ERRATA

This is the errata sheet for the revised edition of "Second Order Parabolic Differential Equations". The errata sheet for the first edition is at http://lieb.public.iastate.edu/book/errata.pdf.
page 11 line - 14 "to" should read "To".
line $-1 Y$ should read Y_{0}.
page 40 line $-14 \overline{\Omega^{-}\left[, X_{0}, r\right]}$ should read $\overline{\Omega\left[X_{0}, r\right]}$.
page 55 line - 64.4 should read 4.5
page $65 \quad$ line $16 G$ should read Ψ.
line $-11(F+G)$ should read F.
page $80 \quad$ line $-12(1+\alpha f)$ should read $(1+\alpha) f$.
line $-1 M w$ should read $M w_{1}$.
page $87 \quad$ In (5.1), $b^{i} u$ should read $b^{i} D_{i} u$.
page 92
page 102
page 103
page 130 line 12 The definition of m_{4} should be

$$
m_{4}=\inf _{Q(4 r)} u
$$

page 138
page 139
page 153
page 154
page 160
page 162
page 163
page 168
page169
line $-4 b^{0} u$ should read $b^{0} z$.
line $-3\left(\Lambda_{1}+1\right)$ should read $\lambda\left(\Lambda_{1}^{2}+1\right)$.
line - $11 Q[2 R]$ should read $\Omega[2 R]$.
In Exercise 6.2, the definition of $\|u\|_{p, q}$ should read

$$
\|u\|_{p, q}=\left(\int_{I(\Omega)}\left(\int_{\Omega(t)}|u(X)|^{p} d x\right)^{q / p} d t\right)^{1 / q}
$$

In Exercise 6.5, "Exercise 6.2(c)" should read "Exercise 6.2(b)".
line 9 The right hand side should read $\tau|K|$.
line $2 C(p, q$,) should read $C(p, q)$.
line $13\left|t-t_{0}\right|$ should read $\left|t-t_{0}\right|^{1 / 2}$.
line $3\left|t-t_{1}\right|$ should read $\left|t-t_{1}\right|^{1 / 2}$.
Proposition 7.14 should read : Let $p \geq 2$, let λ and Λ, let $\left(A^{i j}\right)$ be a constant matrix satisfying (7.17) for all $\xi \in \mathbb{R}^{n}$, and let u be a weak solution of (7.18) with $f \in L^{p}\left(Q\left(X_{0}, 36 R\right)\right)$ for some $X_{0} \in \Omega$ and $R \in\left(0, d\left(X_{0}\right) / 36\right)$, and with $u \in L^{p}\left(Q\left(X_{0}, 36 R\right)\right.$. Then $D u \in L^{p}\left(Q\left(X_{0}, R\right)\right)$, and there is a constant C, determined only by λ, Λ, and n such that (7.25) holds.
line 13 There should be a factor R^{-1} in front of $\|u\|_{p, Q\left(X_{0}, 36 R\right)}$.
line - 12 replace $R^{(p-2) /(2 p)}$ with $\left|Q\left(X_{0}, R\right)\right|^{(p-2) /(2 p)}$.
line - $3 M_{i p}$ should read $M^{i p}$.
delete line -1 and add a period at the end of new line -1

We now note that $M \geq 2$ and hence

$$
\begin{aligned}
M^{j p}\left|\left\{\mathcal{M} f^{2}>M^{2 j} \delta^{2} \theta^{2}\right\}\right| & =\frac{1}{M^{j}-M^{j-1}} \int_{M^{j-1}}^{M^{j}} M^{j p}\left|\left\{\mathcal{M} f^{2}>M^{2 j} \delta^{2} \theta^{2}\right\}\right| d \sigma \\
& \leq M^{1-j} \int_{M^{j-1}}^{M^{j}} M \sigma^{p}\left|\left\{\mathcal{M} f^{2}>\sigma^{2} \delta^{2} \theta^{2}\right\}\right| d \sigma \\
& \leq M^{2} \int_{M^{j-1}}^{M^{j}} \sigma^{p-1}\left|\left\{\mathcal{M} f^{2}>\sigma^{2} \delta^{2} \theta^{2}\right\}\right| d \sigma
\end{aligned}
$$

