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Abstract. Various nondestructive evaluation techniques are currently used to
automatically detect and monitor cracks in concrete infrastructure. However,
these methods often lack the scalability and cost-effectiveness over large
geometries. A solution is the use of self-sensing carbon-doped cementitious
materials. These self-sensing materials are capable of providing a measurable
change in electrical output that can be related to their damage state. Previous
work by the authors showed that a resistor mesh model could be used to
track damage in structural components fabricated from electrically conductive
concrete, where damage was located through the identification of high resistance
value resistors in a resistor mesh model. In this work, an automated damage
detection strategy that works through placing high value resistors into the
previously developed resistor mesh model using a sequential Monte Carlo method
is introduced. Here, high value resistors are used to mimic the internal condition
of damaged cementitious specimens. The proposed automated damage detection
method is experimentally validated using a 500 x 500 x 50 mm reinforced
cement paste plate doped with multi-walled carbon nanotubes exposed to 100
identical impact tests. Results demonstrate that the proposed Monte Carlo
method is capable of detecting and localizing the most prominent damage in
a structure, demonstrating that automated damage detection in smart-concrete
structures is a promising strategy for real-time structural health monitoring of
civil infrastructure.
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1. Introduction

Concrete is a widely used construction material
for building civil infrastructure including highways,
bridges, tunnels, and dams. The incorporation of ap-
propriate monitoring capabilities into concrete struc-
tures would allow for real-time condition assessment,
therefore reducing their overall maintenance expendi-
tures while increasing safety. A key component to
developing cost-effective condition-based maintenance
programs for civil infrastructures is the development
and application of efficient instrumentation and moni-
toring techniques. In particular, the automated detec-
tion of cracks in concrete can significantly contribute
to the real-time monitoring of concrete infrastructure.
While cracking is, to some extent, inherent to concrete
structures, it can cause durability problems by expos-
ing reinforcement bars to harsh environment and can
be indicator of a loss in structural integrity. It fol-
lows that crack locations and conditions need to be
accurately determined to yield the relevant structural
assessments.

Several non-destructive evaluation (NDE) and
testing methods exist for crack detection in concrete
structures. Some of the most popular include
ultrasonic methods [1, 2], x-ray tomography [3], ground
penetrating radar [4], automated visual inspection [5],
and acoustic emission-based [3, 6] testing methods.
These methods, while well established, tend to require
a significant amount of effort for setup and testing,
making their use in automated long-term health
monitoring deployments more difficult.

Another approach that has seen a high level of
interest for monitoring of concrete structures, and
other large infrastructures, is the use of dense sensor
networks. These networks, often termed sensing skins,
are thin electronic sheets that mimic the ability of
biological skin to detect and localize damage over a
structure’s global area. Applied onto the surface of
the structure, these sensing skins have demonstrated
damage detection and localization capabilities, in
particular for concrete substrates. Examples include
a sensing sheet, under development by Tung et al.
[7], consisting of multiple full-bridge resistive strain
gauges adhered to a polyimide substrate that is capable
of detecting and localizing fatigue cracks in concrete
test specimens. Hallaji et al. [8] developed and
deployed a thin layer of conductive copper paint
applied to the surface of a concrete beam and
demonstrated that damage in the concrete substrate
results in local increases in the skin’s electrical
resistivity.  These changes in electrical resistivity
were mapped using electrical impedance tomography
(EIT). Hou et al. experimentally demonstrated the
use of EIT for crack detection in a fiber reinforced
cementitious composite under three-point bending [9].
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While EIT has been shown to be capable of damage
detection and localization in 2-D applications under
various configurations, including a carbon nanotube
nanocomposite sensing skin [10], its application is
complex because repeated measurements are required
along with various applied currents to solve the
tomography mapping inverse problem. Additionally,
for cases with complex boundary conditions, the
inverse mapping problem may be unsolvable.

