and ucomp(C) is the value at
C computed from the current given neighboring values according to
(3.12) and the procedure detailed as in section 3.1; hence τnew(C) =
τ̃2(C)unew(C) or τnew(C) = τ̃2(C) + unew(C);

– in region Ωτ , the updated value τnew(C) at C is

(3.22) τnew(C) = min{τold(C), τcomp(C)},

where τold(C) is the current value at C and τcomp(C) is the value at
C computed from the current given neighboring values according to
(3.12) and the procedure detailed as in section 3.1; hence unew(C) =
τnew(C)
τ̃2(C) or unew(C) = τnew(C)− τ̃2(C).

• Orderings: four alternating orderings are needed,

(3.23)
(1) i = 1 : I; j = 1 : J ; (2) i = I : 1; j = 1 : J ;
(3) i = I : 1; j = J : 1; (4) i = 1 : I; j = J : 1.

• Stopping criterion: given δ > 0, check if |τnew − τold| < δ in region Ωτ

and check if |unew − uold| < δ in region Ωu.

3.3. Hybrid high-order Lax–Friedrichs sweeping schemes. Based on the
high-order Lax–Friedrichs scheme, we present hybrid, third-order WENO based high-
order Lax–Friedrichs sweeping methods by using the high-order factorizations derived
above. Analogous to a first-order hybrid fast sweeping scheme, a hybrid high-order
scheme is in general structured as follows:

• in the region Ωu, we first solve the factored eikonal equations for u, and we
then recover τ corresponding to the applied factorization;

• in the region Ωτ , we solve the original eikonal equation for τ .
We summarize the hybrid high-order fast sweeping methods into the following

algorithm.
Algorithm 3 (Hybrid high-order Lax–Friedrichs sweeping methods).
1. Initial guess (enforce the boundary condition):

For grid points in a 2h× 2h small domain covering the point source, values
are set to be 1 for multiplicative factors and 0 for additive factors. All other
points are assigned a large value, for example, infinity, initially.
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2. Gauss–Seidel iterations with alternating orderings (sweepings):
• Update during each iteration: at a vertex C,

– in region Ωu, the updated value unew(C) at C is computed from the
current given neighboring values according to (3.12) and the proce-
dure detailed as in [20, 10, 39, 17, 19]; hence τnew(C) = τ̃N (C)unew(C)
or τnew(C) = τ̃N (C) + unew(C);

– in region Ωτ , the updated value τnew(C) at C is computed from the
current given neighboring values according to (3.12) and the proce-

dure detailed as in [20, 10, 39, 17, 19]; hence unew(C) = τnew(C)
τ̃N (C) or

unew(C) = τnew(C) − τ̃N (C).
• Orderings: four alternating orderings are needed,

(3.24)
(1) i = 1 : I; j = 1 : J ; (2) i = I : 1; j = 1 : J ;
(3) i = I : 1; j = J : 1; (4) i = 1 : I; j = J : 1.

• Stopping criterion: given δ > 0, check if |τnew − τold| < δ in region Ωτ

and check if |unew − uold| < δ in region Ωu.
Remark 1. Since the base scheme for the hybrid, high-order Lax–Friedrichs

scheme amounts to applying first-order, monotone Lax–Friedrichs schemes [10] in
both regions of Ωu and Ωτ , the base scheme is also monotone, that is, at a given
point (i, j), the numerical Hamiltonian is nondeceasing at τi,j and nonincreasing at
the neighbors τN{i,j}.

Remark 2. If we choose τ̃N with N = 2, then the initialization near the source is of
second-order accuracy; hence we can expect the scheme to be second-order accurate
globally when the third-order WENO Lax–Friedrichs sweeping scheme is used. If
we choose τ̃N with N = 3, then the initialization near the source is of third-order
accuracy; consequently, we can expect the scheme to be third-order accurate globally
when the third-order WENO Lax–Friedrichs sweeping scheme is used. Numerical
examples in section 4 verify these claims. In the implementation of the third-order
WENO Lax–Friedrichs sweeping scheme, high-order polynomial extrapolations are
used for ghost points on the boundary of the computational domain; see [20, 10, 39,
17, 19].

