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A B S T R A C T

Operators from various industries have been pushing the adoption of wireless sensing nodes for
industrial monitoring, and such efforts have produced sizeable condition monitoring datasets
that can be used to build diagnosis algorithms capable of warning maintenance engineers of
impending failure or identifying current system health conditions. However, single operators
may not have sufficiently large fleets of systems or component units to collect sufficient data to
develop data-driven algorithms. One potential solution to overcome the challenge of having
limited representative datasets is to merge datasets from multiple operators with the same
type of assets. However, directly sharing data across the company’s borders yields privacy
concerns. Federated learning (FL) has emerged as a promising solution to leverage datasets
from multiple operators to train a decentralized asset fault diagnosis model while maintaining
data confidentiality. However, the performance of traditional FL algorithms degrades when
local clients’ datasets are heterogeneous. The dataset heterogeneity is particularly prevalent
in fault diagnosis applications due to the high diversity of operating conditions and system
configurations. To address this challenge, this paper proposes a novel clustering-based FL
algorithm where clients are clustered based on their dataset similarity. Estimating dataset
similarity between clients without explicitly sharing data is achieved by training probabilistic
deep learning models and having each client examine the predictive uncertainty of the other
clients’ models on its local dataset. Clients are then clustered for FL based on relative prediction
accuracy and uncertainty. Experiments on three bearing fault datasets, two publicly available
and one newly collected for this work, show that our algorithm significantly outperforms
FedAvg and a cosine similarity-based algorithm by 5.1% and 30.7% on average over the three
datasets. Further, using a probabilistic classification model has the additional advantage of
accurately quantifying its predictive uncertainty, which we show it does exceptionally well.

. Introduction

The increased availability of sensor data from fleets of cloud-connected assets, such as vehicles and manufacturing facilities, has
een driving a transformation in system health monitoring for fault diagnosis. Plant operators and process engineers are interested
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in leveraging their data to proactively diagnose faulty equipment and notify maintenance personnel of impending potential failures
so they can schedule accordingly, improving reliability and reducing downtime costs in the process [1,2]. To facilitate this effort,
numerous data-driven diagnosis algorithms have been developed, enabling real-time detection and accurate classification of system
faults [3,4]. Data-driven fault diagnosis methods rely on machine learning and deep learning models to effectively classify condition
monitoring signals that indicate the system’s health status. Numerous fault diagnosis models have been proposed previously,
including artificial neural networks [5–7], random forests [8,9], and support vector machines [10,11]. In general, the performance of
data-driven diagnosis models is directly related to the quality and quantity of available training data [1]. However, the fault patterns
that data-driven models are trained to recognize are often unique to the specific system they were collected from and are highly
influenced by the operating conditions. This presents a significant challenge to model development since collecting training data
under all possible working conditions is time-consuming and costly, which impedes the deployment of data-driven diagnosis models
to the field [12]. A potential solution to tackle this challenge could be compiling data from multiple clients into a central database
for training. Most clients hesitate to do so because of data privacy concerns and legal regulations [13]. In turn, there is a great
need to develop decentralized machine learning algorithms that maintain data privacy while providing greater fault classification
accuracy than asset operators can achieve individually [14].

In 2017, McMahan et al. [15] developed the first federated learning (FL) strategy for training a centralized deep learning model to
erve multiple clients without explicitly requiring them to share their data, thus preserving privacy, referred to as federated averaging
FedAvg). Several researchers have effectively applied FedAvg and similar methods to train fault diagnosis models [16–19]. Notably,
hang et al. [18] demonstrated a dynamic validation and self-supervised FedAvg algorithm where the server evaluated local models
sing a validation dataset to determine which models to neglect during federation. A follow-up work by Zhang et al. [19] introduced
lockchain technology to improve the security of model parameter sharing. While FedAvg has shown promise in cross-client fault
iagnosis, challenges arise when clients’ data are heterogeneous or non-independent and identically distributed (non-IID) [20–22].

