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Abstract

A popular method to conduct structural health monitoring is the spatio-temporal
study of vibration signatures, where vibration properties are extracted from collected
vibration responses. In this paper, a novel methodology for extracting and analyzing
distributed acceleration data for condition assessment of bridge girders is proposed.
Three different techniques are fused enabling robust damage detection, localization
and quantification. First, stochastic subspace identification is used as an output-only
method to extract modal properties of the monitored structure. Then, a reduced order
stiffness matrix is reconstructed from the SSID data using the system equivalent
reduction expansion process. Third, a particle swarm optimization algorithm is used
to update a finite element model (FEM) of the bridge girder to match the extracted
reduced order stiffness matrix and modal properties. The proposed approach is
first verified through numerically simulated data of the girder and then validated
using experimental data obtained from a full-scale pretensioned concrete beam that
experienced two distinct states of damage. Results show that the method is capable
of localizing and quantifying damages along the girder with good accuracy, and that
results can be used to create a high fidelity finite element model (FEM) of the girder
that could be leveraged for condition prognosis and forecasting.
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INTRODUCTION

Condition-based maintenance of transportation infrastructures is emerging as a cost-
effective solution to allocate limited resources to the aging infrastructure problem. Unlike
traditional breakdown-based and time-based strategies [1], condition-based maintenance
has the potential to decrease costs from the improved efficiency of maintenance and
repair decisions [2]. This requires knowledge of structural conditions that are typically
evaluated through visual inspection, which is a process known to be lengthy, costly
and subjective. An alternative is to automate the inspection process through structural
health monitoring (SHM) methods. SHM generally consists of collecting, processing
and interpreting a continuous set of data measured from a set of sensors installed on
a structure to diagnose, localize and prognose the extent of damage, and/or evaluating
and forecasting structural conditions based on the retrieved information. A challenge
in deploying SHM solutions to civil structures and structural members is in the large
geometries under consideration, whereas sensors need to be strategically deployed in
order to provide rich-enough data that can yield to condition-based information [3]. This
can be done using sparse [4] and dense [5] networks of sensors measuring strain [6, 7],
acceleration [8, 9, 10, 11], and other [12, 13, 14] states.

Acceleration-based SHM solutions have shown promise due to the possibility of
retrieving global modal information from a structure. This vibration-based method
generally consists of associating damage with changes in modal properties [15]. Among
these approaches, Operational Modal Analysis (OMA) [16] using stochastic subspace
identification (SSID) is of high interest due to the capability of identifying structural
modal properties using only the measured structural response, also termed an output-only
method. A notable advantage of SSID-based methods is their suitability for automated
implementations [17, 18, 19, 20, 21], making them a powerful tool for SHM purposes.
SSID can be conducted through either covariance-driven (SSID-COV) [22] or data-
driven (SSID-DATA) algorithms. SSID-DATA is of particular interest, because modal
parameters can be identified directly from the measured time signal, unlike the SSID-
COV where one needs to obtain the covariance matrix relating all of the measured
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system outputs. An exhaustive summary on these methods and their applications to civil
engineering structures can be found in [23, 24, 25, 26, 27, 28].

Many applications of SSID have been proposed and demonstrated. For instance,
Peeters et al. [29] proposed the combination of SSID and auto-regressive exogenous
(ARX) methods for damage detection applied to the Z24 Bridge benchmark case study.
Acceleration data from the Z24 Bridge were analyzed using SSID to obtain the evolution
of the first four modes as a function of wearing surface temperature. Subsequently, an
ARX model was used to relate temperature to frequencies and produce a predictive
model. The prediction error data was then used as the damage detection feature. Also
using the Z24 Bridge benchmark, Kullaa [30] proposed a damage detection approach
combining SSID and statistical control charts. SSID was used to retrieve the structural
modal properties under different damage conditions. The information was grouped
using mode pairing based on a minimal Euclidean distance criteria. The grouped modal
properties were then used to construct statistical control charts, whose bounds were used
as the damage detection feature. Outside the Z24 benchmark, Su et al. [31] proposed a
damage detection method for multi-story frame buildings based on the combination of
the SSID and the Gram-Schmidt orthogonalization process. Acceleration data collected
under earthquake excitation were analyzed through a wavelet-based SSID approach to
identify frequencies and mode shapes. Mode shapes were mass-normalized and corrected
using the Gram-Schmidt orthogonalization process, followed by the construction of a
diagonal modal stiffness matrix used for damage detection.

Similar to other OMA and vibration-based SHM methods, several sources of
uncertainty such as material properties, non-white noise and non-stationary loading, as
well as changes in environmental and operational conditions, may affect the performance
of the algorithm to relate changes in modal properties to damage. A solution to
overcome this challenge is to treat the damage identification task as an optimization
problem. Using this strategy, the identified modal properties are used in combination
with a structural model to build specific optimization functions. Optimization algorithms
are used to minimize the error in the dynamic properties of the model with respect
to the real structure, enabling accurate damage location and quantification [32, 33].
Popular algorithms include the metaheuristics approaches (e.g., PSO, firefly algorithms)
[34, 35, 36, 37, 38], hybridized metaheuristics approaches (e.g., PSO/simplex algorithm)
[39, 40] and stochastic/deterministic methods (e.g., Nelder-Mead methods) [34, 15]. In
particular, Meruane and Heylen [41] proposed a combination of SSID with a genetic
algorithm. The authors used SSID to retrieve the system’s modal properties, which
were then combined with a structural model to build optimization functions. A genetic
algorithm was used to perform the optimization, yielding localization and quantification
of damage.