Remark 3. Intuitively, if we assume that (1) the solution for the eikonal equation
with a point source is smooth except at the source point, (2) a pth order WENO
based Lax–Friedrichs sweeping scheme yields pth order accuracy when the eikonal is
smooth, and (3) an Nth order additive factorization is used in hybrid WENO based
Lax–Friedrichs sweeping, then the following estimate holds:

(3.25) ‖τ − τh‖ ≤ C hmin(p,N),

where τh is the eikonal computed by the hybrid WENO based sweeping method on a
given mesh of size h, and C is a positive constant independent of h, p, and N .

This estimate can be roughly derived for the additive factorization as the follow-
ing. Since τh is defined according to the formula

τh =

⎧⎨
⎩

τ̃N in Ωα = {|x| ≤ α h};
τ̃N + uh in Ωu \ Ωα;
τ̃h in Ωτ ,

(3.26)
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where uh and τ̃h are numerical approximations to u and τ on Ωu and Ωτ , respectively,
we have

‖τ − τh‖ ≤ ‖τ − τ̃N‖Ωα + ‖u− uh‖Ωu\Ωα
+ ‖τ − τ̃h‖Ωτ

≤ C1 h
N + C2 hmin(p,N) + C3 hmin(p,N)

≤ C hmin(p,N),(3.27)

where C1, C2, C3, and C are positive constants independent of h, p, and N .
We may treat the multiplicative factorization similarly. We emphasize that the

above argument is not rigorous since it is difficult to prove the convergence order of
nonlinear WENO schemes. Nevertheless, our numerical examples validate the above
estimate.

4. Numerical examples: Multiplicative and additive factors. We use a
few 2-D and 3-D examples to demonstrate the performance of new, hybrid schemes.
We test two factorization cases:

• Case 1. The second-order factorization: T ≈ T̃2 = T2.
• Case 2. The third-order factorization: T ≈ T̃3 = T2 + T3.

These two factorizations yield two classes of factorized eikonal equations: multiplica-
tive factorizations based and additive factorization based eikonal equations.

For all the examples, we choose Ωu to be the disk B(x0, R) with appropriate radius
R > 0. We apply both first-order fast sweeping schemes and third-order WENO based
Lax–Friedrichs schemes. Both the �∞ and �1 errors and corresponding convergence
orders are computed. We choose the convergence parameter δ to be 10−12. All the
computation was carried out on a single AMD node at the Michigan State University
High Performance Computing Center.

4.1. Example 1: A 2-D velocity of constant gradient. The setup is the
following: the slowness s satisfies 1

s = 1
s0

+ g · (x−x0), where the domain is [0, 0.5]2,
the source is x0 = (0.25, 0.25), the constant gradient is g = (0,−1), s0 = 2, the exact
solution is known analytically [7], and R = 0.05.

Table 1 shows the results of solving the original eikonal equation by applying
the usual fast sweeping method without any special treatment of the point source.
Clearly, the convergence order is polluted first order.

Tables 2 and 3 show the results of solving the eikonal equation by applying the
hybrid first-order Godunov sweeping method and the third-order hybrid WENO Lax–
Friedrichs sweeping method, where hybridity comes from solving the multiplicatively
factorized eikonal equation in a small neighborhood of the source point.

Table 2 shows the results using the second-order multiplicative factorization for
the eikonal equation in the source neighborhood of a disk of radius R = 0.05, where

Table 1

Example 1: original eikonal equation with first-order fast sweeping method.