The performance of FL algorithms can be affected by two types of statistical data heterogeneity. The first, known as domain
shift, occurs when clients’ data do not share a similar distribution due to differences in system operating conditions or system
configurations. The second, referred to as label heterogeneity, occurs when clients’ datasets have different quantities and types
of system faults [23]. In most real-world scenarios, clients’ data generally do not exhibit similar distributions, fault types, and
fault prevalence due to the diverse operating conditions experienced by systems or components in the field (e.g., run-time, load,
temperature, and humidity) [14]. Unfortunately, large variations among clients’ datasets have been shown to reduce the training
speed and overall accuracy of the FedAvg algorithm [21,24]. One potential solution to deal with data heterogeneity is to develop
a personalized feature extractor network that extracts fault-related features that are invariant to the different operating conditions
and fault types of the clients (see Fig. 1b) [25–27]. This approach, referred to as adaptation-based FL, mitigates the data domain
shift using unique model architectures that extract features that are indistinguishable between different clients. Another approach
to deal with data heterogeneity is to group clients for training based on their dataset similarity, where each group builds a different
global model (see Fig. 1c) [28–31]. The key to this approach lies in the clustering strategy used to group the clients since directly
comparing clients’ datasets would violate data privacy. For example, Tian et al. [31] utilized the cosine similarity between each
pair of client model parameters to infer the similarity of client dataset distributions.

While both adaptation-based FL and client clustering are effective approaches to dealing with client data heterogeneity, numerous
distinct challenges specific to system fault diagnosis must be resolved. First, due to large differences in operating settings, clients
may experience significant differences in the frequencies of faults occurring, and fault types observed by some clients may not have
been observed by other clients. This results in high heterogeneity among clients’ datasets, denoted as open-set label shifts in this
study [32]. Only a few studies have considered such data heterogeneity. For example, Zhang et al. [18] validated the performance
of their dynamic validation and self-supervised FedAvg algorithm with three experimental settings: IID, non-IID-class, and non-
IID-domain. For the non-IID-class setting, each client’s data contains two health classes: healthy and faulty (one faulty class). For
the non-IID-domain setting, each client’s data contains all the health classes but is collected under different operating conditions.
Similarly, Mehta et al. [33] tested the performance of FedAvg for non-IID datasets. However, these two studies did not consider
complex scenarios with client data heterogeneity with respect to both the sample label distribution and operating conditions. Second,
the performance of fault diagnosis models highly depends on the validity of the assumption that the training and test data follow
similar distributions. However, in real-world scenarios, this assumption might be invalid [34,35]. For example, changes in operating
conditions could make test data significantly different from training data, and deterministic machine learning models that do
not consider predictive uncertainty are typically incapable of detecting these differences, which might lead to largely incorrect
diagnosis results on distribution-shifted data [36,37]. Making incorrect predictions on out-of-training-distribution (or simply out-
of-distribution) samples without conveying model prediction confidence may lead to inappropriate health management decisions
and could even affect production safety. Therefore, it is often more desirable to train probabilistic models capable of accurately
estimating their predictive uncertainty and confidence on a per-sample basis.

In this work, we propose a novel FL framework to train fault diagnosis models using local datasets of multiple clients with privacy
protection in the presence of distribution shifts and open-set label shifts among these local datasets. Unlike existing algorithms that
use model parameters or prediction errors to cluster clients, this work adopts a probabilistic deep learning algorithm for client
clustering, and each local model’s predictive uncertainty towards other clients’ datasets is used to cluster clients. During the model
evaluation, the ability to quantify the predictive uncertainty on a per-sample basis allows clients to discern out-of-distribution
samples. Considering the scenario where a client’s model faces out-of-distribution samples, a model selection strategy is developed
to enable the client to select the most suitable model from those in the server (i.e., the model that achieves the least predictive
2
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Fig. 1. An illustration of FL (a) and two FL strategies (b, c). a, The four-step process of FL is common to nearly all FL approaches. b, An overview of an
adaptation-based approach to FL that uses a global classifier to accommodate client-specific feature extractors. c, An overview of a clustering-based approach to
FL that groups clients for training based on non-private comparison criteria.

