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Abstract

Real-time health diagnostics/prognostics and predictive maintenance/control of lithium-ion (Li-ion) batteries are essen-
tial to reliable and safe battery operation. This paper presents a physics-based (or mechanistic) approach to Li-ion
battery prognostics, which enables online prediction of remaining useful life (RUL) with consideration of multiple con-
current degradation mechanisms. In the proposed approach, robust online prediction of RUL is achieved by employing
a non-linear least squares method with dynamic bounds that traces the evolution of individual degradation parameters.
The novelty of this approach lies in the ability to incorporate mechanistic degradation analysis results into RUL pre-
diction using nonlinear models. Results from a simulation study with eight Li-ion battery cells demonstrate that the
mechanistic prognostics approach produces more accurate RUL predictions than a traditional capacity-based prognostics
approach in 78 of the 80 cases considered (97.5% of the time). Additionally, it is shown that the use of dynamic bounds
ensures a low level of uncertainty in the prediction throughout the entire life of a cell.
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1. Introduction

Lithium-ion (Li-ion) batteries are widely used in con-
sumer electronics, implantable medical devices, and trans-
portation applications, however, with age the electrical
performance of the cell decreases [1, 2, 3, 4, 5]. The cell’s5

capacity is the total amount of energy stored in the fully
charged cell and is an important indicator of the state of
health of the cell [6, 7, 8]; remaining useful life (RUL)
refers to the available service time or number of charge-
discharge cycles left before the capacity fade reaches an10

unacceptable level [8, 9]. Extensive research has been con-
ducted on RUL assessment of general engineered systems.
In general, three categories of approaches have been de-
veloped to estimate RUL distribution: (i) model-based
approaches [10, 11, 12, 13, 14, 15, 16], (ii) data-driven15

approaches [17, 18, 19, 20, 21, 22, 23], and (iii) hybrid
approaches [24, 25, 26]. These approaches, although not
developed specifically for Li-ion battery prognostics, can
generally be adapted for RUL assessment of Li-ion batter-
ies.20

One of the earliest studies on Li-ion battery prognos-
tics proposed a Bayesian framework with particle filter
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for RUL prediction of Li-ion battery based on impedance
measurements [27]. To eliminate need for impedance mea-
surement equipment, researchers developed various model- 25

based approaches that predict RUL by extrapolating a ca-
pacity fade model [3, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37].
Most of these approaches develop RUL prediction by sim-
ply modeling and extrapolating the capacity fade via the
use of non-linear least squares (NLLS) [28, 31] or particle 30

filter [3, 28, 29, 30, 31, 33, 34, 35, 37], without understand-
ing the underlying degradation mechanisms (see the clas-
sical approach in figure 1). Such an extrapolation does not
consider the degradation from any underlying mechanism
and thus could result in an intolerably large prediction 35

error [38].

This research proposes a novel physics-based (or mech-
anistic) prognostics approach where robust prediction of
RUL is achieved by leveraging quantitative degradation
analysis in a model-based prognostics framework (see fig- 40

ure 1). The proposed approach, termed mechanistic prog-
nostics, captures the trends of degradation from three ma-
jor mechanisms. These degradation parameters include
the loss of active materials (LAMs) of the positive and
negative electrodes, mp and mn, and the (relative) slip- 45

page of the positive electrode, δpn (i.e. loss of lithium in-
ventory (LLI)). Post-mortem analyses of aged Li-ion cells
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Figure 1: Schematic diagrams of the existing and proposed battery prognostics approaches.

have identified these mechanisms as major causes of capac-
ity loss [39, 40, 41]. The frameworks and implementation
details of the classical capacity-based prognostics approach50

and the proposed mechanistic prognostics approach are
graphically presented in figure 2. While the mechanistic
prognostics approach proposed here is specifically formu-
lated for the prognostics of Li-ion batteries, this approach
could also be implemented in any other engineered system55

where the system can be decomposed into its constituent
components and the system health is dependent on the
health of each component [42].

Modeling the trends of degradation from the three mech-
anisms requires the selection of an appropriate method. In60

this work, an NLLS method is selected due to its robust-
ness, simplicity, and computational efficiency [31]. The
use of NLLS for battery prognostics through tracking the
trend of capacity fade has been well studied in the lit-
erature [28, 31]. When a proper mathematical model is65

selected, NLLS is capable of providing an accurate repre-
sentation of the data set. Once an appropriate model has
been selected (in the offline phase) and the model’s coef-
ficients have been determined using the NLLS method (in
the online phase), the fitted model can be used to extrap-70

olate the data set into the future for online prognostics.

In the proposed mechanistic prognostics approach, three
mathematical models are used to capture the evolutions
of the three degradation parameters (i.e. one model for
each degradation parameter). These mathematical mod- 75

els are then used to extrapolate the degradation parameter
estimates over future charge-discharge cycles to the point
where the cell capacity reaches the failure limit. The pa-
rameter estimates at any given cycle are then used as in-
puts for a half-cell model, as shown in figure 3, to provide 80

an estimate of the cell capacity.