The authors of this paper have initiated work on a method that while combining SSID
with an optimization algorithm, integrates model reduction methods to reconstruct a
higher resolution finite element model (FEM) of the monitored structure. Preliminary
findings were published in conference proceedings [42, 43]. The method, which
constitutes the novelty of this paper, consists of extracting modal information, including
modal frequencies and shapes, using an SSID algorithm. Subsequently, a reduced
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4 Structural Health Monitoring XX(X)

order stiffness matrix is reconstructed based on the system equivalent reduction
expansion process (SEREP). At the final stage, a FEM is reconstructed and updated
by optimizing three newly developed optimization functions. The approach selected
for the optimization purpose in this study was a particle swarm optimization (PSO)
algorithm, due to its flexibility and ease of implementation. It must be noted that other
optimization strategies could have been utilized. The PSO performed the optimization of
the three different functions, and this result was used to achieve damage localization and
quantification. The damage detection capabilities of the framework was verified using
simulation data [42], and model updating capabilities validated using experimental data
[43]. Work presented here extends the previous framework by defining new, refined
optimization functions and by validating the damage detection process using data
collected from a laboratory test of a full-scale bridge girder. The modified algorithm
is first tested using simulated data from a simply supported reinforced concrete (RC)
beam. Then, the proposed method is validated using experimental data obtained on a full-
scale pretensioned concrete (PC) girder subjected to white noise excitation that mimics
realistic operational traffic loading.

In what follows, the theoretical background of the proposed method, including the
SSID approach, the SEREP method and the PSO technique, is presented. Then, the SSID-
based algorithm is introduced. Finally, the results from both the numerical simulations
and full-scale laboratory tests are presented, and the paper is concluded.

Background

The proposed damage identification and quantification technique leverages the SSID,
SEREP, and PSO algorithms. This section summarizes the theoretical background for
each of these methods.

Stochastic subspace identification

SSID is a dynamic analysis tool that is generally used for retrieving natural frequencies,
mode shapes and modal damping from output-only data. Dynamic properties are obtained
through a linear state-space representation reconstructed directly from measured data.
Consider the discrete-time state space representation of a linear time-invariant dynamic
system [44]:

Xir1 = AXpt+Wy

ey

Yi = Cxptvy
where the subscript k indicates a discrete step, X is the state vector, A the state matrix,
y the output vector, C the output matrix, w and v the zero-mean Gaussian process
and excitation noise vector, respectively. Both Gaussian processes are defined by their
covariance matrix X:

Y= )

L. SS,..
SS.., Z,

where L is the variance matrix of w, Z, the variance matrix of v, and SS,,, is the
covariance matrix between both Gaussian processes.
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To conduct the SSID-DATA procedure [22] a block Hankel matrix H is first
constructed from the measured data. The dimension of this matrix depends on two user-
defined quantities 2i and j, which represent the matrix’s number of output row blocks and
columns, respectively.

[ 30 (1) . G-
y) o oy@ o 0
ya-1)  y@ ... y(i+-2) Y,
v(i) y(i+l) ... y(i+j-1) Y,
y(i+l)  y(i+2) ... y(i+))
I v(2i-1)  y(2i)) ... y(2i+j-2) |

Matrix H; is subdivided into submatrices Y, and Y, usually termed past and future output
block matrices. Both submatrices have i block rows and j columns, where j < s—2i+1 and
s is the total number of time samples available. The block Hankel matrix is decomposed
using the QR-factorization:

Y,

H,‘ -
Yy

=RQ’ “4)

where Q is a square orthonormal matrix of dimension j such that Q"Q = QQ" = I
with I; being the identity matrix of dimension j, and R is a lower triangular matrix of
dimension f X j with f'being the total number of sensors. Using the decomposition of the
Hankel matrix, the orthogonal projection P; of the past row space into the future row
space is computed as:

Ry 1
P =YY, = Yng(YpY;)TYp = |Rs1 | Q 3)
Ry

where (-)Tis the Moore-Penrose pseudo-inverse, Rs 1, R3 1, Ry 1 are submatrices of
R, and Q; is a submatrix of Q. The projection is expressed as a product between the
observability matrix of the system O; and a Kalman filter state sequence X; :

C
CA

P, = CA2 )A(l- )A(,-Jrl ce )A(i+j_1:| = OiXi (6)

L CAZ_2 -
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Both O, and X; are retrieved through the singular value decomposition (SVD) of the
projection as follows:

P, — USV” 7)
0, = US'/? 8)
X; = 0/P, 9)

where U, S and V are the matrices obtained from the SVD. An overdetermined set of
linear equations is obtained from the estimated Kalman filter state sequence as follows:

X; + ( P ) (10)
Py

where Y; is a Hankel matrix with only one row block, while p,, and p, are the residuals
of the modelling and data noise, respectively. Solving this overdetermined problem by a
least square approach yields matrices A and C in a discrete-time form:

A

Xi+1
Y,

~

Xi+1
Y;

A
C

X! (11)

The retrieved A matrix can be decomposed using its eigenvalues and eigenvectors
yielding:

A=T,AT} (12)
M1 0O ... 0
0 )\d,2 e 0
Ai=| . . . (13)
0 0 ... Aan
where A, is a diagonal matrix containing the Ay 1, Ay 2, ..., Ag, discrete time complex

eigenvalues and W, is the discrete time complex eigenvector matrix. These discrete time
quantities need to be converted into continuous time quantities to obtain the dynamic
parameters of the system:

A = AA (14)
C.=C (15)
. ln()\d)

Ao = ~ (16)

A=Ay (17)

where the subscript d indicates discrete-time quantities, the subscript ¢ indicates
continuous time quantities, A is a vector containing the complex eigenvalues and A¢
is the time step of the measured data. The circular frequencies w; and modal damping &;
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of the system can be determined using the complex conjugates eigenvalues of the matrix

A.:
s Ny = ~&wi £ (f)win/1-A2, (18)

where the superscript * indicates the complex conjugate and j is the imaginary unit.
Lastly, the mode shapes matrix ® of the system can be obtained from the continuous
time eigenvectors W, as:

®=CY, 19)

It follows that the dynamic properties of the structural system can be derived from the
retrieved discrete-time matrices A and C.