It then follows that

$$
\begin{aligned}
I_{2} & \leq M \int_{0}^{\infty} \sigma^{p-1}\left|\left\{\mathcal{M} f^{2}>\sigma^{2} \delta^{2} \theta^{2}\right\}\right| d \sigma \\
& =\frac{M}{2(\delta \theta)^{2}} \int_{0}^{\infty} h^{(p / 2)-1}\left|\left\{\mathcal{M} f^{2}>h\right\}\right| d h \\
& =\frac{M}{2(\delta \theta)^{2}} \int_{Q\left(X_{0}, 6 R\right)}\left(\mathcal{M} f^{2}\right)^{p / 2} d X
\end{aligned}
$$

From Lemma 7.9 with $p / 2$ in place of p, we have

$$
\int_{Q\left(X_{0}, 6 R\right)}\left(\mathcal{M} f^{2}\right)^{p / 2} d X \leq C(n, p) \int_{Q\left(X_{0}, 6 R\right)}\left(f^{2}\right)^{p / 2} d X=C(n, p) \int_{Q\left(X_{0}, 6 R\right)}|f|^{p} d X
$$

line 6 Replace F with F^{p}.
page 172
page 173
page 175
page 178
位 L^{∞} should read L^{q} and $\|D u\|_{p}$ should read $\|D u\|_{p}^{p-1}$.
line $-3 D v_{m}$ should read $D^{2} v_{m}$.
line 4Ω should read ω.
Proposition 7.25 should read
Let λ and Λ be positive constants and let $\left(A^{i j}\right)$ be a constant matrix satisfying (7.17) for all $\xi \in \mathbb{R}^{n}$. Let $X_{0} \in \mathbb{R}^{n+1}$, let $R>0$, and set $\Omega=\Sigma^{+}\left(X_{0}, 6 R\right)$. Suppose u is a weak solution of
$L u=D_{i} f^{i}$ in $\Omega, \quad u=0$ on $\sigma\left(X_{0}, 6 R\right), \quad a^{n j} D_{j} u=f^{n}$ on $\Sigma^{0}\left(X_{0}, 6 R\right)$,
and let $X_{1} \in \bar{\Omega}$. There there is a positive constant $M(\lambda, \Lambda, n)$ and, for each $\varepsilon>0$, there is a constant $\delta(\lambda, \Lambda, n, \varepsilon)$ such that, if (7.29) holds for some $\theta>0$, then (7.30) is valid.
line 16 add "in which $\beta^{i}=A^{n i}$, so that μ and $\bar{\mu}$ are determined by λ, Λ, and $n . "$
In the proof of Proposition 7.25 , delete the second paragraph.
page 179
line 177.25 should read 7.23 .
line 20 should read

$$
v_{t}+D_{j}\left(A^{i j} D_{i} v\right)=D_{j} g^{j} \text { in } \Omega, v=0 \text { on } \sigma, A^{j n} D_{j} v=g^{n} \text { on } \Sigma^{0}
$$

page 180
Replace the proof of Proposition 7.28 to read
We argue as in Proposition 7.18 (but with Proposition 7.24 in place of Proposition 7.17) to obtain L^{p} estimates for $D_{i j} u$ with $i+j<2 n$. With u_{m}, η, v_{m}, and \tilde{f}_{m} as in the proof of Proposition 7.18 , we note that we have

$$
-v_{m, t}+A^{i j} D_{i j} v_{m}=\tilde{f}_{m}
$$

on $\Sigma^{0}\left(X_{0}, 2 R\right)$. Since $v_{m, t}=0$ and $D_{i j} v_{m}=0$ (for $i<n$ and $j<n$) on $\Sigma^{0}\left(X_{0}, 2 R\right)$, we infer that

$$
\tilde{A}^{n j} D_{j} v_{m}=\tilde{f}_{m}
$$

on $\Sigma^{0}\left(X_{0}, 2 R\right)$ with

$$
\tilde{A}^{i j}= \begin{cases}A^{i j} & \text { if } i<n, j<n \\ A^{i n}+A^{n i} & \text { if } i<n, j=n \\ 0 & \text { if } i=n, j<n \\ A^{n n} & \text { if } i=j=n\end{cases}
$$