As mentioned before, NLLS requires the selection of a
proper mathematical model. With only a limited number
of observations from a testing (online) data set, the model
coefficients solved for by the NLLS algorithm are generally 85

unsatisfactory. Given additional information from training
(offline) data sets, all or some of the coefficients can be con-
strained within predefined ranges of the coefficients solved
for using the additional information. Various restrictions
on the model coefficients are presented in this work, all 90

of which are set through the use of a training data set.
Bounding the coefficients within a certain percentage of
the “best-fit” coefficients obtained using a training set was
found to be most accurate and convenient, within certain
limitations. Models with tighter bounds tend to produce 95
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Figure 2: Flowchart detailing the methods and sequence of steps in the implementations of the classical capacity-based prognostics approach
and the proposed mechanistic

prognostics approach.

predicted RULs closer to those predicted by the training
set while models with less stringent bounds were more ca-
pable of adapting to the true degradation behavior of the
cell, particularly in cases where the true degradation trend
of the cell greatly varies from those of the training cells.100

To compensate for this trade off between the tighter and
losers bounds, this work introduces the concept of dynamic
bounds. These dynamic bounds result in a prognostics ap-
proach that relies heavily on its training set in the early
stage of the cell’s life and slowly loses its reliance as the105

cell’s life progresses.

2. Review

This section provides a review of the analytical half-cell
model, on-board estimation of degradation parameters and
the non-linear least squares method for battery prognos-110

tics.

2.1. Half-cell model

Half-cell curve analysis was first introduced by Bloom
et al. and later popularized by Dahn’s group as a non-
destructive method to analyze the health of a battery115

cell by reproducing the full-cell curve through two half-
cell curves, the positive electrode half-cell curve and the
negative electrode half-cell curve [43, 44]. The half-cell
curve analysis is done by reconstructing the differential
voltage/capacity (dVdQ/dQdV) of the full-cell curve by120

taking the difference between those of the positive and
negative electrodes. The dVdQ curves are used to reveal

the electrodes phase transformation during charge and dis-
charge as peaks, which are easier to visualize. These peaks
serve as the characteristic features that facilitate the curve 125

fitting during the half-cell curve analysis. Three important
degradation parameters of a battery cell, LLI and LAMs
on both electrodes, can be extracted from the analysis.

The mass of active material is used to adjust the width
of the half-cell curve of each electrode. The LLI is ana- 130

lyzed through the relative movement of the two half-cell
curves. Researchers have shown that full-cell curve con-
structed through half-cell curve analysis by adjusting the
three degradation parameters can achieve decent agree-
ment with a measured full-cell curve [43, 44]. An illustra- 135

tion of half-cell curve analysis is shown in figure 4.
In this work, the three degradation parameters are as-

sumed to evolve over time following certain rules that have
been reported in the literature. Specifically, LLI grows
proportionally to the square root of time (i.e. following 140

the t1/2 rule) [45] and the growth of LAM on either elec-
trode follows an exponential function [46]. The resulting
capacity is calculated through a differential voltage anal-
ysis algorithm which used LiCoO2 and graphite half-cell
curve data to calculate the full-cell curve data with cutoff 145

voltage of 3.5 V for end-of-discharge voltage and 4.1 V for
end-of-charge voltage. A flowchart depicting the half-cell
model is shown in figure 3.

2.2. On-board estimation of degradation parameters

Early identification of reliability issues and proac- 150

tive prevention of failures require the capability of bat-
tery management system (BMS). More specifically, BMS
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Figure 3: Flowchart detailing the half-cell model that is used to
generate simulated cell data and produce capacity values for the
proposed mechanistic prognostics approach.

should be capable of on-board estimation of the degrada-
tion parameters (i.e., LLI, and LAMs on both electrodes)
of individual battery cells that quantify the degrees of155

degradation from the mechanisms. Most of the recent
works have been focused on offline estimation of the degra-
dation parameters using the half-cell model [43, 47]. Exist-
ing parameter estimation methods use either least-squares
numerical optimization [44, 48] or stochastic optimization160

[49] to determine optimum values of the degradation pa-
rameters that produce the best agreement between the
measured and estimated full-cell V vs. Q or dV/dQ vs.
Q curves. These methods are well suited for the diagnos-
tics of degradation mechanisms in an offline environment,165

where a precise measurement of the V vs. Q curve (and
thus the dV/dQ vs. Q curve) can be obtained using high-
precision testing equipment. However, none of these offline
methods consider the various noise sources in the on-board
measurements of V and Q. To the authors’ knowledge, the170

only work that attempted to make half-cell analysis appli-
cable to on-board BMS adopted particle filtering to infer
the degradation parameters from the measurement of the
full-cell dV/dQ curve [50]. Nevertheless, this recent work
did not consider noise in the on-board measurements of175

V and Q. The proposed methodology assumes that the
estimation errors of the three degradation parameters all
follow zero-mean Gaussian distributions with the follow-
ing values of standard deviation: 0.25 mg for mp and mn

and 0.05 mAh for δpn. These values are derived from pre-180

liminary investigations conducted by the authors. To en-
sure that the proposed mechanistic prognostics approach
is capable of dealing with higher levels of uncertainty in
parameter estimation, a noise investigation is carried out
in this work.185

Figure 4: Half-cell curve analysis with the key components anno-
tated.