Monitoring a structure’s internal condition is also
important as damage is not always detectable on a
structure’s surface. An example is grout failure, which
can be caused by high levels of shear under seismic
loading [11], where monitoring of internal conditions
could be used in the engineering of retrofit solutions
[12]. Other examples include the monitoring of thick
slabs of reinforced concrete, such as load bearing
walls or containment structures, where internal damage
may not be evident on the surface [4]. A possible
solution providing internal monitoring capabilities is
the utilization of self-sensing concrete at key locations
in the structure of interest [13]. These self-sensing
cement-based materials are often termed smart-
concrete or smart-cement-paste (depending on the
presence of aggregates). Smart-concrete offers many
benefits over embedded or external sensors, including
similar mechanical properties to those of the structure
being monitored, similar aesthetics, and the potential
to provide monitoring over a structure’s lifecycle as
the sensors have essentially the same durability as
the structure being monitored.  Various methods
for fabricating smart-concretes have been proposed.
The doping of carbon-based fillers into traditional
admixtures of cement-based materials has shown to
be particularly promising [14]. Various carbon-
based materials have been mixed with cementitious
materials, including carbon fibers [6, 15], nano-carbon
black [16] and, more recently, multi-walled carbon
nanotubes (MWCNT) [17, 18]. MWCNTs offer
great potential due to their excellent electrical and
mechanical properties [19, 20, 21]. They have been
employed in the fabrication of many strain sensing
composite materials.

Research on self-sensing cement mixtures has
demonstrated their strain-sensing capability for dy-
namic [18, 22] and transient [23, 24] loading cases. The
static strain sensing capacities of smart-cement mix-
tures have shown to be more difficult due to their in-
trinsic signal drift in the time domain, theorized to
be caused by material polarization [25, 26]. In ad-
dition to smart-cement-paste’s strain-sensing capabil-
ity, damage detection and localization has been per-
formed for various forms of conductive cement compos-
ites in the form of data-driven damage detection, where
damage is inferred from a change in electrical signal
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[6, 27, 28, 29]. However, the data-driven approaches
for smart-cement mixtures lack the ability to localize
damage within the structure. Localization of damage
can be achieved through the incorporation of more elec-
trodes and the assumption of a simple resistor-based
model, as described for example in reference [29]. The
introduction of more complex 2-D resistor mesh models
was recently proposed by the authors, whereby a dam-
age could be localized in a smart-cement-paste struc-
tural component through the addition of damage de-
tecting resistors to represent the cracks (discontinuities
in current flow) [30]. While the resistor mesh model
presented in [30] showed promise for detecting and lo-
calizing damage using a simple and computationally
efficient method, it required that damaged resistors be
manually added to the resistor mesh model in order to
simulate damage. The automated placement of dam-
aged resistors in the model was not addressed, a task
that is needed to expand the usefulness of the propose
resistor mesh model.

This work presents a process for the automated
placement of resistors using a sequential Monte Carlo
method using the recently proposed 2-D resistor mesh
model in an effort to improve the resistor mesh model’s
fit. This is done through defining a multi-objective
optimization problem that secks to reduce both the
average and extreme error between model’s predictions
and test results, using a multi-objective formulation
borrowed from the fields of robust structural design [31]
and optimal sensor placement [32]. Tt is hypothesized
that damage can be located using the proposed resistor
mesh model through increasing the fit between the
model and the experimental data. Validation of the
proposed method is conducted on a 500 x 500 x 50 mm?
cement-paste plate doped with MWCNT. Damage is
introduced in the plate using 100 repeated impacts
from a 3 kg hammer resulting in the formation of
multiple cracks. Results show that the application of
the sequential Monte Carlo method, when used to place
damaged resistors in a resistor mesh model, is capable
of tracking the most prominent damage in the plate.

2. Background

This section provides a brief review of the smart-
cement-paste used in this research, including the
measurement approach and the resistor mesh model
designed for the smart-cement-paste application, as
well as the adopted bi-optimization objective function.

