ERRATA

This is the errata sheet for the revised edition of "Second Order Parabolic Differential Equations". The errata sheet for the first edition is at http://lieb.public.iastate.edu/book/errata.pdf.

```
line -14 "to" should read "To".
 page 11
                line -1 Y should read Y_0.
                line -14 \overline{\Omega^-[X_0,r]} should read \overline{\Omega[X_0,r]}.
 page 40
 page 55
                line -6 4.4 should read 4.5
 page 65
                line 16 G should read \Psi.
                line -11 (F+G) should read F.
                line -12 (1 + \alpha f) should read (1 + \alpha)f.
 page 80
                line -1 Mw should read Mw_1.
 page 87
                In (5.1), b^i u should read b^i D_i u.
 page 92
                line -7 Omega should read \Omega.
                line -13 Du should read Dv.
page 102
                line -7 + f^i should read - f^i.
page 103
                line -2 + f^i should read -f^i.
                line 12 The definition of m_4 should be
page 130
                                             m_4 = \inf_{Q(4r)} u.
```

 $\begin{array}{ll} \text{page 138} & \quad \text{line -4 } b^0u \text{ should read } b^0z. \\ & \quad \text{line -3 } (\Lambda_1+1) \text{ should read } \lambda(\Lambda_1^2+1). \\ \text{page 139} & \quad \text{line -11 } Q[2R] \text{ should read } \Omega[2R]. \\ \text{page 153} & \quad \text{In Exercise 6.2, the definition of } \|u\|_{p,q} \text{ should read} \end{array}$

$$\|u\|_{p,q} = \left(\int_{I(\Omega)} \left(\int_{\Omega(t)} |u(X)|^p dx\right)^{q/p} dt\right)^{1/q}.$$

page 154	In Exercise 6.5, "Exercise $6.2(c)$ " should read "Exercise $6.2(b)$ ".
page 160	line 9 The right hand side should read $\tau K $.
page 162	line 2 $C(p,q,)$ should read $C(p,q)$.
	line 13 $ t - t_0 $ should read $ t - t_0 ^{1/2}$.
page 163	line $3 t - t_1 $ should read $ t - t_1 ^{1/2}$.
page 168	Proposition 7.14 should read: Let $p \geq 2$, let λ and Λ , let (A^{ij}) be a constant
	matrix satisfying (7.17) for all $\xi \in \mathbb{R}^n$, and let u be a weak solution of (7.18)
	with $f \in L^p(Q(X_0, 36R))$ for some $X_0 \in \Omega$ and $R \in (0, d(X_0)/36)$, and with
	$u \in L^p(Q(X_0, 36R))$. Then $Du \in L^p(Q(X_0, R))$, and there is a constant C ,
	determined only by λ , Λ , and n such that (7.25) holds.
	line 13 There should be a factor R^{-1} in front of $ u _{p,Q(X_0,36R)}$.
	line -12 replace $R^{(p-2)/(2p)}$ with $ Q(X_0,R) ^{(p-2)/(2p)}$.
page169	line -3 M_{ip} should read M^{ip} .
	delete line -1 and add a period at the end of new line -1

page 170 Replace lines 1 through 4 with: We now note that M > 2 and hence

$$\begin{split} M^{jp}|\{\mathcal{M}f^2 > M^{2j}\delta^2\theta^2\}| &= \frac{1}{M^j - M^{j-1}} \int_{M^{j-1}}^{M^j} M^{jp}|\{\mathcal{M}f^2 > M^{2j}\delta^2\theta^2\}| \, d\sigma \\ &\leq M^{1-j} \int_{M^{j-1}}^{M^j} M\sigma^p|\{\mathcal{M}f^2 > \sigma^2\delta^2\theta^2\}| \, d\sigma \\ &\leq M^2 \int_{M^{j-1}}^{M^j} \sigma^{p-1}|\{\mathcal{M}f^2 > \sigma^2\delta^2\theta^2\}| \, d\sigma. \end{split}$$