2.3. Non-linear least squares method

Non-linear least squares (NLLS) is a form of least
squares analysis that is used to fit a nonlinear mathe-
matical model with n unknown coefficients to m obser-
vations, such that m > n. Computationally, NLLS are 190

solved through successive iterations of a two-step process.
First, the selected nonlinear mathematical model is lin-
earized around the initial guesses for the model coefficients
using a first-order Taylor series and solved. Secondly, the
error between the initial guess and the solved model is cal- 195

culated. The two steps are repeated till a minimization of
the error is obtained. This iterative process requires good
initial guesses to enable short calculation times. The re-
quirement can easily be met for the work presented here as
the number of unknown coefficients (n) is relatively low, 200

being only 3 or 4 as presented in the following section. Ad-
ditionally, the same degradation parameters from different
battery cells evolve in a similar manner, allowing for static
initial guesses for any given parameter. For the duration
of this work, the NLLS fitting is accomplished using the 205

Symfit Python package [51].

3. Methodology

Investigation of the newly proposed mechanistic prog-
nostics approach was performed using degradation param-
eter estimates synthetically generated for eight Li-ion bat- 210

tery cells. The synthetic data generation involved two
steps. In the first step, the true degradation parameters
for eight cells were generated using eight sets of model pa-
rameter data with each set depicting the evolution of the
LAMs on the positive and negative electrodes and the rel- 215

ative slippage on the positive electrode [46]. The evolution
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Figure 5: Degradation cases for 8 cell models, generated with the highest level of measurement noise, showing the: (a-b) capacity data; (c-d)
mass loss of the positive electrode; (e-f) mass loss of the negative electrode; and (g-h) positive electrode slippage where (a),(c),(e) and (g)
report the results for cells #1-4 and (b),(d),(f) and (h) report the results for cells #5-8.

5



of the LAM on the positive or negative electrode follows
an exponential function in the following:

m(t) = m0 − a · e−b/t (1)

where m(t) is the mass of the positive or negative active220

material as a function of the number of cycles (t) and m0

is the initial active mass (g). The variables a and b are
used as adjustable coefficients to introduce cell-to-cell vari-
ation. The equation used for the relative slippage follows
the square root of time [45, 46] and takes the following225

form:

δpn(t) = δpn,0 − a · t1/2 (2)

where δpn(t) is the relative slippage as a function of the
number of cycles (t), δpn,0 is the initial slippage due to
the formation of an initial solid electrolyte interface layer,230

and a is an adjustable parameter to introduce cell-to-cell
variation. The true capacities of each cell were then calcu-
lated through the use of the half-cell model that takes the
cell’s degradation parameters as inputs. The capacity and
parameter data sets span 250 charge-discharge cycles and235

are presented in figure 5 as data lines of various styles.
In the second step, a noise was introduced into the

degradation parameter data as a normally distributed
Gaussian noise and is intended to simulate the estima-
tion error that would be present during the process of in-240

ferring the parameters from the full-cell V and Q mea-
surements as discussed in section 2.2. To investigate the
effects of noise (or estimation error) on the performance
of the mechanistic prognostics approach, integer multiples
of the previously defined standard deviations were applied245

to the data sets. Figure 5 presents the parameter esti-
mates used for the eight cells, where the noisy parameter
estimates (dots) are distributed about the true parameter
values (lines). To improve readability, figure 5 presents ev-
ery fourth data point for the highest level of noise tested,250

fifty times that defined in section 2.2.
Mathematical models for the capacity and degradation

parameters were chosen that were capable of accurately
reproducing the non-linear shapes of a cell’s capacity and
degradation parameters, while still maintaining simple255

mathematical expressions. For consistency with previously
published work in the field [28, 31], the following math-
ematical model was used for the implementation of the
capacity-based prognostics approach:

M(t) = a · eb·t + c · ed·t (3)260

where M is the model output, t is the number of charge-
discharge cycles and a, b, c and d are the coefficients that
need to be determined via online model fitting. Due to its
versatility, equation 3 was also used to model the evolution
of the relative slippage on the positive electrode. A simi-265

lar equation was developed for modeling the evolutions of
the active masses (and thus LAMs) on the positive and
negative electrodes:

M(t) = a · eb·t + c · (1 − ed·t) (4)

exponential growth

logarithmic growth

linear growth

Figure 6: Linear, exponential and logarithmic control equations for
dynamic NLLS bounds, presented as a unit function.

a, c and d and are the coefficients that need to be deter- 270

mined online and b = 0 is considered a constant. This
formulation of the equation was chosen for its consistency
with equation 3 in terms of the number of parameters, and
their locations and relative effects on the final fitting re-
sults. Online degradation tracking was achieved through 275

determining the model’s best-fit coefficients based on the
current and past observations. The fitted models were
then used to infer the degradation parameters past the cur-
rent observation point (or cycle). In this work, four model
fitting strategies are used, and these include: i) fitting 1 280

coefficient (c), ii) fitting 2 coefficients (c and d), iii) fitting
all coefficients unbounded (with b = 0 for equation 4), and
iv) fitting all coefficients with various levels of percentage
bounds. These model fitting strategies were selected for
continuity with previously published work [28, 31]. In all 285

these cases, except fitting all coefficients, the remaining
coefficients were set using training data. For each testing
cell, its training set was formed as the data from the other
seven cells. The cells, numbered #1 through 8 are ordered
such that cell #1 is the cell with the least disagreement 290

between itself and its training set, while cell #8 is the
cell with the highest level of disagreement between itself
and its training set. Therefore, the cells considered in this
work consist of cells that act similar to the average of their
respective training sets (e.g. cells #1, 2, and 3) and cells 295

that can be considered as outliers (e.g. cells #6, 7 and 8).