2.1. Smart-cement-paste fabrication

The fabrication process and sensing principles of the
smart-cement-paste used in this work were presented
by D’Alessandro et al. [17] and reviewed here for
brevity. A cement matrix is doped with MWCNT
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Figure 1. Key components and dimensions of the 500 x 500 x 50
mm? smart-cement-paste specimen used in this study.

to create a self-sensing cementitious material. This
doping provides the cement-based composite with in-
creased conductivity (reduced resistivity), the capabil-
ity to detect damage in the form of changing resistance,
and piezoresistive strain sensing properties. In the pre-
sented experiments, a single specimen was developed
by adding 1% MWCNT (Arkema C100), with respect
to the mass of cement, to the cementitious material.
First the nanotubes were added to water along with a
surfactant (a solution of a high molecular weight block
copolymer with pigment affinic groups) and dispersed
through sonication. Then, the nano-modified water
suspension was mechanically mixed with cement thus
obtaining the paste. For more details on the prepara-
tion procedure and the achieved quality of nanotube
dispersion, the interested reader is referred to previous
work by the authors [17]. After mixing with cement,
the smart-cement-paste was cast into a 500 x 500 x 50
mm? mold with two steel reinforcement meshes. The
meshes were made of 1.2 mm diameter steel wire ar-
ranged in a 60 x 60 mm? grid and stacked such that
their wires and holes aligned. A total of 56 1.2 mm
contacts were then inserted 40 mm into the uncured
smart-cement-paste. Of these, only 36 were utilized
for experimental testing. The effect of embedded con-
tacts on the structural integrity of a structure is left
to future work. For instance, one needs to investi-
gate the appropriate contact depth that provides suffi-
cient material bonding without reducing the integrity
of the structure. These embedded contacts were placed
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evenly on an 80 x 80 mm? grid positioned about the
center of the plate, while the unutilized contacts were
placed along the perimeter between the utilized con-
tacts. A schematic of the smart-cement-paste speci-
men is shown in figure 1. The specimen was allowed to
cure for 28 days before testing began.

2.2. Biphasic measurement approach

The biphasic measurement approach recently proposed
by the authors [26] allows for the temporal multi-
channel monitoring of smart-cement materials through
removing the polarization effect found in carbon-
doped smart-cement-pastes [19, 22, 24, 26, 33]. The
biphasic measurement approach functions by sourcing
a periodic measure/discharge sensing current in the
form of an alternating square wave from a power
supply. In this work, a signal generator was used to
produce a periodic square wave. This device was found
to provide sufficient power due to the low current draw
required. The periodic signal consists of a “measure
region” where DC voltage measurements are made and
a “discharge region” where the material depolarization
is obtained, as shown in Figure 2(a). A DC voltage
measurement is taken, termed sample point, after 80%
of the measure region is completed. Due to the spatial
distribution of the embedded contacts in this work,
the voltage acquired at the sample point (Figure 2(a))
is not used to calculate a resistance measurement.
Instead, the DC voltage measurement, taken at the
point corresponding to 80% of the measure region, is
used as a direct input to the resistor mesh model.

Regardless of the embedded contacts’ spatial
distribution in the plate, the total resistance of the
plate can be measured by monitoring the current
flow through the entire plate. Figure 2(b) shows
how this electrical resistance is also a function of the
voltage (peak-to-peak) used in the periodic square
wave, demonstrating that the material is not ohmic.
A notable result in figure 2(b) is the reduction in the
plate’s resistance for an increase in the applied voltage.
For instance, a 57.5% decrease in the plate’s resistance
is found over the tested range of 2 to 20 V. In terms
of designing specialized data acquisition equipment
for the proposed resistor mesh model, the material’s
decrease in resistance associated with an increase in
the applied voltage can be beneficial as it facilitates
a larger voltage drop over the plate. Because of the
higher voltage drop across the plate, the measured
voltage at each contact will be higher and therefore
can be easier to measure. This can help to reduce
the complexity of measurement hardware required,
a necessary improvement when developing long-term
embedded measurement systems.
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Figure 2. Mecasurement of the electrical output of smart-

cement-paste: (a) using a biphasic DC signal at 1 Hz with 50%
duty cycle showing the discharge and measure regions with the
sample point annotated; (b) effect of changing biphasic peak to
peak voltage levels on the measured resistance.