We benchmark the fault classification performance of our FL algorithm (FedSNGP) against FedAvg and a cosine similarity-based
clustering algorithm FedCos, adapted from the algorithm proposed by the authors in Ref. [31] using two publicly-available bearing
fault datasets and one new bearing fault dataset collected specifically for this work. In cases where clients’ datasets are heterogeneous
in fault type and exhibit significant domain shift (Scenario 2), our FedSNGP algorithm outperforms FedAvg and FedCos. Further,
in cases where clients’ datasets exhibit domain shift and are heterogeneous in fault type as well as the sample size (Scenario 3),
our FedSNGP algorithm demonstrates its prowess, achieving significantly higher accuracy than both FedAvg and FedCos. This final
scenario highlights the advantage of our self-supervised and uncertainty-aware clustering algorithm for FL, as it achieves excellent
fault classification accuracy, even in the most extreme scenarios. Further, using a probabilistic classification model has the added
benefit of quantifying its predictive uncertainty to detect out-of-distribution samples, which we show it does exceptionally well.

2. Preliminaries on FL

Data-driven fault diagnosis has emerged recently and shown promising results in many studies. However, when it comes to
industrial applications, it is often impractical for a single client to collect large volumes of high-quality data, without which the
performance of data-driven models may likely be compromised. FL was developed to address this challenge by allowing multiple
clients to train more accurate models without sharing the clients’ local datasets. This study targets industrial FL scenarios where
each operator has its own dataset and shares the same diagnosis task. To stay consistent with existing literature on FL, we refer to
operators as clients. We begin by defining notations used in FL studies. We denote the number of clients as 𝑁 and the 𝑖th client’s local
training dataset as 𝐷𝑖 =

{(

𝐱𝑖𝑗 , 𝑦
𝑖
𝑗

)}𝑛𝑖

𝑗=1
, where this client has 𝑛𝑖 input–output training pairs, with the 𝑗th training pair being

(

𝐱𝑖𝑗 , 𝑦
𝑖
𝑗

)

.

Each client aims to optimize its model parameters 𝜽𝑖 to minimize the global loss ∑𝑁
𝑖=1

∑𝑛𝑖
𝑗=1 𝐿𝑜𝑠𝑠

(

𝜽𝑖, 𝐱𝑖𝑗 , 𝑦
𝑖
𝑗

)

. Here, 𝐿𝑜𝑠𝑠
(

𝜽𝑖, 𝐱𝑖𝑗 , 𝑦
𝑖
𝑗

)

represents the prediction loss of the machine learning model with parameters 𝜽𝑖 on a given input–output pair
(

𝐱𝑖𝑗 , 𝑦
𝑖
𝑗

)

[38,39].
One simplistic approach is to allow the server to aggregate all of the client datasets and optimize the model parameters by

computing the gradient of the global loss. This implies that the server has complete access to all clients’ datasets. However,
aggregating sensitive client data on a central server presents privacy and legal concerns and should be avoided. Instead, FL strategies
aim to train a global model or models without sharing data between clients. To perform FL, as illustrated in Fig. 1a, each client
independently optimizes their local model using their own dataset (Step 1) and transmits their model parameters to the server (Step
2). On the server side, model parameters are aggregated to create one or more global models (Step 3), which are subsequently
disseminated to the clients (Step 4) [15]. A single instance of this four-step process is often called a communication round, as it
involves the clients communicating with the server to facilitate training.