It then follows that

$$\begin{split} I_2 & \leq M \int_0^\infty \sigma^{p-1} |\{\mathcal{M}f^2 > \sigma^2 \delta^2 \theta^2\}| \, d\sigma \\ & = \frac{M}{2(\delta \theta)^2} \int_0^\infty h^{(p/2)-1} |\{\mathcal{M}f^2 > h\}| \, dh \\ & = \frac{M}{2(\delta \theta)^2} \int_{Q(X_0, 6R)} (\mathcal{M}f^2)^{p/2} \, dX. \end{split}$$

From Lemma 7.9 with p/2 in place of p, we have

$$\int_{Q(X_0,6R)} (\mathcal{M}f^2)^{p/2} dX \le C(n,p) \int_{Q(X_0,6R)} (f^2)^{p/2} dX = C(n,p) \int_{Q(X_0,6R)} |f|^p dX.$$

line 6 Replace F with F^p .

page 172 line -10 L^{∞} should read L^q and $||Du||_p$ should read $||Du||_p^{p-1}$.

page 173 line -3 Dv_m should read D^2v_m .

page 175 line 4 Ω should read ω .

page 178 Proposition 7.25 should read

Let λ and Λ be positive constants and let (A^{ij}) be a constant matrix satisfying (7.17) for all $\xi \in \mathbb{R}^n$. Let $X_0 \in \mathbb{R}^{n+1}$, let R > 0, and set $\Omega = \Sigma^+(X_0, 6R)$. Suppose u is a weak solution of

$$Lu = D_i f^i \text{ in } \Omega, \quad u = 0 \text{ on } \sigma(X_0, 6R), \quad a^{nj} D_j u = f^n \text{ on } \Sigma^0(X_0, 6R), \quad (7.41)$$

and let $X_1 \in \overline{\Omega}$. There there is a positive constant $M(\lambda, \Lambda, n)$ and, for each $\varepsilon > 0$, there is a constant $\delta(\lambda, \Lambda, n, \varepsilon)$ such that, if (7.29) holds for some $\theta > 0$, then (7.30) is valid.

line 16 add "in which $\beta^i = A^{ni}$, so that μ and $\bar{\mu}$ are determined by λ , Λ , and n."

In the proof of Proposition 7.25, delete the second paragraph.

page 179 line 17 7.25 should read 7.23.

line 20 should read

$$v_t + D_j(A^{ij}D_iv) = D_jg^j$$
 in $\Omega, v = 0$ on $\sigma, A^{jn}D_jv = g^n$ on Σ^0 .

page 180 Replace the proof of Proposition 7.28 to read

We argue as in Proposition 7.18 (but with Proposition 7.24 in place of Proposition 7.17) to obtain L^p estimates for $D_{ij}u$ with i+j<2n. With u_m , η , v_m , and \tilde{f}_m as in the proof of Proposition 7.18, we note that we have

$$-v_{m,t} + A^{ij}D_{ij}v_m = \tilde{f}_m$$

on $\Sigma^0(X_0, 2R)$. Since $v_{m,t} = 0$ and $D_{ij}v_m = 0$ (for i < n and j < n) on $\Sigma^0(X_0, 2R)$, we infer that

$$\tilde{A}^{nj}D_jv_m = \tilde{f}_m$$

on $\Sigma^0(X_0, 2R)$ with

$$\tilde{A}^{ij} = \begin{cases} A^{ij} & \text{if } i < n, j < n, \\ A^{in} + A^{ni} & \text{if } i < n, j = n, \\ 0 & \text{if } i = n, j < n, \\ A^{nn} & \text{if } i = j = n. \end{cases}$$