In the SSID theory, the order of the system #n , or the dimension of the aforementioned
matrices A and C, should be equal to twice the number of modes needed to accurately
describe the structural response. However, when analyzing full-scale structures, a higher
value of n is often required to account for the possible presence of weakly excited
and/or closely spaced modes. This over-modelling approach has the drawback of creating
spurious modes associated with the measurements noise. To overcome this problem it has
become common practice in the SSID analysis to evaluate the dynamic properties of the
system over a wide range of n and i values. For the purpose of automating the separation
of physical modes from the spurious ones, Ubertini et al. [20] developed a three-step
automated modal identification procedure. First, the complex conjugates eigenvalues are
eliminated from the results. Then, specific control criteria for frequencies, damping, and
mode shapes are used to eliminate modes created from the noise in the identification
process and from over-modelling. Finally, the remaining modes are clustered and the
structure’s modal information are selected by analyzing the stability of these modes
through the similarity of the parameters in the various model’s orders and number of
output block rows of the block Hankel matrix.

System equivalent reduction expansion process condensation method

In the proposed algorithm, the physical system is simplified into a FEM of degrees-
of-freedom (DOFs) equal to the number of sensors. This yields a reduced order model
for which dynamic properties can be obtained from the SSID method. SEREP [45], is
utilized to maintain equivalence between the dynamic properties of the full and reduced
models. This method is used for dynamic condensation and allows for the temporal
comparison of dynamic properties, leading to the quantification of changes in stiffness. A
specific performance matrix is created from this method in order to improve the precision
of the reconstructed stiffness of the system. To derive the expression of the SEREP
reduced order stiffness matrix, Ked,s, consider the matrix form of the equation of motion
[44]

Mx+C,; x+Kx = F(¢) (20)

where M is the mass matrix, C, the damping matrix, K the stiffness matrix, F(¢) forcing
matrix, X the displacement vector, and the dot denotes a time derivative. Eq. (20) can
be divided into terms associated with the measured DOFs, m, and the complementary
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DOFs, c:
Mmm Mmc im + Cd, mm Cd, mc Xm +
Mcm Mcc jic Cd, cm Cd, cc Xc
I<mm ch Xm Fm (t )
_|_ =
Kcm ch X Fc (t )

To correlate the above equations with the retrieved dynamic properties of the system, a
coordinate change is introduced:

(1) lxmu)

x.(1)

1)

— ®q(1) =| " q(1) 22)

where x and q are associated with the physical and modal coordinates of the system,
respectively, ®,, is a matrix containing the eigenvectors of the measured DOFs, and @,
a matrix containing the eigenvectors of the complementary DOFs. If ®,, is known, it is
possible to derive an expression from Eq. (22) representing the modal coordinates using
a least square estimator:

q=o'x, (23)

Substituting Eq. (23) into Eq. (22) yields the transformation matrix for the SEREP
approach:

x=®dx, = Tx, (24)
T, = ®d/ (25)

Using Eq. (24) in Eq. (20) and pre-multiplying by T, leads to:
T'MT,x,,+T, C,T,X,+T KT,x,, = T, F(?) (26)

Expanding the term of the equation relative to the stiffness matrix and noting that
SKd = 0 (were ® is mass-normalized), one obtains an expression for Keq s:

Kes = T'KT, = (&) )'®'K&® = (] )'Q*®] 27)

This condensation method preserves the selected eigenvalues of the original system
through the transformation, implying that the selected mode’s eigenvalues are equal for
both systems. This property is independent of the location and the number of sensors.
The accuracy of this approach was extensively studied by Sairajan and Aglietti [46]
for complex systems, where the SEREP reduction process showed good performance,
even when realistic noise was considered in the retrieved mode shapes. Also, it was
demonstrated that using fewer mode shapes than the available number of sensors yielded
a model that better represented the response of the original system.
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Particle swarm optimization algorithm

The PSO is a probabilistic search algorithm used for optimization problems. It is based
on a simplified social model derived from the behavior of animal swarms such as birds
[47] and bees [48]. Using this approach, variables are optimized within a set of possible
solutions termed particles. These particles are moved around the search space with a
given velocity, yielding updated positions. Each particle’s movement is influenced by
promising locations found by other particles. The process is iterated until an optimal
solution is obtained. In this paper, the PSO is used to optimize the stiffness values of a
simplified structural model to obtain a match between the model and the retrieved data.
This is achieved by creating an initial set of particles location z;, with random values
assigned to each of them representing the values of stiffness of the elements. This set is
stored in a matrix with a dimension defined by the number of variables of the problem
multiplied by the swarm size. A corresponding set of random initial velocities z; for
the particles is also generated. The function is evaluated for each row of the swarm
matrix, and the results are used to evaluate both the swarm’s best position and each
single particle’s best location b. The global position is taken as the row that provides
the lower value for the optimization function. The local minima starts equal to the initial
values assigned to each particle. When successive steps are evaluated, the local minima
is defined as the step for which the optimization function is minimized for that particle.
For each particle, a new velocity is calculated using a unitary time step and the gained
knowledge on the best location through the following expression:

i = wij + e101 (0" -z) +e202 (b -2;) (28)

where §; and d5 are random numbers between 0 and 1, b, is the best location found for the
b particle, bﬁ the best global location at step A, w is the inertia of the particles, and e1, e
are trust parameters. The inertia regulates the action of the swarm, with larger and smaller
values yielding a global and local behavior, respectively. The trust parameters represent
the confidence of a particle in itself, e1, and in the whole swarm, e-. The position of each
particle is updated using their previous location and the previously calculated updated
velocity:

Zper = Tt AL (29)

where 7}, is the new location of the " particle, and At is a unitary value. This updating
scheme is repeated until the difference between two consecutive step values of the
optimization function is less than a predefined tolerance.

DAMAGE DETECTION ALGORITHM

The proposed damage detection, location, and quantification method is divided into two
sequential stages. First, acceleration data is analyzed using the SSID technique to extract
the natural frequencies and mode shapes of the monitored system. This information is
used to create the reduced order stiffness matrices of the system along with SEREP,
after normalizing the mode shapes with respect to their 2-norm. Second, the retrieved
modal properties and reduced order stiffness matrices are combined with the respective
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moldel order

frequency (Hz)

Figure 1. Retrieved frequencies versus model order n identified by the SSID algorithm
before the elimination of noisy modes.

quantities calculated from the FEM to generate three optimization functions. These are
processed using the PSO in an optimization process, obtaining specific damage indices
used to detect, localize, and quantify damage.

Stage | - Extraction of modal properties

In Stage I, the system’s frequencies f..; and mode shapes @, are extracted using the
SSID technique. This is achieved through the three-step method proposed by Ubertini et
al. [20] discussed above. Figure 1 shows typical raw data obtained from an SSID analysis
using laboratory data from this work (to be described later), while Figure 2 shows the
same data after filtering out the noisy modes. One can observe that after filtering, the first
frequency of the system becomes immediately identifiable as the only stable frequency
in the 0-10 Hz range. Clustering was used to identify the higher modes. The technique
consists of aggregating the remaining modes into clusters that meet predefined criteria.
The structural modes can be selected by analyzing the mode shapes of the clustered sets.
Figure 3 shows an example of the clustering process results for the stable modes of the
system (Figure 3), showing the 90% confidence interval for the damping (vertical lines)
and the frequencies (horizontal lines). The first three identified modes of the system are
encircled in the figure, where one intermediary mode (around 38 Hz) was not considered
because it was associated with high damping. The retrieved mode shapes are normalized
with respect to their 2-norm || - ||:

q)retr i
Bro = = (30)
e ||(I)retr,i |

where @ ; is the i mode shape. The retrieved frequencies and normalized mode shapes
are used to calculate the data-driven reduced order stiffness matrix Keq s data (Eq. (27)).
The procedure to conduct Stage I is presented in Algorithm 1
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Algorithm 1 Damage detection algorithm - Stage I

[N N e e e e e e e )
N P RS A i vl

R AN e

accdata < input of the acceleration data
1 < Nrows,,in — NrowS.,az
j < Ncoly,in +~ Ncolyax
€ny €f €D, €y
for ¢ < Nrows,,;n,, NFOWS .00 dO
for j < Ncol,,in, Ncoly,q, do
Perform SSID for current i and j
Rawgua < SSID results
end for
end for

. Filteredgaa < Rawga, = €,
: Ngyeq < length of Filtered,,,
: for f <= 1,Nyp¢q do

Frequency check ey
Mode shape check e
Damping check €,

> Block rows range
> Columns Range
> Noise and clustering parameters

if Frequency check & Mode shape check & Damping check are true then

Clusteredg,, < Current data
end if

. end for

moldel order
g

0 10 20 30

frequency (Hz)

40 50 60

Figure 2. Retrieved frequencies versus model order n identified by the SSID algorithm after
the elimination of noisy modes.

Stage Il - Damage detection and location

In Stage II, a finite element model (FEM) of the structure is constructed containing
parameters that can be altered as a function of damage indices, ;. These indices multiply
the bending stiffness EI of the model’s elements, where E is the Young’s modulus of
the material and / is the sections’ moment of inertia. Note that EI can differ between

Prepared using sagej.cls



12 Structural Health Monitoring XX(X)

moldel order
F

©

0 1 1 1 1 1
0 10 20 30 40 50 60

frequency (Hz)

Figure 3. Retrieved frequencies versus damping ratios after the clustering process, showing
the identified system modes encircled in red.

elements. Parameters «; are selected based on an optimization function, which yield
an updated FEM from which the model-driven dynamic parameters and reduced order
matrices can be obtained. The described process is based on the assumption that the mass
matrix of the system is known. However, this assumption can be relaxed by accounting
for mass variability by introducing a second set of coefficients (3;. This set will multiply
the linear mass pA, of each model’s element, where A, is the cross section area of the
element and p is the material density. The remaining part of the process follows the same
steps as the case for known mass, described in what follows.

Three different optimization functions are used to select parameters «;, each solved
independently, producing three different sets of damage indices. These optimization
functions, termed OF to OF3, are defined as follows.

— Optimization function OF;: the mean absolute percentage error between the retrieved
frequencies and the frequencies obtained from the model.

nq o
0F1 _ i Z ((fretr,d ffunct,d) 100) (31)

nq =1 ffunct,d

where ng is the number of selected frequencies, f, 4 is the d™ retrieved frequency,
and fp,c, 4 18 the d™ frequency obtained from the model.