The most important step in any FL strategy is the model aggregation (Step 3 in Fig. 1a). Model aggregation leverages non-sensitive
client information (e.g., model parameters and other information the client is willing to share) as part of an algorithm to update
the global model. The model aggregation algorithm directly affects the amount of information transferred from each client to the
final model and is crucial to the model’s overall accuracy. The first model aggregation strategy, proposed by McMahan et al. [15],
was the FedAvg strategy. The FedAvg method of model aggregation combines the client’s models by performing a weighted average
of model parameters, where the weights are determined based on the number of training samples each client has. The weighted
average model aggregation is defined as follows:

𝜽𝑡+1 =
∑𝑁

𝑖=1 𝑛𝑖𝜽
𝑖
𝑡

∑𝑁
𝑖=1 𝑛𝑖

(1)

The weighted averaging approach to model aggregation used in FedAvg allows clients to employ a collaborative prediction model
that contains additional information beyond what each client had separately. This is because each client’s model can be regarded
as a condensed representation of their data, and constructing a global model by incorporating the weights of all clients enables the
3
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global model to learn each client’s information indirectly. As a result, this yields an exceptionally accurate model for the clients.
Studies have shown that when each client has a limited amount of training data, adopting the concept of FL could produce more
accurate models than models that are trained locally [13,18]

3. Related works

Though FedAvg yields decent performance in most scenarios, a major challenge of the FedAvg approach is that its performance
ecreases significantly when the clients’ data are vastly different from each other, i.e., non-IID and heterogeneous in fault
ypes [12,21]. Large differences in local dataset distributions (often referred to as domain shifts) cause some clients’ model
arameters to deviate significantly from those of the group. Including information models from clients with significantly different
ataset distributions can negatively impact the global model aggregation process, causing the final global model to serve neither
he majority of clients with similar data nor the minority clients with outlier data well. Numerous algorithms have been developed
o tackle the challenge of data heterogeneity when deploying an FL strategy for a fleet of system or component units. This section
ntroduces two of the most common methods for dealing with non-IID datasets and highlights notable research in this area.

.1. Adaptation-based approaches to FL

The challenge of domain shift has been widely recognized in the field of deep learning [40]. One common method of dealing
ith domain shift in traditional deep learning settings is known as adaptation-based learning [23,41]. There are different domain
daptation approaches. One way is to train a feature extractor that extracts domain-invariant features from the input data. Then,
eed the domain invariant features to a classifier for prediction.

The same domain adaptation approach can be applied to the FL problem. In adaptation-based FL, shown in Fig. 1b, the 𝑖th client’s
model is divided into a personalized feature extractor and a shared global classifier [23,27]. The personalized feature extractor
learns to map the raw input data into a low-dimensional feature space such that the learned mapping is invariant to the system’s
operating conditions. Then, the shared classifier takes the extracted domain-invariant features as input to diagnose the system’s
health. Mathematically, this optimization process can be written as follows:

argmin
𝜑1, 𝜑2,… , 𝜑𝑁,ℎ𝑔

𝑁
∑

𝑖=1

𝑛𝑖
∑

𝑗=1
𝐿𝑜𝑠𝑠

(

[𝜑𝑖, ℎ𝑔],𝐗𝑖
𝑗 , 𝑦

𝑖
𝑗

)

+ 𝛼
𝑁
∑

𝑖=1

𝑁
∑

𝑗=1,𝑗≠𝑖
𝐷𝑖𝑠

(

𝑧𝑖, 𝑧𝑗
)

(2)

here 𝜑𝑖 and ℎ𝑔 denote the parameters of the feature extractor and those of the global classifier, respectively, 𝐿𝑜𝑠𝑠
(

[𝜑𝑖, ℎ𝑔],𝐗𝑖
𝑗 , 𝑦

𝑖
𝑗

)

denotes the 𝑖th model’s prediction loss towards the local training dataset, 𝑧𝑖 denotes the client 𝑖’s extracted features, and 𝐷𝑖𝑠(⋅) is
the metric of discrepancy of two distributions.

Adaptation-based FL can be achieved by introducing a domain classifier into the model architecture [27] or the maximum mean
discrepancy distance into the loss function [42]. Additionally, researchers also investigated alternatives to these transfer learning-
based FL frameworks. For example, Ran et al. [43] stated that in transfer learning scenarios, some source-domain clients might have
mostly low-quality data (e.g., mislabeled data or data that significantly differs from the target data distribution) and developed a
dynamic model aggregation algorithm to mitigate the influence of these low-quality clients. Similarly, Chen et al. [42] developed
a discrepancy-based weighted averaging algorithm targeting a unique FL setup where a new client (considered the target domain
client) with unlabeled data may join the existing clients (considered the source domain clients) in FL.