For the bounded data sets, parameter bounds are set
as a percentage of the coefficient’s (a, b, c and d) value, as
determined by the cell’s training set. A tighter bound will
force the NLLS algorithm to maintain a prediction closer 300

to the prediction generated by the training set, while a
looser bound will allow the model to rely more on ob-
servation data as it becomes available. RUL predictions
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Figure 7: Capacity life prediction for cell #4 using (a) capacity-based prognostics inspected at 25; (b) 50; (c) 100 charge-discharge cycles; (d)
mechanistic prognostics inspected at 25; (e) 50; and (f) 100 charge-discharge cycles.

made in the early stages of the cell’s life cycle benefit from
the tighter bounds as they have a higher reliance on the305

training data set. However, as more observations become
available the looser bounds allow the mechanistic prog-
nostics approach to learn from the online observations. To
leverage the benefits of both the tighter (early-stage bene-
fits) and loser (late-stage benefits) bounds, the concept of310

dynamic bounds that shift throughout the life cycle of a
battery cell is introduced, termed dynamic bounds. Here,
the concept of dynamic bounds is investigated using three
equations to control the dynamic bounds, as presented in
figure 6. These include linear, exponential and logarith-315

mic growth functions that were selected to demonstrate
the effects of dynamic bounds under various situations.
Functions used in developing the dynamic bounds, as pre-
sented in figure 6, are unity functions that start with 0
at charge-discharge cycle 0 and scale to 1 at cycle 250,320

the last measurement point in the capacity and parame-
ter data sets. This allows the bounds to be scaled to fit
various final bound values following the different progres-
sion shapes presented in figure 6. For example, a dynamic
bound with a final value set to 500% would start with 0 at 325

cycle 0 (relying completely on the training set to select the
model parameters) and finish as 500% at cycle 250. At 250
cycles, the model fitting for a testing cell relies completely
on the cell’s observations as a 500% difference from the
training sets coefficients was found to be unobtainable at 330

250 cycles for all the data sets tested here. As expected,
the charge-discharge cycle where the bounds cease to af-
fect the coefficient selection is dependent on a cell’s capac-
ity level, the level of agreement between that cell and its
training set and the level of the bounds set. The effect of 335

changing the final bound values on the prognostics results
was investigated for 70 evenly spaced final bound values
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between 0 and 500%. Each final bound value was repeated
three times, for all eight cells, at the noise levels discussed
in section 2.2 to obtain a clearer representation of a typ-340

ical response. In total, 10,080 individual cell cases were
investigated for the six dynamic bounds cases considered.

Comparison of the capacity-based and mechanistic prog-
nostics approaches is achieved by calculating the mean
RUL prediction error for each of the eight cells over five345

runs. The aforementioned model fitting strategies, 1 co-
efficient, 2 coefficients, all coefficients unbounded, and all
coefficients bounded at 5, 10, 25, 50 and 75%, are inves-
tigated. Additionally, dynamic bounds for the linear, ex-
ponential and logarithmic control equations with a final350

bound value of 500% are also investigated.

A noise study was performed to investigate how the level
of noise present in the online measurements (or estimates)
of the capacity and degradation parameters manifests it-
self in the RUL predictions for both the capacity-based355

and mechanistic prognostics approaches. Noise was added
as fifty integer multiples to the levels of noise assumed
to be present in the online measurement of cell parame-
ters, as discussed in section 2.2. These tests were again
repeated 3 times to obtain a general representation of how360

noise affects prognostics and to limit the effect of any sin-
gle sample points of high noise. The data is presented as
the average error over all eight cells tested, for 5 model
fitting strategists for both prognostics methods. In total,
12,000 noise cases for individual cell cases were investi-365

gated in this noise study. Lastly, the increase in online
computational resources required by the proposed mech-
anistic approach over that by the classical capacity-based
approach is investigated.

4. Results 370

This section presents the results for the proposed mech-
anistic prognostics approach, including the proposed dy-
namic bounds used in selecting the mathematical model’s
coefficients.