2.3. Resistor mesh model

The use of a resistor mesh model for damage detection,
localization and quantification is the subject of another
work by the authors [30]. In brief, a 2-D mesh
is constructed to mimic the conductive specimen’s
geometry. This resistor mesh is constructed of resistors
(intended to mimic the electrical response of the smart-
cement-paste) and nodes (for voltage measurements
at embedded contacts), allowing the resistor mesh to
be solved using nodal analysis. The formulation of
this nodal analysis problem only requires knowledge
of the specimen’s geometry and the applied voltage
(Vapplied) as model inputs. The assumption is made
that damage present in the specimen will manifest
itself as an increase in resistance in the plate. This
increase in resistance will be measured as a change
in voltage at an associated node. This reduction in
conductivity is due to the property that cracks in
the self-sensing material are considered to cause a
reduction in conductivity as they are non-conductive
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Figure 3. Experimental test setup showing the: (a) key components used in the impact testing of the smart-cement-paste plate
with an embedded copper contact shown in the inset; (b) electrical test schematic showing the connection of the data acquisition
system (DAQ) to the test specimen with key system components annotated.

when opened [18, 28, 29]. A resistor mesh model can
then be constructed to mimic the internal condition
of the specimens through the correct placement of
damaged (high-value) resistors as required in order to
minimize the error between the specimen’s measured
and the model’s estimated nodal voltage values. For
simplicity, the resistor model used in this work is
solved in SPICE [34], an open-source analog electronic
circuit simulator. For a known geometry, the resistor
mesh model could be reconstructed as a set of linear
equations to decrease its computation time. A decrease
in computational complexity is a useful feature for
the future development of embedded measurement
systems that need to operate on limited computational
resources.

Due to the nature of the impact loading cases
in this study, the strain sensitivity of the smart-
cement-paste is not considered. However, prior results
showed that the resistor mesh model is capable of
monitoring a smart-cement-paste’s strain condition
through adjusting a resistor’s values based on its strain
state, both before and after a failure occurs [30].

2.4. Bi-optimization objective function

The effective placement of resistors requires the
definition of an optimization objective function. The
simplest form of an objective function would be a
spatially averaged absolute difference of the error
between the measured voltage at each node and the
model’s estimated voltage at the same node. While
simple, this approach may result in a solution with

a few single points of high disagreement, therefore
resulting in a solution that does not truly represent
the condition of the plate being monitored. A
solution to this problem would be to only optimize
the points of highest disagreement between the plate’s
measured state and the model. However, this would
introduce other issues including longer computational
time and an increased probability of converging to a
local minimum. Therefore, a bi-optimization objective
function that reduces both the average and point-of-
highest error between the plate’s measured state and
the model is needed.

For the purpose of reducing the mean error
between the plate’s measured state and the model’s
representation, an optimization problem based on
minimizing the mean absolute error (MAE) is utilized.
The use of MAE for validation provides a simple,
vet effective representation of how well a given model
represents the structure.  Additionally, to reduce
the severity of points of highest disagreement, a
second optimization problem based on minimizing
the maximum difference between any contact’s sensed
voltage and model’s estimated voltage is introduced,
defined as 8. The bi-objective optimization problem
for selecting a vector, R, of resistance values for the
resistor mesh model can be formulated as,

minimize f(R) _ (MAE(R)’IB(R))
subject to R = [r1..rm]T € R

(1)

where R is a unique vector consisting of m resistor
values taken from the resistor set R that consists of all
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the potential resistor values under consideration.

The multi-optimization problem presented here
can be combined with solutions that lie close to the
Pareto frontier to form a single objective optimization
function. While various methods have been proposed
for finding the various solutions that lie on or near
the Pareto frontier, a straightforward scalarization
approach is used here. Formulated as a linear
combination method, the selected approach seeks to
find the minimum of a weighted combination of the
two objective functions, MAE(R) and S(R). This
approach allows for the trade-offs between the two
objectives to be adjusted through the scalarization
parameter («), thereby increasing the usability of the
optimization function. The single objective problem
for optimizing the selection of a resistor set R can be
formulated as,

minimize MAE (R) ,B (R)
fit=(1-«) NAE +a 5 ,
subject to R=[r..r]" €R )
0<a<l1

where MAE' and 3’ are factors used for normalizing
MAE(R) and S(R). These factors are evaluated by
solving the resistor mesh model for an initial resistor
set Rinitial, that minimizes the current draw error and
then solving for the normalizing factors with MAE' =
MAE(Rinitia1) and " = B(Rinitial)-

As expressed in Equation (2), the bi-optimization
function can be converted to a single optimization
problem that seeks to minimize only the MAE or
value by setting a = 0 or 1, respectively. The selection
of an appropriate « value is based on the capability
of the resistor mesh model to accurately represent the
plate’s condition and such a selection can be achieved
through numerical investigation.