While domain adaptation algorithms are a popular solution for dealing with data domain shifts, their main limitation is their lack
of flexibility to changes in future operating conditions. Adaptation-based approaches assume that the data distribution and operating
conditions will not change with time. If any aspect of the system changes, the input data will shift, and the personalized feature
extractor cannot be trusted to accurately map the new inputs into domain-invariant features. To alleviate this challenge, test-time
adaptation algorithms have been developed. Regardless, domain adaptation algorithms remain promising to deal with domain shifts
in FL environments.

3.2. Clustering-based approaches to FL

Research conducted in Refs. [13,18] has highlighted that, in certain non-IID FL scenarios, certain clients should be assigned lower
weights or even disregarded during model aggregation to alleviate the negative effect of client data heterogeneity. Clustering-based
FL approaches generate client clusters, and within each cluster, the models are aggregated to create a combined model [44]. During
each training communication round of clustering-based FL, the server performs client clustering that assigns clients with comparable
data distributions to the same cluster, whereby the clients in the same cluster share the same model parameters. The optimization
target of the clustering strategy and model parameter optimization can be formulated as:

minimize
𝐶1, 𝐶2,… , 𝐶𝑘

1
𝑁

𝐾
∑

𝑘=1

𝑁
∑

𝑖=1
𝑟𝑖,𝑘

𝑛𝑖
∑

𝑗=1
𝐿𝑜𝑠𝑠

(

𝐶𝑘,𝐗𝑖
𝑗 , 𝑦

𝑖
𝑗

)

subject to 𝑟𝑖,𝑘 = argmin 1
𝐾
∑

𝑁
∑

𝑟𝑖,𝑘 ‖‖𝐃
𝑖 −𝛺𝑘

‖

‖

(3)
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Where 𝐶𝑘 denotes the model parameters of the clients in 𝑘th cluster, 𝑟𝑖,𝑘 denotes the resulting client clustering with 𝑟𝑖,𝑘 = 1 if client
𝑖 ∈ cluster 𝑘, otherwise 𝑟𝑖,𝑘 = 0. The 𝐃𝑖 denotes client dataset distribution, and 𝛺𝑘 represents the data distribution center for cluster
𝑘. It is important to note that in order to maintain data privacy, the server must indirectly deduce dataset similarity (‖

‖

𝐃𝑖 −𝛺𝑘
‖

‖

).
Studies have shown that for non-IID datasets, clustering-based FL methods outperform the traditional FL methods such as FedAvg

and FedProx [18,29,31]. The key to clustering-based FL algorithms is to estimate the dataset similarity between each pair of clients
without accessing the client’s dataset. Tian et al. [31] developed a similarity-based clustering approach that used the cosine distance
between models’ parameters to estimate their dataset similarity and determine if they should be clustered together for training. In
a similar line of research, Li et al. [29] proposed a soft clustering algorithm that can assign clients to overlapped clusters. In this
way, each client’s information is fully utilized.

For clustering-based FL algorithms, the clustering strategy plays a crucial role in determining the algorithm’s performance. If
a client is allocated to an unsuitable cluster, the resulting global model may perform worse than the more basic algorithms, like
FedAvg, that incorporate all models in the federation process regardless of data domain shift and label heterogeneity. Altogether,
several clustering-based FL approaches have been shown to be effective solutions to the challenge of domain shift and label
heterogeneity [31,45,46]. However, little work has been done to apply these methods in the field of system fault diagnosis.

3.3. FL for fault diagnosis

This section summarizes recent FL studies that address data heterogeneity challenges for machinery fault diagnosis. Due to diverse
operating conditions and system configurations, datasets for system fault diagnosis are often non-IID and unbalanced [47]. The data
heterogeneity poses unique challenges that require developing and validating more advanced FL algorithms.