Original eikonal equation with fast sweeping method
Mesh 101 × 101 201 × 201 401× 401 801 × 801
l∞ error 1.75E-2 9.87E-3 5.52E-3 3.06E-3
Order of convergence —— 0.826 0.838 0.851
l1 error 2.00E-3 1.16E-3 6.16E-4 3.78E-4
Order of convergence —— 0.786 0.913 0.705
# iter 8 8 8 8
CPU time (second) 0.01 0.03 0.18 0.72
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Table 2

Example 1: hybrid schemes for multiplicatively factored eikonal equation with T̃2 = T2.

Multiplicatively factored eikonal equation with R = 0.05

T̃2 = T2: first-order hybrid fast sweeping method
Mesh 101 × 101 201 × 201 401× 401 801 × 801
l∞ error 1.12E-2 5.59E-3 2.79E-3 1.40E-3
Order of convergence —— 1.003 1.003 0.995
l1 error 9.04E-4 4.45E-4 2.21E-4 1.10E-4
Order of convergence —— 1.023 1.010 1.007
# iter 14 14 14 14
CPU time (second) 0.03 0.17 0.90 3.03

T̃2 = T2: third-order hybrid Lax–Friedrichs scheme
Mesh 101 × 101 201 × 201 401× 401 801 × 801
l∞ error 2.86E-4 7.11E-5 1.77E-5 4.62E-6
Order of convergence —— 2.008 2.006 1.938
l1 error 4.49E-5 1.15E-5 3.04E-6 8.32E-7
Order of convergence —— 1.965 1.919 1.869
# iter 150 246 428 786
CPU time (second) 0.64 5.05 40.04 285.38

Table 3

Example 1: hybrid schemes for multiplicatively factored eikonal equation with T̃3 = T2 + T3.

Multiplicatively factored eikonal equation with R = 0.05

T̃3 = T2 + T3: first-order hybrid fast sweeping method
Mesh 101 × 101 201 × 201 401× 401 801 × 801
l∞ error 1.12E-2 5.59E-3 2.80E-3 1.40E-3
Order of convergence —— 1.003 0.997 1.000
l1 error 9.05E-4 4.45E-4 2.21E-4 1.10E-4
Order of convergence —— 1.024 1.010 1.007
# iter 14 14 14 14
CPU time (second) 0.02 0.15 0.78 2.73

T̃3 = T2 + T3: third-order hybrid Lax–Friedrichs scheme
Mesh 101 × 101 201 × 201 401× 401 801 × 801
l∞ error 1.33E-5 2.90E-6 3.76E-7 4.68E-8
Order of convergence —— 2.197 2.947 3.006
l1 error 1.69E-6 3.53E-7 4.53E-8 5.65E-9
Order of convergence —— 2.259 2.962 3.003
# iter 145 231 405 758
CPU time (second) 0.62 4.53 34.78 275.47

both the first-order Godunov sweeping and the third-order WENO Lax–Friedrichs
sweeping methods are applied. As we can see, the first-order hybrid sweeping method
yields clean first-order convergence in both �∞ and �1 norms, while the third-order
hybrid sweeping method yields second-order convergence in both �∞ and �1 norms. At
least three interesting phenomena are worth pointing out. First, since a second-order
multiplicative factorization is used in a neighborhood of the source, the corresponding
higher-order correction term can be computed to the second-order accuracy if a second
or higher-order scheme is used to solve the corresponding eikonal equations, which is
exactly epitomized in Table 2. Second, since a high order (higher than the first order)
is no longer monotone, the number of iterations is increased significantly. Third,
in terms of accuracy measured by the �∞ norm on the same mesh, the numerical
solution by the third-order hybrid scheme is at least two-digits more accurate than
that by the first-order hybrid scheme; therefore, given an accuracy requirement, the
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Table 4

Example 1: hybrid schemes for additively factored eikonal equation with T̃2 = T2.