4.1. Remaining useful life predictions 375

Computation of the RUL can be made at any point,
termed inspection point, in the life cycle of a battery cell.
Figure 7 presents the capacity predictions for cell #4 (test-
ing cell) using the capacity-based (figure 7(a)-(c)) and the
mechanistic prognostics (figure 7(d)-(f)) approaches for 380

various coefficient fitting strategies. Cell #4 was selected
because it provides a clear illustration of several key prog-
nostics features. First, it can be observed that the testing
cell and its training set, generated from the other 7 cells,
do not strongly agree. More precisely, the training set es- 385

timates that the cell should reach its capacity threshold
in 176 cycles versus the 152 cycles achieved by cell #4.
Model fitting strategies that rely heavily on the training
set (e.g. 1 coefficient and bounded 5%) produce capac-
ity estimates for the testing cell that stay close to those 390

of the training set. In contrast, fitting strategies that im-
pose looser bounds on the parameters (e.g. 2 coefficients,
all coefficients unbounded and all coefficients bounded at
50%) can produce capacity estimates that vary greatly
from those by the training set, allowing them to take ad- 395

vantage of new observation data as it becomes available.
However, this feature means that the predictions made
by these strategies can diverge from the data when a low
number of observations are available as observable in fig-
ure 7(d) for the unbounded set. As presented in figure 7, 400

solving equations 3 and 4 with unbounded coefficients re-
sults in solutions that can overfit the available data when
a low number of testing data points are available. While
it is not recommended to use unbounded coefficients for
generating RUL predictions, they are included here for ref- 405

erence and comparison with the other bounded methods.
With an increasing number of observations, the loosely
bounded model fitting strategies are capable of accurately
predicting the cell’s future capacities. This attribute can
be seen for the bounded 50% predictions in figures 7(d)-(f) 410

where an increase in the number of available observations
results in the bounded 50% predictions converging onto
the actual capacity observations from the cell. Provided
that an appropriate coefficients estimation strategy is se-
lected, the mechanistic approach is shown to provide bet- 415

ter prediction accuracy than the capacity-based approach.
In total, ignoring the unbounded coefficients fitting strat-
egy, the mechanistic approach outperformed the capacity-
based approach in 78 of the 80 cases considered, or 97.5%
of the time. This increase in RUL predictions is mainly 420

due to the inability of the capacity-based approach to ac-
count for the sharp change in capacity in the first few
charge-discharge cycles. This disagreement in the first few
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Table 1: Tabulated RUL RMSE for each cell using the capacity-based and mechanistic prognostics methods.

capacity-based
cell #1 cell #2 cell #3 cell #4 cell #5 cell #6 cell #7 cell #8

1 parameter 0.008 0.035 0.061 0.055 0.045 0.122 0.193 0.224
2 parameters 0.072 0.130 0.113 0.045 0.103 0.149 0.209 0.179
unbounded 0.281 0.288 0.183 0.294 0.234 0.275 0.266 0.291

bounded 5% 0.023 0.041 0.053 0.049 0.034 0.070 0.131 0.159
bounded 10% 0.035 0.061 0.043 0.059 0.054 0.052 0.105 0.147
bounded 25% 0.072 0.119 0.079 0.092 0.106 0.058 0.059 0.165
bounded 50% 0.142 0.178 0.106 0.153 0.139 0.136 0.157 0.198
bounded 75% 0.188 0.217 0.132 0.195 0.169 0.189 0.209 0.225

linear dynamic 0.219 0.218 0.108 0.344 0.186 0.195 0.202 0.257
exponential dynamic 0.058 0.074 0.052 0.135 0.075 0.066 0.099 0.143
logarithmic dynamic 0.207 0.205 0.107 0.269 0.176 0.198 0.201 0.227

mechanistic prognostics
cell #1 cell #2 cell #3 cell #4 cell #5 cell #6 cell #7 cell #8

1 parameter 0.005 0.009 0.016 0.020 0.007 0.029 0.038 0.042
2 parameters 0.056 0.062 0.087 0.075 0.102 0.080 0.072 0.122
unbounded 0.282 0.307 0.258 0.322 0.297 0.281 0.294 0.267

bounded 5% 0.011 0.013 0.019 0.049 0.021 0.027 0.042 0.043
bounded 10% 0.020 0.018 0.028 0.056 0.027 0.023 0.041 0.041
bounded 25% 0.040 0.037 0.048 0.089 0.053 0.043 0.049 0.061
bounded 50% 0.065 0.063 0.092 0.112 0.097 0.078 0.083 0.092
bounded 75% 0.097 0.090 0.118 0.159 0.123 0.107 0.097 0.134

linear dynamic 0.091 0.085 0.083 0.190 0.124 0.116 0.125 0.250
exponential dynamic 0.037 0.026 0.043 0.057 0.036 0.050 0.068 0.118
logarithmic dynamic 0.120 0.105 0.129 0.127 0.107 0.126 0.136 0.147

cycles is represented in the RUL plots, provided later in
this paper, as an overestimation of the cell’s RUL.425

The effect of changing inspection points is further ex-
panded upon in figure 8 where the mechanistic capacity
predictions, made at 15, 25, 50 and 100 charge-discharge
cycles, are shown for cell #8 with the coefficients bounded
at 50%. Here, cell #8 was selected because it exhibits the430

largest studied disagreement between its capacities and
those estimated by its training set. In the early stages, as
expected, the predictions vary widely due to the fact that
the coefficients have only loose constraints provided by the
50% bounds. However, as the number of observations in-435

creases, the looser bounds result in the NLLS being able
to track and predict the cell’s true capacities. The capa-
bility of the mechanistic prognostics approach with loose
bounds to track the time-varying fade behavior of a cell
that strongly deviates from its training set is a great ad-440

vance over the use of tight-fitting bounds. Furthermore,
it should be noted that the unbounded coefficient fitting
solution provides highly divergent predictions for both the
capacity-based and mechanistic prognostics approaches.
Due to its inability to provide useful RUL predictions, it445

is mostly neglected for the remainder of this work.