In addition, we have

$$
-v_{m, t}+D_{i}\left(\tilde{A}^{i j} D_{j} v_{m}\right)=\tilde{f}_{m}
$$

in Ω. If we now set $w=D_{n} v_{m}$ and $f^{i}=\delta^{i n} \tilde{f}_{m}$, it follows that

$$
\begin{gathered}
-w_{t}+D_{i}\left(\tilde{A}^{i j} D_{j} w\right)=D_{i} f^{i} \text { in } \Omega \\
w=0 \text { on } \sigma\left(X_{0}, 2 R\right), \tilde{A}^{n j} D_{j} w=f^{n} \text { on } \Sigma^{0}\left(X_{0}, 2 R\right),
\end{gathered}
$$

and then Proposition 7.26 implies that

$$
\|D w\|_{p, \Omega} \leq C\left\|\tilde{f}_{m}\right\|_{p, \Omega}
$$

Since $\left|D_{n n} v_{m}\right| \leq|D w|$, we infer as before that

$$
\left\|D^{2} v_{m}\right\|_{p, \Omega} \leq C\left\|\tilde{f}_{m}\right\|_{p, \Omega}
$$

The proof is completed as in Proposition 7.18.
The right hand side of line - 10 should read

$$
C\left(\|f\|_{p, 2 R, T}+R^{-1}\|D u\|_{p, 2 R, T}\right)
$$

page 183
The proof of Proposition 7.33 should read:
Set

$$
\tilde{A}^{i j}= \begin{cases}A^{i j} & \text { if } i, j<n \\ A^{n n} \beta^{j} / \beta^{n} & \text { if } i=n, j \leq n \\ A^{j n}+A^{n j}-A^{n n} \beta^{j} / \beta^{n} & \text { if } i<n, j=n\end{cases}
$$

Now, fix $X_{1} \in Q^{0}\left(X_{0}, R / 2\right)$ and let η be a $C^{2,1}$ function which vanishes along with its gradient on $\mathcal{P} Q\left(\left(x_{0}^{\prime},-\bar{\mu} R / 2, t_{0}\right), R / 2\right)$ such that $\eta\left(X_{1}\right) \geq \frac{1}{2}$. It follows that $w=D_{k}(\eta u), k=1, \ldots, n-1$, is a weak solution of

$$
\begin{gathered}
-w_{t}+D_{i}\left(\tilde{A}^{i j} D_{j} w\right)=D_{i} f^{i} \text { in } \Sigma^{+}\left(X_{1}, R / 2\right) \\
w=0 \text { on } \sigma\left(X_{1}, R / 2\right), \tilde{A}^{n j} D_{i} w=0 \text { on } \Sigma^{0}\left(X_{1}, R / 2\right)
\end{gathered}
$$

for

$$
f^{i}=\delta^{i k}\left[\eta f+u L \eta+2 A^{i j} D_{i} \eta D_{j} u\right] .
$$

Since $f^{n}=0$, we now apply Proposition 7.26 to w and then Proposition 7.24 to $\beta \cdot D(\eta u)$.

In this way, we estimate $\left\|D^{2} u\right\|_{p, \Sigma_{1}}$, where Σ_{1} is the subset of $Q^{+}\left(X_{0}, R / 2\right)$ on which $x^{n}<\varepsilon R$ for a suitable positive constant ε, determined only by $\bar{\mu}$. Application of Proposition 7.18 gives an estimate of $\left\|D^{2} u\right\|_{p, \Sigma_{2}}$ with $\Sigma_{2}=Q^{+}\left(X_{0}, R / 2\right) \backslash \Sigma_{1}$.
page 187
page 195
page 219
page 220
page 227
page 245
page 246
page 248
page 249
page 250
page 251
page 252
page 259
page 270
page 273
page 279
page 297
page 298
page 306
page 315
page 317

Condition (7.51) should read

$$
\left|\left\{X \in Q\left(X_{0}, r\right): \bar{u}<h\right\}\right|<\zeta|Q(r)|
$$

In equation (7.68) $Q(R / 2)$ should read $Q^{+}(R / 2)$ and Q should read Q^{+}. line $-1 Q$ should read Q^{+}.
In the statement of Theorem 9.1, "increasing positive constant k such that $a(X, z, p)+k(M) z$ " should read "increasing positive function k such that $a(X, z, p)-k(M) z "$.
line -10 k and b_{1} are nonnegative.
line 3 "Theorem" should read "Theorems".
line $8 a_{\infty}^{i j}$ should read a_{∞}.
line $13 \kappa_{0} \leq 0$ should read $\kappa_{0} \geq 0$.
line $4 a^{i j}$ should read $a_{\infty}^{i j}$.
line $-3 \kappa_{0} \leq 0$ should read $\kappa_{0} \geq 0$.
line - $3 p_{0} \delta$ should read $m_{1}+p_{0} \delta$.
line $4 \Omega_{1}$ should read Ω_{2}.
line $13 \Omega_{1}$ should read Ω_{2}.
line - $6 x$ should read x_{0}.
line $-5 x$ should read x_{0}.
line $12 R$ should read $R-\varepsilon$.
line -7 "Section X.5" should read "Section X.4".
line $10 d \tau$ should read $d s$.
line - $1 \psi^{\prime} a^{i j} D_{i j} \bar{u}$ should read $a^{i j} D_{i j} \bar{u}$.
line - 13 "elliptic" should read "parabolic".
line 13 should read
$\int_{0}^{R} \rho^{-n} \bar{\psi}(\rho) d \rho<\frac{2}{4^{n} R} \int_{0}^{R} \rho^{-n} \bar{\varphi}(4 \rho) d \rho \leq \frac{S}{2}+\frac{1}{2 R} \int_{R}^{\infty} s^{-n} \bar{\varphi}(s) d s$.
line -10 should read