Additively factored eikonal equation with R = 0.05

T̃2 = T2: first-order hybrid fast sweeping method
Mesh 101 × 101 201 × 201 401× 401 801 × 801
l∞ error 1.06E-2 5.36E-3 2.69E-3 1.35E-3
Order of convergence —— 0.984 0.995 0.995
l1 error 7.93E-4 3.94E-4 1.97E-4 9.82E-5
Order of convergence —— 1.009 1.000 1.004
# iter 12 12 10 10
CPU time (second) 0.03 0.15 0.80 3.34

T̃2 = T2: third-order hybrid Lax–Friedrichs scheme
Mesh 101 × 101 201 × 201 401× 401 801 × 801
l∞ error 2.96E-4 7.40E-5 1.83E-5 4.57E-6
Order of convergence —— 2.000 2.016 2.002
l1 error 5.28E-5 1.31E-5 3.26E-6 8.14E-7
Order of convergence —— 2.011 2.007 2.002
# iter 163 253 430 788
CPU time (second) 0.69 5.03 38.71 272.26

Table 5

Example 1: hybrid schemes for additively factored eikonal equation with T̃3 = T2 + T3.

Additively factored eikonal equation with R = 0.05

T̃3 = T2 + T3: first-order hybrid fast sweeping method
Mesh 101 × 101 201 × 201 401× 401 801 × 801
l∞ error 1.04E-2 5.23E-3 2.63E-3 1.32E-3
Order of convergence —— 0.992 0.992 0.995
l1 error 7.94E-4 3.95E-4 1.97E-4 9.85E-5
Order of convergence —— 1.007 1.004 1.000
# iter 12 12 10 10
CPU time (second) 0.03 0.18 0.78 2.94

T̃3 = T2 + T3: third-order hybrid Lax–Friedrichs scheme
Mesh 101 × 101 201 × 201 401× 401 801 × 801
l∞ error 1.17E-5 1.89E-6 2.43E-7 3.07E-8
Order of convergence —— 2.630 2.959 2.985
l1 error 1.56E-6 2.59E-7 3.36E-8 4.23E-9
Order of convergence —— 2.591 2.946 2.990
# iter 147 233 404 756
CPU time (second) 0.65 4.92 35.19 267.13

gain in accuracy by using higher-order schemes will compensate for the increase in
the number of iterations.

Table 3 shows the results using the third-order multiplicative factorization for
the eikonal equation in the source neighborhood of a disk of radius R = 0.05, where
both the first-order Godunov sweeping and the third-order WENO Lax–Friedrichs
sweeping methods are applied. As we can see, the first-order hybrid sweeping method
yields clean first-order convergence in both �∞ and �1 norms, while the third-order
hybrid sweeping method yields third-order convergence in both �∞ and �1 norms.
Some remarks analogous to those for Table 2 can be made here as well.

Tables 4 and 5 show the results of solving the eikonal equation by applying the
hybrid first-order Godunov sweeping method and the third-order hybrid WENO Lax–
Friedrichs sweeping method, where hybridity comes from solving the additively fac-
torized eikonal equation in a small neighborhood of the source point. As we can see,
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Table 6

Example 1: hybrid schemes for multiplicatively factored eikonal equation.

Multiplicatively factored eikonal equation with R = 0.1

T̃2 = T2: first-order hybrid fast sweeping method
Mesh 101× 101 201 × 201 401× 401 801 × 801
l∞ error 8.70E-3 4.34E-3 2.17E-3 1.08E-3
Order of convergence —— 1.003 1.000 1.007
l1 error 5.18E-4 2.58E-4 1.25E-4 6.20E-5
Order of convergence —— 1.006 1.045 1.012
# iter 20 20 20 19
CPU time (second) 0.05 0.21 1.13 4.45

T̃2 = T2: third-order hybrid Lax–Friedrichs scheme
Mesh 101× 101 201 × 201 401× 401 801 × 801
l∞ error 2.86E-4 7.11E-5 1.77E-5 4.60E-6
Order of convergence —— 2.008 2.006 1.944
l1 error 4.49E-5 1.15E-5 3.04E-6 8.33E-7
Order of convergence —— 1.965 1.919 1.868
# iter 150 248 430 788
CPU time (second) 0.63 4.72 35.73 282.76