3. Methodology

This section introduces the methodology used for
investigating the automated placement of resistors in
a resistor mesh model, including the test setup, the
selected model arrangement, and the sequential Monte
Carlo algorithm.

3.1. Test setup

Experimental results for a cracked plate were obtained
through the repetitive impact loading of a smart-
cement-paste plate, as shown in figure 3(a). Here, a
500 x 500 x 50 mm? plate with 36 embedded contacts
was mounted vertically in an extruded aluminum
frame. A 3 kg hammer, also mounted on the aluminum
frame, was used to provide 100 near identical impacts
to the center of the plate. For each impact the hammer

contact

\

resistor

Figure 4. The resistor mesh model used for the electrical
modeling of the plate.

handle was rotated back 20° from the vertical and
released to induce a single impact into the plate. At its
fully displaced position, the hammer head was raised
5 c¢cm and stored an estimated 1.5 J of energy. The
biphasic signal was sourced from a function generator
(Rigol DG1022a) as a 20 V,, square wave with a
frequency of 1 Hz and a 50% duty cycle. The applied
voltage of 20 V,,, is constant throughout the test (i.e.
the test can be considered as voltage controlled). The
contact resistance between the copper contact and the
smart cementitious material has been shown to be high
[35]. However, as the contact resistance only affects
the current carrying contacts [36], this aspect is only
relevant at the current input (top-left contact in figure
3(b)) and output (bottom-right contact in figure 3(b))
copper contacts. Other than the voltage sample taken
at the current input and output contacts, the voltage
sample taken at the copper contacts is not affected
by the contact resistance. Voltage samples were taken
using one of two analog input modules (PXIe-4302 and
PXTIe-6361 mounted in a National Instruments PXIe-
1071 chassis) at each of the plate’s embedded contacts.
Wires were soldered to the embedded copper contacts,
as shown in the insert of figure 3(a), and connected
to the analog input modules. The 1 Hz biphasic signal
dictates that measurements were made at 1 sample per
second (S/s). Therefore, a DC voltage measurement is
taken once per second at the point where 80% of the
measure region is completed and is used as an input to
the resistor mesh model. An oscilloscope (Rigol DS-
1054), acquiring the biphasic signal, was used during



Automated crack detection in conductive smart-concrete

o best generational guess
initial guess

.

generation 1

<+t

y (]
l
uniform probability —Fp» (3
density functions

generation n

*
Il ;
final guess
| | | | .4I/ | |
200 400 600 800

resistor values (Q)

Figure 5. Visualization of the sequential Monte Carlo process
used in this work.

testing for validation purposes only. The schematic
of the measurement system is presented in figure 3(b)
with the key components annotated.

8.2. Resistor mesh model

The configuration of the plate’s resistor mesh model is
presented in figure 4. A resistor mesh model of 110
resistors was selected to connect the 36 voltage nodes
as it reproduced the majority of possible conductive
paths through the plate. The diagonal resistors are
independent of each other and do not form a conductive
path where they cross each other due to the lack of
a contact point. Simpler resistor mesh models were
investigated and were found to provide comparable
results. These included models without the diagonal
resistors, or with subsets of the diagonal resistors.
However, the reduction in the number of resistors
reduces the resistor density, resulting in a lower damage
localization resolution. In addition, a 160 resistor mesh
model that added a node at the center of the diagonal
resistors was investigated. The addition of model nodes
without corresponding experimental nodal data caused
the sequential Monte Carlo simulation to converge to
a local minimum solution rather than to a truly global
minimum solution. Therefore, it was decided that the
mesh model with 110 resistors provided the best results
for the current study.