— Optimization function OF5: the mean value of the standard deviation for the ratio of
the computed and retrieved mode shapes.
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1 & 1 & —
0F2 = < Z ((I)ds,rt - q)d,rt)2> (32)
d=1

nqg ns—l p
(I)funct ds
Dy, = : (33)
aor (I)retr,ds
= 1 @ (I)funct ds >
Qg = — ( ’ (34)
' ng ; (I)retr,ds

1 where 7 is the number of sensors, ®fynet g5 18 the s™ component of the d™ mode shape
2 function and @ 44 s the s™ component of the d™ retrieved mode shape.

— Optimization function OF5: the mean of the absolute value of all the terms in the
SEREP error matrix. This matrix is defined as the absolute percentage error between
the elements of the retrieved and the model’s SEREP reduced order stiffness matrices.

Il a1 &
OF3 = . Z (n—s Z (ks,diff,sz)> (35)

s=1 z=1

]_Cred S,data sz_l_cred S, funct,sz
ks difr,sz; = = 100 (36)
kred, S,data,sz
3 where kied,s data,s; aNd Kred. s funct,sz are the elements in position sz of the retrieved and
4 model’s SEREP reduced order stiffness matrices, respectively.

s These functions are solved using the PSO algorithm. Damage detection, location, and
s quantification is conducted by comparing all three sets of «; selected by the particle
7 optimization swarm. To detect damage, all of the three «; for a given element must to
s be below unity, where unity is associated with the undamaged condition. If all o; are
o different than unity for a given element, then damage is considered to be associated with
w0 that element, identifying the damage location. This criteria was established to minimize
1+ the identification of false positives. The quantified level of damage corresponds to the
12 average value of «; for that particular element. For example, an average value of o;; = 0.6
13 would signify an element at 60% of its original health, or 40% damaged. Algorithm 2
14 details the implementation procedure of the damage detection approach.

s NUMERICAL VERIFICATION AND LABORATORY VALIDATION

16 In this section, the proposed algorithm is first verified through numerical simulations
7 on a reinforced concrete girder. Then, it is validated using a laboratory experiment on a
18 pretensioned concrete girder.

w» Numerical verification

20 The simulated system consists of a simply supported reinforced concrete beam of 13.0
21 m (42.65 ft) length. The beam, illustrated in Figure 4, is discretized into 16 elements of
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Algorithm 2 Damage detection algorithm - Stage II

L e e e e i e
R A A ol R el

LW W W RN NN NN
e 2 e A U R S e

R AN e

I}
D2

Clusteredg,e, <— Import from Stage [
OF; < Fq.(32)
OF5 <+ FEq.(35)
Swarmsize, Nygriables
toll + 10~
Initializing damage indices
for j < 1,3 do
az’,OF,- Y %SwarmsizexNvanableS

end for

. Parallel evaluation of the functions
: for j < 1,3 do

OF ;1 = OF; (aioF,)

k< 2

while OF]"[.C — OFj,k—l > toll do
b} < min (OF; 1)
b" <+ min (OFj’k (I") R OFij_l (I’))
k=k+1

. Parallel evaluation of the functions optimization

for r < 1, Swarmsize do
2k +1)" < Eq.(28)
2k +1)" < Eq.(29)
end for
end while
aor; < min (OF; (r))

. end for
: forr + 17 Nvariables do

if aop, (r) & aor, (r) & aorp, (r) < 1 then
Oz(?‘) «— mean(aOFl (7‘) y XOF, (r) y YO F5 (r))
else
a(r) <1
end if

. end for

> Number of particles and problem variables
> Stopping criteria value

>r =1+ Swarmsize

equal length and a rectangular cross-section of 0.3 x 0.6 m? (11.8 x 23.6 in%). Two
different damage scenarios are simulated to assess the performance of the proposed
approach. In the first scenario, damage is introduced in the system by reducing the
moment of inertia for elements 7 and 8 by 20 and 30%, respectively, to represent the
effects of crack formation in a neighboring region. In the second scenario, damage is
introduced by reducing the moment of inertia for elements 9 and 13 by 30 and 20%,
respectively, to represent damage at two distinct locations. The beam is excited using a
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Table 1. First three frequencies of the system, retrieved with SSID and calculated from the
model before damage

mode model frequency SSID frequency error

(Hz) (Hz) (%)
1 5.730 5.743 -0.22
2 22.920 22.867 0.23
3 51.567 51.501 0.13

dynamic moving load that mimics the passage of a vehicle (shown by f(#), Figure 4) for
a total duration of 60 s. This type of excitation was selected to test the robustness of the
algorithm over non-ideal conditions. When the excitation is not white noise, its frequency
will appear in the retrieved modal properties. However, using the method proposed by
Ubertini et al. [20], it is possible to overcome this problem by automatically eliminating
this spurious pole. Such result is quite relevant to field applications, where the excitation
cannot always be characterized as white noise. Gaussian white noise was added to the
excitation force to simulate the ambient vibrations. This noise was characterized using
the signal-to-noise (SNR) ratio, expressed in dB:

Ag
SNR = 201log,, ( 3 gf““) (37)
noise

where Agionai is the root mean square of the noisy signal (i.e., the excitation force), and
Anpoise 18 the root mean square of the noise. For this study, the SNR was set to 70 dB.
The application of white noise in the excitation force generated an SNR of 11.25 dB or
37.7% noise in the collected response data. The apparent high amplification of the noise
level from the excitation to the response is due to the fact that both the exciting force
and the white noise generate a comparable level of acceleration in the system. Figure 5
plots the acceleration response from the force (i.e., noise-free) and from the noise itself.
These responses have comparable magnitude generating a high level of SNR in the final
response. In this study, a low magnitude force was selected in order to produce a high
level of noise for assessing the robustness of the SSID identification process.