The RUL plots for each cell are provided in figure 9,
where figure 9(a) and (b) presents the RULs for each cell

as predicted by the capacity-based and mechanistic prog-
nostics approaches, respectively. Results are presented as 450

RUL over life consumed, where a threshold of 80% of the
initial capacity is used as the failure limit to determine
the cell’s end of life and RUL. Therefore, the cell’s ca-
pacity data is presented as a straight line between max-
imum RUL and the maximum life consumed. For all 455

the cases presented, the predicted RULs are zero for the
first four charge-discharge cycles due to the NLLS algo-
rithm needing at least 5 observation points for model fit-
ting, as discussed in section 2.3. This discontinuity is
ignored in the remaining discussion. The RUL plots for 460

both the capacity-based and mechanistic prognostics ap-
proaches demonstrate that the coefficients fitting strate-
gies that rely on tighter bounds (1 coefficient and 5%
bounded) tend to provide RUL estimations closer to the
training sets, as would be expected. In contrast, fitting 465

strategies that are loosely bound to the training sets (2
coefficients and 50% bounded) demonstrate a high level
of noise until a sufficient number of observations become
available. Thereafter, these fitting strategies demonstrate
that they are capable of accurately predicting the RULs of 470

cells that vary widely from their respective training sets,
and this feature is seen in the prediction results on cells
#6, 7 and 8. Overall, the capacity-based prognostics ap-
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Table 2: Tabulated RUL improvements for each cell using the mechanistic prognostics method in comparison to the capacity-based prognostics
method.

improvement (mechanistic over capacity-based)
cell #1 cell #2 cell #3 cell #4 cell #5 cell #6 cell #7 cell #8

1 parameter 0.003 0.026 0.045 0.035 0.038 0.093 0.155 0.182
2 parameters 0.016 0.068 0.026 -0.030 0.001 0.069 0.137 0.057
unbounded -0.001 -0.019 -0.075 -0.028 -0.063 -0.006 -0.028 0.024

bounded 5% 0.012 0.028 0.034 0.000 0.013 0.043 0.089 0.116
bounded 10% 0.015 0.043 0.015 0.003 0.027 0.029 0.064 0.106
bounded 25% 0.032 0.082 0.031 0.003 0.053 0.015 0.010 0.104
bounded 50% 0.077 0.115 0.014 0.041 0.042 0.058 0.074 0.106
bounded 75% 0.091 0.127 0.014 0.036 0.046 0.082 0.112 0.091

linear dynamic 0.128 0.133 0.025 0.154 0.062 0.079 0.077 0.007
exponential dynamic 0.021 0.048 0.009 0.078 0.039 0.016 0.031 0.025
logarithmic dynamic 0.087 0.100 -0.022 0.142 0.069 0.072 0.065 0.080

proach possesses a high level of overestimation in the early
stages of a cell’s life cycle. This is caused by the inability of475

the capacity-based prognostics approach to reproduce the
highly nonlinear portion of the cells capacity fade in its
early stages, as shown in figure 7. After a sufficient num-
ber of observations are obtained the capacity-based RUL
predictions converge onto the real data set after a suffi-480

cient number of observations come online. The number of
observations needed is a function of the level of disagree-
ment between the testing data set and its training set.
The higher the level of disagreement, the more observa-
tions that are needed before the predicted RUL converges485

onto the true RUL. The RUL predicted by the mechanis-
tic prognostics approach is characterized by having a high
level of chaotic noise in the early stages of life and con-
verging onto the cells’ true RULs quicker than that by the
capacity-based approach. The capability of the RUL es-490

timated using the mechanistic approach to converge onto
the cells’ true RULs quicker than the capacity-based prog-
nostics approach, for cells that diverge greatly from their
training sets, is a marked improvement over the capacity-
based prognostics approach. Again, cells #6, 7 and 8 show495

the difference between the capacity-based (figure 9(a)) and
mechanistic (figure 9(b)) approaches in the prediction of
a cell’s RUL for the case where the cell’s true capacities
greatly differ from those of its training set.