T̃3 = T2 + T3: first-order hybrid fast sweeping method
Mesh 101× 101 201 × 201 401× 401 801 × 801
l∞ error 8.70E-3 4.34E-3 2.17E-3 1.08E-3
Order of convergence —— 1.003 1.000 1.007
l1 error 5.21E-4 2.54E-4 1.26E-4 6.24E-5
Order of convergence —— 1.036 1.011 1.014
# iter 20 20 20 18
CPU time (second) 0.05 0.20 0.99 3.98

T̃3 = T2 + T3: third-order hybrid Lax–Friedrichs scheme
Mesh 101× 101 201 × 201 401× 401 801 × 801
l∞ error 9.27E-6 1.25E-6 1.58E-7 1.96E-8
Order of convergence —— 2.890 2.984 3.011
l1 error 1.22E-6 1.62E-7 2.03E-8 2.53E-9
Order of convergence —— 2.913 2.996 3.004
# iter 143 232 405 758
CPU time (second) 0.60 4.06 35.44 257.18

additive factorization based numerical schemes perform similarly to the multiplicative
factorization based numerical schemes.

We also remark that given an accuracy requirement, a high-order scheme (higher
than first order) is more efficient than a first-order scheme; this point can be ap-
preciated from Tables 1, 2, 3, 4, and 5. For example, assuming that the pointwise
accuracy requirement is taken to be ε = 3.5×10−4 in the �∞ norm, Tables 1 and 2 in-
dicate that when the original eikonal equation is used, the first-order scheme requires
a mesh of 3201×3201 and a CPU running time of 11.52 seconds (both mesh and time
obtained by extrapolation) while the third-order (actually the second-order) hybrid
Lax–Friedrichs scheme only needs a mesh of 101× 101 with a CPU running time of
0.64 seconds; furthermore, by taking into account the numbers of iterations and flop
operations on different meshes, we can conclude that to achieve a given accuracy re-
quirement, the overall computational cost of the third-order scheme is much less than
that of the first-order scheme.

Tables 6 and 7 show the results of solving the factored equations with the hybrid
schemes with R = 0.1. Similar results are obtained as in the case of R = 0.05.
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Table 7

Example 1: hybrid schemes for additively factored eikonal equation.

Additively factored eikonal equation with R = 0.1

T̃2 = T2: first-order hybrid fast sweeping method
Mesh 101 × 101 201 × 201 401× 401 801 × 801
l∞ error 1.06E-2 5.36E-3 2.69E-3 1.35E-3
Order of convergence —— 0.984 0.995 0.995
l1 error 7.93E-4 3.94E-4 1.97E-4 9.82E-5
Order of convergence —— 1.009 1.000 1.004
# iter 20 20 20 20
CPU time (second) 0.06 0.21 1.27 4.92

T̃2 = T2: third-order hybrid Lax–Friedrichs scheme
Mesh 101 × 101 201 × 201 401× 401 801 × 801
l∞ error 2.95E-4 7.35E-5 1.83E-5 4.57E-6
Order of convergence —— 2.005 2.006 2.002
l1 error 5.27E-5 1.31E-5 3.26E-6 8.14E-7
Order of convergence —— 2.008 2.007 2.002
# iter 163 253 430 788
CPU time (second) 0.69 5.17 38.41 276.87

T̃3 = T2 + T3: first-order hybrid fast sweeping method
Mesh 101 × 101 201 × 201 401× 401 801 × 801
l∞ error 1.04E-2 5.23E-3 2.64E-3 1.32E-3
Order of convergence —— 0.992 0.986 1.000
l1 error 7.94E-4 3.95E-4 1.97E-4 9.85E-5
Order of convergence —— 1.007 1.004 1.000
# iter 20 20 20 18
CPU time (second) 0.05 0.22 1.27 3.74