Rayleigh damping was used in the simulation, assigning to the first two modes a
damping ratio of 3%. The corresponding structural response was taken at three locations
simulating three sensors (locations s1, s2, and s3 in Figure 4). Figure 4 shows plots of a
typical excitation and a corresponding numerically measured acceleration time series.

Results from the modal properties extraction process using SSID for the first three
modes before damage are listed in Table 1. There is excellent agreement between the
modes from the model and those extracted using SSID.

For each scenario, the modal properties retrieved after damage are used to construct
the three optimization functions (OF;) along with a surrogate beam model. In each
PSO analysis, the values of the damage indices «; were allowed to vary between 0.4
and 1.0. The PSO for these functions yielded three sets of damage indices for each
scenario, «;, listed in Table 2. For the first scenario, results showed that only elements
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Figure 5. Responses of the system from the noise-free (a) and noise-only (b) simulations.

7 and 8 passed the rejection criteria, since all their damage indices «; were smaller
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Table 2. Damage indices «; obtained from the particle swarm analysis for the three
optimization functions

element first damage scenario second damage scenario
0F1 OFQ 0F3 final 0F1 OFQ 0F3 final
number
a5 a5 (67 a5 (673 (67 a5 a5

1 1.o0 040 093 1.00 | 1.00 040 1.00 1.00
2 1.o0 070 099 100 | 1.00 1.00 1.00 1.00
3 1.o0 1.00 100 1.00 | 1.00 1.00 0.83 1.00
4 1.00 095 100 1.00 | 1.00 1.00 1.00 1.00
5 1.o0 097 098 1.00 | 1.00 1.00 1.00 1.00
6 1.00 094 052 1.00 | 1.00 1.00 1.00 1.00
7 081 095 068 081 | 1.00 0.78 1.00 1.00
8 070 067 081 0.73 | 1.00 1.00 1.00 1.00
9 0.88 1.00 085 100 | 0.73 0.75 0.69 0.72
10 1.o0 077 084 1.00 | 1.00 1.00 1.00 1.00
11 1.o0 091 092 1.00 | 1.00 0.78 1.00 1.00
12 095 100 096 1.00 | 1.00 094 1.00 1.00
13 090 100 1.00 100 | 068 088 080 0.79
14 1.o0 052 098 1.00 | 1.00 1.00 1.00 1.00
15 1.00 096 098 1.00 | 1.00 1.00 1.00 1.00
16 1.o0 1.00 097 100 | 1.00 1.00 1.00 1.00

than unity for all three optimization functions. The average «; values for elements
7 and 8 were a7y = 0.81 and ag = 0.73, respectively, which correspond to identified
damages of 19% and 27% comparable with the simulated damages of 20% and 30%, for
element 7 and 8, respectively. Similarly, in the second damage scenario, results indicate
presence of damage only at elements 9 and 13. The average damage indices returned a
value of ag = 0.72 and 13 = 0.79 for elements 9 and 13, respectively, yielding and
identified damage intensity of 28% and 21% that compares well with the simulated
damage of 30% and 20%, respectively. Under both damage cases, the algorithm correctly
identified the damage location and its intensity. However, the PSO algorithm includes
random generations (Eq. (28)) that could affect the results. To evaluate the effect of such
randomness, the second damage scenario was analyzed using five different runs. In each
run, the random number generator used in the Matlab environment was changed in type
and seed. The results of this analysis, in terms of the final average indices, are shown
in Figure 6. All of the five runs detected and diagnosed damage under elements 9 and
13 only. The average value of the damage indices between all the runs was equal to
a9 = 0.72 and 13 = 0.80 for elements 9 and 13, respectively, with a standard deviation
of 04, =0.02 and o0,,, = 0.01, respectively. These results indicates that the PSO’s
random generation feature has limited effect on the localization and identification of the
damage intensity.
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Figure 6. Variation of the average damage index a; between different runs for the elements
9 and 13.

Laboratory validation

The laboratory validation is conducted on a full-scale pretensioned girder built with a
partial cast-in-place deck, identified as BTC60. BTC60 was a standard pre-stressed bulb-
tee type C girder designed by the Iowa Department of Transportation with a span of 18.3
m (60 ft), part of a larger set of experiments conducted under NCHRP project 12-94. The
girder had a depth of 1.14 m (45 in) and its partial deck is extended symmetrically about
the mid-span over a total length of 6.8 m (22.3 ft). Flexural cracking on the girder was
expected outside the partial deck region. Figure 7 shows the cross-sectional dimensions
of both the girder (Figure 7(a)) and composite (Figure 7(b)) sections. The girder was built
using a 41.36 MPa (6 ksi) concrete with eight 1.52 mm (0.6 in) low relaxation strands,
applying a total initial prestressing force of 1514 kN (340.3 kips). The deck was cast in
place using a specified concrete strength of 27.60 MPa (4 ksi). The concrete strengths on
the day of testing were 51.17 MPa (7.422 ksi) and 33.15 MPa (4.808 ksi) for the girder
and deck, respectively.