3.8. Sequential Monte Carlo algorithm

The sequential Monte Carlo algorithm presented here
is a wvariation of a typical Monte Carlo approach
that uses repeated random sampling to obtain a
numerical estimation of a resistor set that is capable
of modeling crack damage in the conductive smart-
cement-paste plate. The algorithm is diagrammed

7

Algorithm 1 Sequential Monte Carlo algorithm used
in this work.
1: calculate Riujtial
2: R = Rinitial
3: for generation count do
4 parfor population count do
5: R; = Monte_Carlo(R)
6: fit; = SPICE(R;)
7
8

end parfor

best = index(minimum(fit))
9: R = Rypest
10: end for
11: Rgnar = R

in figure 5. First, an initial constant value (parent)
for R, termed Ripitial, is obtained by minimizing the
error between the model’s total current flow and the
healthy plate’s total current flow while considering
the contact resistance present at the current carrying
contacts [35]. This minimization is done using a simple
gradient descent algorithm. Once Rjpjtia) is obtained, a
population set consisting of a number of unique values
of R is generated by sampling new resistor values (r)
for the r values in Ripitial. A particular resistance
value for a new generation is taken from a uniform
distribution that is centered about the initial guess over
a distribution of resistance values where the width of
this distribution is termed Ryange. The population set
consisting of the unique Rs can then be solved and its
error calculated using Equation 2. The R vector that
produces the lowest error is selected as the new parent
and the population for the next generation is then
mutated from this parent. This process is repeated for
a set number of generations, after which the final R
vector is the numerical estimation of a resistor set that
best reproduces the spatial resistance distribution in
the conductive smart-cement-paste plate. Pseudo code
for the sequential Monte Carlo algorithm is presented
in Algorithm 1 with the SPICE models solved in
parallel.

The application of the sequential Monte Carlo
algorithm requires the tuning of certain parameters
and, in particular, of Range, @, population size and
the number of sequential generations needed to achieve
a numerical estimation of sufficient quality. In this
work, the selection of parameters was done during
a preliminary investigation by first making educated
guesses about the values for Ryanee and a. Then,
the population number and generational count were
investigated over a wide range of possible values for
both the healthy and damaged state (100 hammer
impacts), with values taken in a way to optimize the
final fitting results without incurring into extensive
computational costs. The selected population size
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Figure 6. A purely data-driven damage detection analysis (no resistor mesh model) for the test plate showing: (a) damage and the
location of inspection points; and (b) the change in the plate’s total resistance and the change in voltage data taken at the three
inspection points of interest, selected to show damage forming during different portions of the test.

and generation number were then used to recursively
investigate the effects of Riange and a on the final
solution using a series of repeated algorithm runs at
cach inspection point.

4. Results

This section reports the results from the experimental
testing, including a parametric study on the sequential
Monte Carlo algorithm.

4.1. Data-driven damage detection

First, a purely data-driven approach to damage
detection using the plate’s total resistance and the
voltage monitored at the embedded contacts is
investigated. These results are presented in figure 6.
The annotated cracks for the plate’s fully damaged
state, after 100 hammer impacts, are illustrated in
figure 6(a). The simplest form of damage detection
in smart-cement-paste is achieved through monitoring
the plate’s total resistance value. This total resistance
value can be obtained through a standard two-
probe measurement that accounts for the plate’s total
resistance, including its contact resistance.  This
method is also applicable to the specimen under
consideration through tracking the change in resistance
(solid red line in figure 6(b)). It can be observed
that the majority of the damage occurred during the
first twenty-five hammer impacts. After, the damage
continues to increase with each subsequent impact, but
at a lower rate. While useful in assessing the plate’s
global health, monitoring the plate’s resistance value
does not provide any useful measure of the localization
of damage within the plate.

A qualitative estimation for the localization of
damage within the plate can be achieved through
the investigation of temporal voltage samples at the
embedded contacts. In figure 6(b) the dashed blue
line is the voltage data for a contact in the upper
left of the plate, a region that experienced no visible
cracking during testing. The mostly linear increase
in the measured voltage is attributed to the sum
of the voltage drops that must equal the applied
voltage. Thus, if the formation of a crack causes
a change in resistance in one portion of the plate,
the entire plate must find a new equilibrium. In
contrast, voltage samples reported by the orange dot-
dashed line in figure 6(b) exhibits damage that is
formed near an embedded contact during the first
few hammer impacts. Lastly, the dotted green line
in figure 6(b) shows a change in its voltage data
around hammer impact 60, which discontinuity in
voltage is presumed to be related to the neighboring
crack seen in figure 6(a). Growth in this crack was
visually observed during testing and recorded by a
high-resolution digital camera. While showing some
promise for localization of damage, these temporal
variations in the voltage samples do not provide a
quantitative value for damage.