$$
S \leq 2 \omega_{n}\left(2^{-n}+\frac{1}{2^{n}(n-1)}\right) \leq \omega_{n}
$$

line 7 There should be a factor of 2 in front of the integral.
line 13 There should be a factor of 2 in fronot of $\left|\zeta \zeta_{t}\right|$.
In Exercise 11.2, the estimate

$$
|u(X)-u(Y)| \leq L_{0}|X-Y|
$$

only needs to be satisfied for $X \in \Omega$ and $Y \in \mathcal{P} \Omega$.
In Exercise 11.6, "Lemma 11.15" should read "Lemma 11.10".
In Exercise 11.7, "Lemma 11.15" should read "Lemma 11.11".
In Exercise 11.8, a_{1} should satisfy (11.63).
line -12 C_{1} should read C.
(12.26) should read

$$
k|z|^{2}+b_{1}
$$

line 10 ((12.25a) $)$ should read (12.25a $)^{\prime}$. line -13 $|D u|$ should read $|D u|^{2}$.
line 5 After "If", add "there are nonnegative constants b_{0}, b_{1}, and M such that"
In (12.32), $\eta /\left(2 R_{1}\right)$ should read $|p| \eta /\left(2 R_{1}\right)$.

Add the hypotheses (12.26) and " $a^{i j}$ is continuously differentiable" to Theorem 12.21.
page 318
page 336
page 338
page 339
page 340
page 341
page 346
page 354
page 381
Add the hypotheses (12.6) and " $a^{11} \in H_{\alpha}(K)$ for any compact subset K of $\Omega \times \mathbb{R} \times \mathbb{R} "$ to Theorem 12.25.
line - 15 In the first integral on the right hand side, $d X$ should read $d x$.
In line 4 , the correct expression for I_{b} is $I_{b}=\int_{0}^{T} I_{0}(t) d t$.
In Example 2.1, the condition $|B| \leq \theta_{0} v$ is superfluous because $\left|p \cdot B_{p}\right| \leq$ θ_{3} / v implies that, for each $(X, z) \in \Omega \times \mathbb{R}$ and each unit vector ξ, the function f, defined by $f(s)=B(X, z, s \xi)$ satisfies the inequality $\left|f^{\prime}(s)\right| \leq$ θ_{3} / s^{2} so $|f(s)| \leq|f(1)|+\theta_{3}$ and hence $|B|$ is bounded.
line 15 The region of integration should read

$$
\Omega \cap\left\{\left|x-x_{0}\right|<2 \rho, v_{1} \geq \tau\right\}
$$

line 9 The correct expression for λ_{0} is $\lambda_{0} \equiv \max \left\{1, \theta_{0}\right\}$.
Remove (13.43) from the hypotheses of Lemma 13.14 and Theorem 13.15.
line 15 Replace "Proposition 13.20 " by "Lemma 13.21 ".
line 5 should read

$$
|D u-D u(0)|^{1+\alpha} \leq|u|_{2} K_{\varepsilon}^{\alpha} R^{1+\alpha \varepsilon}
$$

line $6 R^{\alpha \varepsilon}$ should read $R^{2+\alpha \varepsilon}$.
page 391
line $-14+L(u-\underline{u})$ should read $-L(u-\underline{u})$
line -12 should read

$$
L(u-\underline{u}) \leq c_{1}[u-\underline{u}]-\varepsilon_{1}\left[F_{\tau}+\sum_{i} F^{i i}\right]-\delta_{0}+\sigma\left(\varepsilon_{1}\right) .
$$