To acquire dynamic response measurements, BTC60 was excited using an RMK-
2200 servo hydraulic shaker, controlled through the LabVIEW environment, applying
a white noise excitation over 80 s with an amplitude of £ 4.45 kN (1 kip) and
standard deviation of 0.89 kN (0.20 kip), which generated response accelerations
ranging between 50-150 mg. The shaker was offset by 1.52 m to the side of the
girder’s center line, which corresponded with the possible installation position closest
to the center line due to the presence of loading equipment. Four 16 mm bolts for
concrete were used to secure the shaker to the girder. Figure 8 and Figure 9 show
the shaker location in the experimental setup. For safety, chains were used to loosely
connect the beam ends to the supports (Figure 8). The response of the structure was
collected using nine accelerometers mounted to the bottom surface of the girder, and
one accelerometer installed on the actuator masses. Two different types of Seismic ICP
uniaxial piezoelectric accelerometers were used for this experiment: five model 393C,
and four model 393B04 from PCB. Data was acquired through LabVIEW environment
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Figure 7. BTC60: schematic of (a) girder; and (b) composite cross sections (all dimensions in
centimeters).

using four NI9234 modules with a sampling rate of 1652 Hz. Figure 8 shows the location
of the shaker and sensors whereas Figure 9 illustrates the experimental setup.

Three different damage cases were considered. Damage was induced in the girder
using a pair of actuators mounted onto the top of the beam (Figure 8). These damage
stage are characterized by the intensity of the load applied to the girder, summarized as
follows:

* No damage: The girder was subjected to a monotonic quasi static load with
maximum intensity of 44.5 kN (10 kips). Upon reaching this value, the beam was
fully unloaded and a dynamic shaking test was performed. This first loading step
ensured that the system was behaving as expected in the undamaged elastic region.
This first test was aimed at acquiring measurements for the undamaged condition
of the structure, representing the stiffness of the undamaged specimen.

* Damage case 1: The next step in the loading protocol of the beam consisted of
reaching 80% of the predicted yield load of the girder-deck system, corresponding
to 355.9 kN (80 kips). Under this load the girder experienced a deflection of
2.54 cm (1 in). During this phase, the formation and growth of 10 to 13 flexural
cracks, in the portion of the girder within the partial deck, was confirmed by visual
inspection. Following the visual confirmation of damage, the beam was unloaded
and subjected to the dynamic shaking test.

* Damage Case 2: The final damage stage represents the condition where the strands
in the extreme location of the girder have reached the first yield limit state, which
occurred at 452.4 kN (101.7 kips). A mid-span deflection of 8.1 cm (3.19 in) was
recorded. Due to the high load both the extension of the previously formed cracks
and the formation of new ones were observed. After unloading the beam, a final
set of dynamic tests was conducted.

No damage case
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Figure 9. Experimental setup of BTC60 with seismic ICP uniaxial piezoelectric
accelerometers model and the hydraulic shaker.

The tested beam was modeled in MATLAB as a two-dimensional structure,
discretizing the beam into 36 elements of variable lengths (shown in Figure 10). The
beam was first divided based on sensor locations, and then a small element of length
0.1778 m (7 in) was defined to account for the offset of the deck with respect to sensors
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Figure 10. Finite element model (FEM) discretization for the BTC60.

Table 3. First three frequencies of the system retrieved with the SSID compared with the
ones from the NUM and the UM

SSID NUM NUM UM UM
mode frequencies frequencies error  frequencies  error
(Hz) (Hz) (%) (Hz) (%)
1 7.06 6.92 1.96 7.04 0.28
2 25.09 2591 -3.30 24.98 0.40
3 56.15 58.59 -4.30 57.17 -1.82

so and sg. The remaining portions of the model were divided into smaller elements, with
length ranging from 0.3302 m (13 in) to 0.8382 m (33 in), to achieve a more accurate
representation of the girder dynamics. Figure 10 schematizes the discretized model, in
which f(r) indicates the force from the shaker. The properties of the MATLAB model are
estimated from the specimen’s construction plans. This preliminary model is termed the
non-updated model (NUM).

The model was then updated using the measured structural responses. Measured
data were first filtered using a Chebyshev Type II low-pass filter to eliminate high
frequency components of noise in the data, and then analyzed using the SSID algorithm
to retrieve the dynamic properties of the specimen. Unlike for the numerical simulation,
the retrieved modal properties differed significantly from the NUM. This is attributed to
the differences between the beam’s as-designed and as-constructed. Thus, the NUM is
updated to obtain the best match between the model and data. This is done by allowing
the modification of the stiffness and mass terms of the elements by a factor ranging
arbitrarily from 0.8 to 1.2. The damage indices, «;, were modified to include the variation
in the stiffness and mass for each element, resulting in new indices denoted by ; and ~;
representing the change in stiffness constants and masses, respectively. The optimization
functions (i.e, Eqgs. (31, 32, 35)) were then solved using the PSO, yielding a new model
termed updated model (UM). Table 3 compares the frequencies obtained from the SSID
algorithm with those obtained from the NUM and the UM. A comparison of the errors
shows that the UM resulted in a significant improvement in the modal parameters,
reducing the maximum error on the frequencies from 4.30% to 1.82%. Figure 11 visually
represent the modification factors for each element stiffness and mass, respectively.