A further exploration of the RUL predictions is pre-500

sented in Table 1. It lists the error measured as the root
mean square error (RMSE) between each cell’s predicted
RUL and its true RUL for each charge cycle excluding
the first 25 charge-discharge cycles. The first 25 charge-
discharge cycles were ignored because these exhibited a505

high level of noise in both cases. Table 1 lists results for
all the model fitting strategies investigated, including the
dynamic bounds that are discussed later in this section.
Results were obtained by running each cell five times, with
the noise levels defined in section 2.2, and taking the av-510

erage of all the runs. This was done to obtain an accu-
rate representation of the prognostics ability of each fit-

Table 3: Computational time and memory usage analysis for both
the classical capacity-based and the newly proposed mechanistic ap-
proach.

time (s) memory (MB)
classical mechanistic classical mechanistic

cell #1 0.37 6.28 4.40 4.62
cell #2 0.47 6.90 4.31 4.69
cell #3 0.47 6.79 4.39 4.96
cell #4 0.40 6.99 3.99 5.01
cell #5 0.45 7.13 3.70 5.01
cell #6 1.13 7.88 3.91 4.67
cell #7 0.47 7.37 4.26 4.63
cell #8 0.43 6.51 4.70 4.90

ting strategy. The level of improvement for the mechanis-
tic prognostics approach over that of the capacity-based
prognostics approach is listed in Table 2. These values 515

were calculated by subtracting the mechanistic error re-
sults from the capacity-based results for each cell and fit-
ting strategy investigated. Therefore, a positive number
is associated with an improvement in RUL prediction ac-
curacy while a negative number is associated with a de- 520

crease in the RUL prediction accuracy for that particular
cell and fitting strategy. For clarity, the negative numbers
are all highlighted in Table 2. Ignoring the unbounded
coefficient fitting strategy, that already possessed a high
level of prediction error, the mechanistic approach demon- 525

strated a improvement over the capacity-based approach
97.5% of the time. In only two cases did the capacity-
based prognostics approach outperform the mechanistic
prognostics approach, however, these improvements were
small and only achieved on cell cases that had a relatively 530

strong agreement between its real capacities and those of
its training set.
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Figure 10: Numerical investigations in terms of: (a) RUL prediction errors for the three dynamic bound equations, for capacity-based and
mechanistic prognostics inspected for a final bound value ranging from 1-500%; (b) noise robustness for the capacity-based approach; and (c)
noise robustness for the mechanistic prognostics approach.

4.2. Dynamic bounds

Here, the concept of dynamic bounds is inspected. First
a series of tests were performed to validate the performance535

of the three sets of previously proposed dynamic bounds,
as shown in figure 6, at various final bound levels. Fig-
ure 10(a) shows the error results, again quantified as the
RMSE for the charge-discharge cycles excluding the first
25 cycles. For both the capacity-based and mechanistic540

prognostics approaches, the exponential control equation
for increasing the dynamic bounds demonstrated the most
usable prognostics results. Here, usability is defined in
terms of a RUL prediction that can be accurately used
by a BMS to properly manage loads and/or schedule cell545

replacement. The high usability of the exponential con-
trol equation for the dynamic bounds is to be expected
as it forces the model to rely heavily on the training set
in the early stages and then quickly, in the later stages,

switches to allow the RUL to be predicted using the on- 550

line data. For low levels of the final dynamic bound value,
the linear and logarithmic control equations were found to
provide a low level of error. This low level of noise was
mainly due to their capability to minimize the error in
the early stages of a cell’s life cycle rather than minimiz- 555

ing error in the later portions of the cells life, as desired.
Also, the linear and logarithmic control equations experi-
ence a relatively small range where these equations are at
their minimum error values when compared to the expo-
nential control equation. Therefore, it can be stated that 560

the exponential control equation is better suited to pro-
viding reliable and repeatable prognostic results due to its
capability to improve predictions over the cells entire life
cycle and the simplicity in choosing a final bounded value.

Figure 11 presents the RUL predictions by the capacity- 565

based and mechanistic prognostics approaches. While in
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Figure 11: RUL results using a final dynamic bound value of 500% for the: (a) capacity-based prognostics approach; and (b) mechanistic
prognostics approach.
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certain conditions the RULs predicted with the dynamic
bounds controlled with the linear or logarithmic equation
converged onto the true RULs sooner, these predictions
always possessed a higher level of noise than the predic-570

tions obtained with the dynamic bounds using the expo-
nential growth equation. This noise, while not detrimental
to prognostics in the later stages of a cell’s life, adds a level
of uncertainty that may be unacceptable in cases where
accurate RUL prediction is needed by BMSs to properly575

manage loads and/or schedule replacement. In compari-
son, the dynamic bounds controlled with the exponential
growth equation demonstrate a low level of noise in the
early stages of the prognostics, therefore, resulting in a
nice clean RUL prediction as presented in figure 11. Of580

particular interests are the RUL predictions of the dy-
namic bounds controlled by the exponential growth equa-
tion for the battery cells that strongly disagree with their
training sets (cells #6, 7 and 8). Here, RUL calculated
using the dynamic bounds method with the exponential585

growth equation starts out by following the training sets,
then as more online observations become available the pre-
dicted RULs start to converge onto the cell’s true RULs.
This feature is observed in figure 11(b) for cell #6 and 7
where the dynamic bounds method with the exponential590

growth equation provides the RUL predictions with the
least amount of noise and is capable of accurately predict-
ing the cells’ end-of-life conditions. Furthermore, as the
training set of a cell starts to diverge more from the cell’s
real condition (e.g. cell #8), the RUL prediction made595

with the exponential growth equation starts to require a
higher level of online observations to accurately predict the
cell’s RUL. It should be noted that for cell #8, the RULs
predicted by the linear and logarithmic control equations
converge onto the true RULs quicker than those by the600

exponential. However, their high level of uncertainty in
the early stages makes their predictions less reliable from
a load management or cell replacement point of view. The
special case of cells that vary greatly from their training
sets and the optimum methods for their prognostics is be-605

yond the scope of this introductory study.