Adaptation-based approaches are developed by training customized models to accommodate client-specific datasets. Wang
et al. [48] proposed an adversarial domain generalization-based FL framework where clients collaborate to train a global classifier,
and a personalized feature extractor is trained for each client to extract domain-invariant features. A similar idea was pursued by Lin
et al. [49] in their study on hierarchical model parameters aggregation. In their approach, the model layers are divided into initial
and higher layers, where initial layers are shared among clients, and the higher layers serve as personalized classifiers for each
client. Cong et al. [50] attempted to guide the feature extractor to extract domain-invariant features by adding the maximum mean
discrepancy term to the loss function. A notable outcome was an increase in the similarity among the feature sets extracted from
different clients. Zhao et al. [51] developed a global feature alignment module based on multiple kernel maximum mean discrepancy.
Li et al. [52] developed a two-stage transfer learning-based FL framework. In their proposed method, the source-domain clients first
generate fake samples, and then a prediction alignment method is proposed to achieve knowledge transfer without using source
data.

All the methods described above leverage transfer learning techniques for domain adaptation and have each client contribute
approximately equally to the final model. However, it may not always be optimal to have equal contributions from clients toward
model building. Researchers made efforts to tackle this issue by investigating various weighting schemes for averaging over clients.
Zhang et al. [18] proposed a dynamic validation and self-supervision FL framework. In their approach, the server selects subsets of
uploaded client models to generate multiple updated models, and then the updated model with the highest validation accuracy is
selected as the global model for the next FL communication round. Li et al. [47] adopted an improved particle swarm optimization
algorithm to optimize the weight of each client model. One limitation of those studies [18,47] is they require a model validation
dataset to be split out of the training dataset. Chen et al. [13] developed a similarity-based dynamic weighted averaging FL approach,
where the server assigns higher weights to clients’ models that are more similar to the global model during model aggregation.
Geng et al. [53] included the local models’ recall rate and precision values and developed an improved weighted FL algorithm.
Those studies leverage a group of clients’ information to train a more powerful model for the target client/task. However, in these
approaches, client models whose training data distribution is different from the target data distribution are assigned lower weights
than other models. In that way, those FL approaches ignore some clients’ information. Although the developed model performs well
for the target client/task, that model may not be applicable to the clients assigned with lower weights.

Currently, limited research focuses on clustering clients into groups, each with a separate and sometimes independent FL run.
Gholizadeh et al. [45] developed a clustering-based algorithm where each client performs a grid Search with cross validation to tune
their model hyperparameters. Then, during model aggregation, the clients that share similar hyperparameters are clustered into the
same group to get updated models. Li et al. [28] proposed a multi-center clustering-based FL algorithm. They used a k-means-based
algorithm to cluster clients. However, the drawback of this approach is that it requires specifying the number of clusters in advance,
which can significantly affect performance.

4. Proposed FL method

Our approach to FL differs from existing clustering-based FL approaches in two important ways. First, the proposed method
incorporates a distance-aware model into the FL framework, which enables us to use the predictive uncertainty to infer the dataset
similarity and group clients into clusters. The distance-aware model employed in the proposed FL approach has a unique capability
of detecting out-of-distribution input samples, thus preventing the model from making overconfident predictions. Second, a clustering
algorithm that can determine the number of clusters without requiring user-defined parameters is used for client clustering. The
number of clusters is dynamically adjusted by the clustering algorithm during each communication round based on the dataset
5

similarity inferred by the distance-aware model. This ensures that the client grouping is optimized to achieve the maximum
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Fig. 2. An illustration of the FedSNGP training process. Each training communication round has four key steps: (1) local model training, (2) dataset similarity
estimation, (3) local model clustering for training, and (4) model dissemination to the clients.

information transfer to the global model without the need for predefining the number of clusters. Our algorithm is designed to
work well under a wide range of dataset conditions with various levels of domain shift and missing fault types.