In addition, we have

$$-v_{m,t} + D_i(\tilde{A}^{ij}D_jv_m) = \tilde{f}_m$$

in Ω . If we now set $w = D_n v_m$ and $f^i = \delta^{in} \tilde{f}_m$, it follows that

$$-w_t + D_i(\tilde{A}^{ij}D_jw) = D_if^i \text{ in } \Omega,$$

w = 0 on $\sigma(X_0, 2R)$, $\tilde{A}^{nj}D_jw = f^n$ on $\Sigma^0(X_0, 2R)$,

and then Proposition 7.26 implies that

$$||Dw||_{p,\Omega} \leq C||\tilde{f}_m||_{p,\Omega}.$$

Since $|D_{nn}v_m| \leq |Dw|$, we infer as before that

$$||D^2v_m||_{p,\Omega} \le C||\tilde{f}_m||_{p,\Omega}.$$

The proof is completed as in Proposition 7.18.

The right hand side of line -10 should read

$$C(\|f\|_{p,2R,T} + R^{-1}\|Du\|_{p,2R,T})$$

page 183 The proof of Proposition 7.33 should read: Set

$$\tilde{A}^{ij} = \begin{cases} A^{ij} & \text{if } i, j < n, \\ A^{nn} \beta^j / \beta^n & \text{if } i = n, j \le n, \\ A^{jn} + A^{nj} - A^{nn} \beta^j / \beta^n & \text{if } i < n, j = n. \end{cases}$$

Now, fix $X_1 \in Q^0(X_0, R/2)$ and let η be a $C^{2,1}$ function which vanishes along with its gradient on $\mathcal{P}Q((x_0', -\bar{\mu}R/2, t_0), R/2)$ such that $\eta(X_1) \geq \frac{1}{2}$. It follows that $w = D_k(\eta u), k = 1, \ldots, n-1$, is a weak solution of

$$-w_t + D_i(\tilde{A}^{ij}D_jw) = D_if^i \text{ in } \Sigma^+(X_1, R/2),$$

 $w = 0 \text{ on } \sigma(X_1, R/2), \tilde{A}^{nj}D_iw = 0 \text{ on } \Sigma^0(X_1, R/2)$

for

$$f^{i} = \delta^{ik} [\eta f + uL\eta + 2A^{ij}D_{i}\eta D_{j}u].$$

Since $f^n=0$, we now apply Proposition 7.26 to w and then Proposition 7.24 to $\beta \cdot D(\eta u)$.

In this way, we estimate $||D^2u||_{p,\Sigma_1}$, where Σ_1 is the subset of $Q^+(X_0, R/2)$ on which $x^n < \varepsilon R$ for a suitable positive constant ε , determined only by $\bar{\mu}$. Application of Proposition 7.18 gives an estimate of $||D^2u||_{p,\Sigma_2}$ with $\Sigma_2 = Q^+(X_0, R/2) \setminus \Sigma_1$.

page 187 Condition (7.51) should read

$$|\{X \in Q(X_0, r) : \bar{u} < h\}| < \zeta |Q(r)|$$

- page 195 In equation (7.68) Q(R/2) should read $Q^+(R/2)$ and Q should read Q^+ . line -1 Q should read Q^+ .
- page 219 In the statement of Theorem 9.1, "increasing positive constant k such that a(X, z, p) + k(M)z" should read "increasing positive function k such that a(X, z, p) k(M)z".
- page 220 line -10 k and b_1 are nonnegative.
- page 227 line 3 "Theorem" should read "Theorems".
- page 245 line 8 a_{∞}^{ij} should read a_{∞} .

line 13 $\kappa_0 \leq 0$ should read $\kappa_0 \geq 0$.

- page 246 line 4 a^{ij} should read a_{∞}^{ij} .
 - line -3 $\kappa_0 \leq 0$ should read $\kappa_0 \geq 0$.
- page 248 line -3 $p_0\delta$ should read $m_1 + p_0\delta$.
- page 249 line 4 Ω_1 should read Ω_2 .

line 13 Ω_1 should read Ω_2 .

line -6 x should read x_0 .

line -5 x should read x_0 .