4.2. Parameter study

The use of the Monte Carlo algorithm, presented
in section 3.3, requires the tuning of parameters
(population, generations, Riange and «) before the
algorithm can be used for damage detection and
localization. Figure 7 presents the results for the
population and generation study for both the healthy
(figure 7(a)) and damaged (figure 7(b)) cases with
Rrange = 100 © and o 0.5. In total, 100
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Figure 7. Sequential Monte Carlo fit results, as defined in equation 2, as a function of population size and number of generations
for the smart-cement-paste specimen in a: (a) healthy; and (b) damaged condition.

population/generation combinations were inspected for
each plate condition. As expected, the final fit
value for both cases improves as both the population
and generation size increase. The improvement in
fit per added population or generation is greatest
at the early stages of increasing the population or
generation count used in the Monte Carlo simulation.
The damaged cases, shown in figure 7(b), consistently
demonstrated a slightly worse final fit for any given
population/generation point.  This is due to the
damaged plate requiring a more diverse resistor mesh
model to reproduce the plate’s condition. On average,
for any given generation/population the final fit for
the damaged condition was 43.4% higher than that
of the healthy condition. To provide an accurate
representation of the Monte Carlo algorithms for
placing resistors into the resistor mesh network, while
optimizing the number of SPICE simulations required,
a population size of 50 with 20,000 generations is used
throughout the remainder of this work. This results in
each simulation run requiring 1 million SPICE models
be solved, a task that is completed in 5 hours on a 12
core computer node running at 2.2 GHz.

Following the determination of the population and
generation counts, the values for Riange and a are
investigated and presented in figure 8. First, the effect
of changing R,.nge is investigated for the damaged
case using a population of 50, 20,000 generations and
a = 0.5, yielding the results presented in figure 8(a).
Here, 50 Riange values ranging from 1 to 1000 € are
investigated, whereby each inspection point is repeated
3 times for a total of 150 runs. As expected, the
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Figure 8. Investigation of the: (a) Rrange value on the final
fit results; and (b) changing o parameter on the MAE and S
results.
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Figure 9. Final damage detection results showing the: (a) spatial distribution of high-value resistors for the healthy state; (b)
healthy test specimen; (c) spatial distribution of high-value resistors for the damaged state with crack distribution overlaid to show
the relationship between damage and points of high resistance; (d) damaged (100 impacts) test specimen.

lowest value investigated (1 ) results in a poor final
fit as the available range for the variation in the
resistors is limited. As the range is increased, the
capability of the Monte Carlo algorithm to obtain a
better final fit value is increased. After a certain
point, corresponding to Riange ~ 200 in this case, the
potential range becomes too large and the capability
of the algorithm to consistently obtain low final fit
values is negatively affected. This is attributed to the
Monte Carlo simulations converging to local minima.
A general representation of the effect of a changing
Riange on the final fit is presented in figure 8(a) as a
4t order polynomial that ignores the first data point.
Based on these results, a range of Riunge = 100 is
selected and used throughout the remainder of this
work.

Next, the effect of varying « on the fitting
parameters, MAE and (3, is investigated, with results

shown in figure 8(b) with the best fit lines for each
parameter taken as 4" order polynomials. Here, 30
inspection points ranging from o = 0 to a« = 1 are
considered, with 3 runs per inspection point, resulting
in a total of 90 runs. Results show that the proposed
objective function is capable of developing an R vector
that can effectively minimize both the mean error
(MAE) and the point of greatest disagreement (3).
For the damaged plate considered in this example,
with the MAE and [ parameters taken of equal
importance, results indicated that @ = 0.5 provides
an acceptable level of optimization for R. In addition,
when compared with a single objective function based
purely on the MAE (i.e. o = 0), the selected value of
a = 0.5 provides a 45% improvement in the 8 value,
while only increasing the MAE value by 19%. The best
value of « is case-specific, but 0.5 is selected based on
the presented results.
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Figure 10. Final results for the plate showing the relative
resistance change in resistance for the damaged condition when
compared to the healthy condition.