T̃3 = T2 + T3: third-order hybrid Lax–Friedrichs scheme
Mesh 101 × 101 201 × 201 401× 401 801 × 801
l∞ error 7.89E-6 1.04E-6 1.30E-7 1.63E-8
Order of convergence —— 2.923 3.000 2.996
l1 error 1.04E-6 1.35E-7 1.69E-8 2.13E-9
Order of convergence —— 2.946 2.998 2.988
# iter 147 233 404 756
CPU time (second) 0.62 4.16 31.98 255.92

4.2. Example 2: A 3-D velocity of constant gradient. The setup is the
following: the slowness function s satisfies 1

s = 1
s0

+ g · (x− x0), where the domain is

[0, 0.5]3, the source is x0 = (0.25, 0.25, 0.25), the constant gradient is g = (0,−1, 0),
s0 = 2, the exact solution is known analytically [7], and R = 0.1.

Table 8 shows the results of solving the eikonal equation by applying the first-order
hybrid Godunov sweeping method and the third-order hybrid WENO Lax–Friedrichs
sweeping method, where hybridity comes from solving the multiplicatively factorized
eikonal equation in the small neighborhood of the source of a disk of radius R = 0.1.
The convergence order and accuracy behaviors of the hybrid schemes are similar to
those in the corresponding 2-D cases. The additive factorization 3-D schemes behave
similarly, and we will not show results here.

5. Conclusion. We proposed to factorize the eikonal into two multiplicative or
additive factors, one of which is specified to approximate the eikonal up to arbitrary
order of accuracy near the source, and the other of which serves as a higher-order
correction term. We have developed recursive formulas to compute the approximate
eikonal up to arbitrary order of accuracy near the source. Furthermore, we have
designed two types of hybrid, new, high-order fast sweeping schemes for the point-
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Table 8

Example 2: hybrid schemes for multiplicatively factored eikonal equation.

Multiplicatively factored eikonal equation with R = 0.1

T̃2 = T2: first-order hybrid fast sweeping method
Mesh 51× 51× 51 101 × 101 × 101 201× 201× 201
l∞ error 2.56E-2 1.27E-2 6.35E-3
Order of convergence —— 1.011 1.000
l1 error 1.13E-3 5.34E-4 2.59E-4
Order of convergence —— 1.081 1.044
# iter 24 24 24
CPU time (second) 13.05 103.29 826.87

T̃2 = T2: third-order hybrid Lax–Friedrichs scheme
Mesh 51× 51× 51 101 × 101 × 101 201× 201× 201
l∞ error 1.41E-3 3.50E-4 8.70E-5
Order of convergence 2.010 2.008
l1 error 8.41E-5 2.12E-5 5.61E-6
Order of convergence 1.988 1.918
# iter 223 306 518
CPU time (second) 16.66 196.03 2969.00

T̃3 = T2 + T3: first-order hybrid fast sweeping method
Mesh 51× 51× 51 101 × 101 × 101 201× 201× 201
l∞ error 2.56E-2 1.27E-2 6.35E-3
Order of convergence —— 1.011 1.000
l1 error 1.13E-3 5.35E-4 2.60E-4
Order of convergence —— 1.079 1.041
# iter 24 24 24
CPU time (second) 13.27 103.98 832.34

T̃3 = T2 + T3: third-order hybrid Lax–Friedrichs scheme
Mesh 51× 51× 51 101 × 101 × 101 201× 201× 201
l∞ error 7.00E-5 8.48E-6 1.23E-6
Order of convergence —— 3.045 2.785
l1 error 4.31E-6 5.06E-7 7.42E-8
Order of convergence —— 3.091 2.770
# iter 185 288 496
CPU time (second) 13.54 181.22 2806.00

source eikonal equation. We also showed that the first-order hybrid fast sweeping
schemes are monotone and consistent so that they are convergent in computing vis-
cosity solutions. 2-D and 3-D numerical examples demonstrated that a pth order
numerical scheme yields desired, clean pth order convergence by using a pth order
factorization.
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