- page 250 line 12 R should read $R \varepsilon$.
- page 251 line -7 "Section X.5" should read "Section X.4".
- page 252 line 10 $d\tau$ should read ds.
- page 259 line -1 $\psi' a^{ij} D_{ij} \bar{u}$ should read $a^{ij} D_{ij} \bar{u}$.
- page 270 line -13 "elliptic" should read "parabolic".
- page 273 line 13 should read

$$\int_0^R \rho^{-n} \bar{\psi}(\rho) \, d\rho < \frac{2}{4^n R} \int_0^R \rho^{-n} \bar{\varphi}(4\rho) \, d\rho \leq \frac{S}{2} + \frac{1}{2R} \int_R^\infty s^{-n} \bar{\varphi}(s) \, ds.$$

line -10 should read

$$S \le 2\omega_n \left(2^{-n} + \frac{1}{2^n(n-1)}\right) \le \omega_n.$$

- page 279 line 7 There should be a factor of 2 in front of the integral. line 13 There should be a factor of 2 in front of $|\zeta\zeta_t|$.
- page 297 In Exercise 11.2, the estimate

$$|u(X) - u(Y)| \le L_0|X - Y|$$

only needs to be satisfied for $X \in \Omega$ and $Y \in \mathcal{P}\Omega$.

page 298 In Exercise 11.6, "Lemma 11.15" should read "Lemma 11.10". In Exercise 11.7, "Lemma 11.15" should read "Lemma 11.11".

In Exercise 11.8, a_1 should satisfy (11.63).

- page 306 line -12 C_1 should read C.
- page 315 (12.26) should read

$$k|z|^2 + b_1$$
.

line 10 ((12.25a)') should read (12.25a)'.

line -13 |Du| should read $|Du|^2$.

page 317 line 5 After "If", add "there are nonnegative constants b_0 , b_1 , and M such that"

In (12.32), $\eta/(2R_1)$ should read $|p|\eta/(2R_1)$.

Add the hypotheses (12.26) and " a^{ij} is continuously differentiable" to Theorem 12.21.

- Add the hypotheses (12.6) and " $a^{11} \in H_{\alpha}(K)$ for any compact subset K of page 318 $\Omega \times \mathbb{R} \times \mathbb{R}$ " to Theorem 12.25.
- line -15 In the first integral on the right hand side, dX should read dx. page 336
- page 338
- In line 4, the correct expression for I_b is $I_b = \int_0^T I_0(t) dt$. In Example 2.1, the condition $|B| \le \theta_0 v$ is superfluous because $|p \cdot B_p| \le$ page 339 θ_3/v implies that, for each $(X,z)\in\Omega\times\mathbb{R}$ and each unit vector ξ , the function f, defined by $f(s) = B(X, z, s\xi)$ satisfies the inequality $|f'(s)| \le$ θ_3/s^2 so $|f(s)| \leq |f(1)| + \theta_3$ and hence |B| is bounded.
- line 15 The region of integration should read page 340

$$\Omega \cap \{|x - x_0| < 2\rho, v_1 \ge \tau\}.$$

- line 9 The correct expression for λ_0 is $\lambda_0 \equiv \max\{1, \theta_0\}$. page 341
- page 346 Remove (13.43) from the hypotheses of Lemma 13.14 and Theorem 13.15.
- line 15 Replace "Proposition 13.20" by "Lemma 13.21". page 354
- page 381 line 5 should read

$$|Du - Du(0)|^{1+\alpha} \le |u|_2 K_{\varepsilon}^{\alpha} R^{1+\alpha\varepsilon}$$

line 6 $R^{\alpha\varepsilon}$ should read $R^{2+\alpha\varepsilon}$.

page 391 line -14 + $L(u - \underline{u})$ should read - $L(u - \underline{u})$ line -12 should read

$$L(u - \underline{u}) \le c_1[u - \underline{u}] - \varepsilon_1[F_\tau + \sum_i F^{ii}] - \delta_0 + \sigma(\varepsilon_1).$$