The resulting model was further validated by comparing the static displacement
measurements acquired from string potentiometers during the application of the static
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Figure 12. Comparison of the static deflection shapes.

load of 178 kN (40 kips) applied at the center of the beam. Figure 12 compares the static
displacement obtained from the NUM, the UM, and experimental data. Results show
better agreement between the UM and the experimental data, with a deflection error at
mid-span reducing from 5.1% to 0.2%. However, fitting errors persist on the right-hand-
side with no significant reduction after updating. This residual error may be attributed to
an unmodeled variability in the boundary conditions, for instance from the chain used to
secure the beam, and to the limited and localized excitation produced by the shaker that
was located on the left-hand-side of the beam.
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Table 4. Changes in frequencies due to damage case 1

no damage damage 1 frequency
mode  frequencies  frequencies change
(Hz) (Hz) (%)
1 7.09 7.00 -1.27
2 25.03 24.97 -0.23
3 57.15 53.49 -6.40

Table 5. Changes in frequencies due to damage case 2

damage 1 damage 2 frequency
mode frequencies  frequencies change
(Hz) (Hz) (%)
1 7.00 6.78 -3.14
2 24.97 24.65 -1.28
3 53.49 51.27 -4.15

Damage case 1

The same data processing methodology was applied to damage case 1. The first three
frequencies of the specimen are compared with the no damage case in Table 4. It can be
observed that all the frequencies decreased following the introduction of damage, with
the third frequency being the most sensitive.

Here, the UM is used as the reference model, and is updated to localize and quantify
damage. However, only the element stiffness is modified, as it is assumed that mass
remained constant. To ensure robustness of the procedure, five different runs were
performed using different random number generators for the optimization process. Figure
13(a) shows the average damage indices obtained from this process while Figure 13(b)
plots the standard deviation of the indices. Their values represent the fraction of bending
rigidity (EI) for each element relative to the reference model. Results show that only the
elements under the deck area were damaged and that the identified damage area remains
consistent between different runs by yielding a zero variance at the elements outside
this area. This was consistent with the observations during the experiments, as shown in
Figure 14 where cracks were visually observable. This updated model is termed updated
model - damage 1 (UMD1).

Damage case 2

Similar to damage case 1, Table 5 lists and compares the first three frequencies
retrieved through SSID. In this case, both the first and third frequencies show higher
sensitivity to damage.

For this stage, the UMDI becomes the reference model for the damage detection
process. This implies that the damage indices represent a further reduction in the
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Figure 13. Damage indices for damage case 1: (a) average values and (b) standard
deviations from the five runs

elements’ bending rigidity from the previous analysis. Figure [5(a) illustrates the
retrieved damage indices, while Figure 15(b) plots the total average damage indices that
are relative to the UM. Results shows that some deterioration starts to appear outside of
the deck area, but that the majority of the damage is still concentrated under the deck
area. This is supported by visual observations during the test. Figure 16 is a picture of
the crack pattern under damage case 2. Consistently with the previous case, the standard
deviations (Figure 17) show that the damaged elements are always correctly identified
through the analyzes. Also, it can be observed that the standard deviation of the damaged
elements is lower than for the previous damage case. This can be attributed to the higher
level of damage that is easier to identify. This further updated model is termed updated
model - damage 2 (UMD2).

Lastly, the tangent stiffness is used to further validate the model. The tangent stiffness
from the model is obtained by applying a unitary force at midspan and dividing the value
by the midspan deflection x,,;q. The experimental reloading stiffness was taken as the
tangent of the reloading curve, obtained from the data collected using a linear variable
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Figure 14. Crack pattern on BTC60 specimen under damage 1 condition: (a) side view and
(b) detail of cracked area.

differential transformer (LVDT). The resulting model tangent stiffness is 24,826 kN/m
(142 kips/in), while the experimental tangent stiffness is 25,227 kN/m (144 kip/in), a
difference of 1.19 %, demonstrating a good match between the UMD?2 and experimental
data. This result shows that the quantification of damages from the algorithm was likely
accurate. Note that due to a malfunction of the LVDT, the experimental secant stiffness
could not be computed under damage case 1.

CONCLUSIONS

This paper presented a novel technique for damage detection, localization and
quantification from vibration data. The method consists of 1) retrieving modal properties
through an SSID algorithm; 2) reconstructing a reduced order stiffness matrix through the
SEREP technique; and 3) reconstructing an FEM optimized with a PSO. By identifying
the localization and quantities of altered mass and stiffness values necessary to update
the FEM, the PSO was directly used for damage localization and quantification.
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Figure 16. Crack pattern on BTC60 specimen under damage case 2.

The proposed approach was first verified on the numerical simulation of a simply
supported reinforced concrete beam. Results showed that the algorithm was capable
of detecting, localizing and quantifying damage with good accuracy under different
scenarios. After, the methodology was validated on data collected from a full-scale bridge
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Figure 17. Standard deviation of the damage indices between the five different runs.

girder. The experiment utilized a pretensioned concrete girder excited with a white noise
load using an hydraulic shaker, under the following three different damage scenarios: 1)
undamaged; 2) damage case 1, pre-yielding; and damage case 2, post-yielding. Results
from the undamaged specimen showed that it is possible to reconstruct a model that
accurately reproduced the modal properties of the structure. Results from the damage
cases demonstrated the capability of the algorithm to accurately update the FEM to
identify the location of damages, supported by the visual observation of crack locations
during the test. The first damage case illustrated the ability to detect damage in a confined
area of the girder. On the other hand, the second damage case illustrated the capability of
the algorithm to detect non-adjacent damage along the beam. While the performance of
the algorithm at quantifying damage was difficult to assess, the comparison of reloading
tangent stiffness values for damage case 2 showed a good match, thereby indicating that
the quantification of damage was likely accurate.

It follows that the algorithm demonstrated promise at producing an accurate FEM
of the monitored structure using output-only data. Such model could be used to
conduct numerical analyzes furthering the assessment of the structural condition. Said
information would be beneficial for condition-based maintenance procedures.
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