4.3. Robustness to noise

To evaluate the robustness of the prognostics approaches
presented here with respect to noise, an estimated noise
signature for the on-board estimation of the degradation610

parameters is assumed, amplified, and added to the degra-
dation parameter estimates as scalar multiples of the origi-
nally estimated noise. These results are presented in figure
10(b-c) for a few selected model fitting strategies with fig-
ure 10(b) and (c) showing the results of the capacity-based615

and mechanistic approaches, respectively. Again, the er-
ror results are calculated as the RMSE for the charge-
discharge cycles after ignoring the first 25 cycles. While
some model fitting strategies demonstrate the majority of
their errors in the early stages of development, this whole620

cycle error calculation approach allows for an accurate rep-
resentation and comparison of each fitting strategy over

the entire data set. As demonstrated in figure 10(b-c), the
addition of higher levels of noise to the on-board parame-
ter estimation is not highly detrimental to the mechanistic 625

approach to battery prognostics. Moreover, when compar-
ing the mechanistic approach with the capacity-based ap-
proach, the mechanistic approach tends to provide a more
stable error, and therefore, a more stable prognostics re-
sponse. This is demonstrated by the more linear trend of 630

the error for any given fitting strategy. The dynamically
bounded mechanistic approach controlled by the exponen-
tial equation was found to possess an excellent ability to
function in the various noise levels investigated.

4.4. Computational efficiency 635

The proposed mechanistic prognostics approach is ex-
pected to require more data and computational resources
than that of the classical capacity-based prognostics ap-
proach, as annotated in figure 2. To quantify the increase
in computational resources, this study was analyzed the 640

computational time and memory required to perform on-
line prognostics for each of the eight cells. The analysis re-
sults are presented in Table 3. These results were obtained
for both prognostic approaches at 100 charge-discharge cy-
cles using the NLLS algorithm with 50% static bounds. 645

The prognostic results for these cases are presented in
figures 7(c) and (f). On average, the mechanistic prog-
nostics approach required 13.3 times more computational
time (running on a single thread of a 3.4 GHz Intel 4770)
and 1.14 times more peak memory than the capacity-based 650

prognostics approach that uses the same NLLS algorithm.
No large variation in computational requirements was de-
tected when different bounds were applied to the NLLS
algorithm. Therefore, for brevity, these results are omit-
ted. 655

5. Conclusion

This paper proposed a novel mechanistic approach to
battery prognostics that achieves remaining useful life
(RUL) prediction of a battery cell through tracking its
degradation parameters and estimating the cell’s capac- 660

ity through the use of a half-cell model. In this mecha-
nistic (pyhsics-based) approach, each degradation param-
eter is fitted to a mathematical model through the use
of a non-linear least squares (NLLS) solver. In addition
to the newly proposed mechanistic approach, this work 665

also expands upon the use of NLLS for battery prognos-
tics through the introduction of dynamic bounds. This is
achieved through limiting the model coefficients solved for
by NLLS to within a predefined percentage of the coeffi-
cient used in fitting the training data set, the predefined 670

percentage is then allowed to increase as the cell progresses
through its life cycle. This increase is controlled by a pre-
defined function, here, an exponential function was shown
to provide the best results in terms of usable and stable
RUL predictions. 675
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The mechanistic approach was demonstrated, through
simulated data, to provide a marked improvement over
a traditional capacity-based prognostics approach. Simu-
lations demonstrated an improvement over the capacity-
based approach 97.5% of the time when the same parame-680

ter bounds were considered for both cases. The mechanis-
tic approach does require that three parameters be tracked
and a surrogate model of the cell be solved and there-
fore requires 13.3 times more computational time and 1.14
times more memory than that required by capacity-based685

prognostics approach. Furthermore, when used in combi-
nation with the dynamic bounds for the NLLS solver, the
mechanistic prognostics approach was demonstrated to be
a reliable prognostics tool with a low level of uncertainty
throughout the entire life of a cell.690

he battery prognostics approach introduced here can
be leveraged to equip existing battery management sys-
tems (BMSs) with the capability to explicitly consider the
coupling effects of the major degradation mechanisms on
battery degradation and RUL prediction. Future avenues695

for research include the the use of other model-based ap-
proaches already used for the capacity-based prognostics
of battery cells including Kalman filters, support vector
machines, and particle filters. Additionally, the analytical
half-cell model used is this work could be replaced with a700

more advanced model (e.g. a reduced-order electrochem-
ical model). Lastly, a long-term experimental validation
of the proposed prognostics approach is currently being
performed in the authors’ group by running long-term ag-
ing tests on commercial Li-ion cells with a high-precision705

charger. These tests consider multiple different combina-
tions of temperature and discharge rate. We plan to ana-
lyze the data from the experimental validation and report
out the validation results in our future work.
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