4.3. Damage localization

The capability of the sequential Monte Carlo algorithm
to locate damage present in a concrete plate is
illustrated in figures 9 and 10 where figure 9 presents
the resistor mesh results and provides a picture of
the plate’s condition, while figure 10 presents the
change in resistance between the healthy and fully
damaged conditions (i.e. figure 9(c) minus figure 9(a)).
The final fit obtained for the healthy condition was
0.16 compared to 0.26 for the damaged condition.
The optimized resistors for the healthy condition were
found to be relatively constant, with a maximum value
of 7500 Q. In the case of the healthy plate, the
resistor mesh model is assumed to track deviations in
the resistive continuity and, therefore, the dispersion
of the MWCNT within the plate. A more detailed
study is required to investigate the use of a resistor
mesh model for validating the quality of dispersion of
conductive inclusions within a plate, as well as the local
moisture content, and is left to future work.

For the damaged case, the sequential Monte Carlo
algorithm is capable of placing damaged resistors at
the points where damage is more significant. This
is attributed to the sequential Monte Carlo algorithm
focusing on placing the most damaged resistors first,
therefore making detection of smaller damages more
difficult. Additionally, the sequential Monte Carlo
algorithm quantifies damage in a relative manner,
as it seeks to compare the healthy to the damaged
locations on the plate. The resistor mesh model, with
the automated placement of resistors, was capable of
detecting the three prominent damage points on the
plate. These included the hammer impact point in the
center of the plate, a damage point on the bottom-
center (front and back) of the plate that experienced

11

Figure 11. Concentrated spalling damage on the back of the
plate as viewed from the back, additional sensors (SEC sensors)
present in the figure are not discussed in this work.

spalling (loss of material) during the first few hammer
impacts, and above the center-right where a piece of
concrete on the back of the plate was lost around the
80th hammer hit. The damage on the back side of
the plate measured approximately 25 x 12 x 10 mm
(height x width x depth) and is detailed in figure 11.
The large white/black squares present in this figure are
novel large area sensors, termed the soft elastomeric
capacitors and denoted as “SEC sensor” in figure 11.
These sensors were tested jointly and are out-of-the-
scope of this work.

Results demonstrate that the resistor mesh model
is capable of detecting damage, irrespective of its
depth within the plate: a feature deemed useful
when inspecting concrete structures where only one
side of a structure is accessible. Increasing the
damage detection and localization accuracy of the
proposed resistor mesh model will require further study
and development of more advanced algorithms for
placing damaged resistors and further investigation of
optimum contact layout and density. While in the
current electrode configuration the resistor mesh model
is not capable of determining the depth of prospective
damage, this could be possible through the use of a 3-D
resistor mesh model. This more complicated modeling
problem is left to future work.

5. Conclusion

A 2-D resistor mesh model was shown to be capable
of detecting and localizing damage in a conductive
smart-concrete plate through the automatic placement
of resistors using a sequential Monte Carlo algorithm.
A resistor mesh model functions through developing
an electrical model of the smart-concrete structural
component that consists of a network of resistors,
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where damage is introduced into the resistor mesh
network as a resistor of higher resistance value. This
work introduced the automated placement of damaged
resistors using a simple sequential Monte Carlo
algorithm. This algorithm works through mutating
an initial best guess for all the resistors, set through
minimizing the difference between experimental and
model electrical responses, by randomly selecting new
values of resistors from a uniform probability density
function of a certain resistance range. This step is
repeated multiple times to form a population of new
guesses, after which the best performing member of
the population is selected as the new parent resistor
set, which is then mutated in the following generation.
Once a sufficient number of generations have been
computed, the final resistor set can be used to spatially
map the high resistance areas of the plate. It then
follows that areas of high resistance can be correlated
to prominent damages, while locations of low resistance
can be considered as relatively undamaged.

Results demonstrated that the proposed approach
is capable of damage detection within structural
elements made of smart concrete. The automated
placement of damaged resistors has the potential
of enabling real-time detection, localization and
quantification of crack-type damage using simple
and inexpensive electrical hardware. Future work
includes the development of search algorithms that
provide better fitting results and reduce the required
computational time. Additional areas of interest
include the expansion of the proposed resistor mesh
model into the third dimension and the quantification
of the effects of reinforcement bars in full-scale
reinforced concrete structures.
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