Shown in Fig. 2, our FL training strategy consists of four steps:

1. Local model training: each client trains its own model using its dataset and uploads model parameters to the server.
2. Estimation of dataset similarity: each client downloads the models of other clients from the server and estimates the predictive

uncertainty of downloaded models towards its dataset to infer distribution similarity between each pair of client datasets.
3. Model clustering and aggregation: the server forms a similarity matrix based on the estimated dataset similarity, uses an

unsupervised clustering algorithm to group the clients into clusters, and performs model aggregation within each cluster.
4. Model dissemination to the clients: the server sends the updated global model back to the clients for further local training.

In what follows, we describe our uncertainty-aware deep learning model and our dynamic clustering algorithm for FL.

4.1. Uncertainty-aware model training at local clients

Deploying a deep learning model in the field requires building confidence among operators and maintenance personnel regarding
the model’s diagnostic accuracy. At a minimum, the model should indicate higher predictive uncertainty to operators when it
lacks confidence in a prediction. This is particularly important for safety-critical equipment, as an incorrect diagnosis can result
in catastrophic failures, putting people and equipment at risk. For this reason, it is essential to build a fault diagnosis model that
can accurately estimate its predictive uncertainty. Moreover, the uncertainty estimates can be leveraged to improve the performance
of our FL approach.

Real-world fault diagnosis is prone to challenges such as domain shifts caused by changes in operating conditions or other
factors. With a slight shift in input distribution, a vanilla machine learning model may yield overconfident prediction results for
these samples, misleading operators and wasting time. To tackle this problem, it is desirable to develop an algorithm that can infer
when new data exhibit domain shift or unknown fault type with respect to the training dataset. The larger the discrepancy between
the new sample and the model’s training data, the higher the model’s predictive uncertainty should be. To accomplish this, the
proposed method employs a distinctive model architecture that enables the model to identify input samples that differ significantly
from the data it was trained on and consequently produce high uncertainty estimates on these input samples.

The ability of the model to detect the difference between new samples and the training dataset is referred to as ‘distance
awareness’ [54]. Given a deep learning model 𝑙𝑜𝑔𝑖𝑡 (𝐱) = 𝑔◦ℎ (𝐱), where 𝑔 represents the model output layer and ℎ(⋅) denotes the
mapping function that maps the raw input into a hidden representation space, a deep learning model is input distance aware if it
follows two conditions:

1. The model’s mapping function is distance-preserving. Considering the distance in the data manifold ‖

‖

𝐱 − 𝐱′‖
‖𝑋 , the distance

in the hidden space ‖

‖

‖

ℎ (𝐱) − ℎ
(

𝐱′
)

‖

‖

‖𝐻
needs to satisfy the following bi-Lipschitz condition:

𝐿1 × ‖

‖

𝐱 − 𝐱′‖
‖𝑋 ≤ ‖

‖

‖

ℎ (𝐱) − ℎ
(

𝐱′
)

‖

‖

‖𝐻
≤ 𝐿2 × ‖

‖

𝐱 − 𝐱′‖
‖𝑋 , 0 < 𝐿1 < 𝐿2 (4)

2. The model’s output layer is distance aware. The output layer 𝑔 should output an uncertainty metric that reflects distance in
the hidden space ‖

‖

‖

ℎ (𝐱) − ℎ
(

𝐱′
)

‖

‖

‖𝐻
. The standard Gaussian process machine learning model exhibits this property. However,

Gaussian processes are unsuitable for high-dimensional problems and large datasets because the inference is extremely
computationally expensive ((𝑛3)) [55].

To address the limitations mentioned above, Liu et al. [54] proposed a model architecture known as Spectral-normalized Neural
Gaussian Process (SNGP). Fig. 3 shows how SNGP differs from a standard deep residual network. SNGP is formed by residual blocks
6
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Fig. 3. Architecture comparison between a standard deep residual network and SNGP. SNGP adds the distance-awareness ability to the deep residual network
by (1) applying spectral normalization to hidden weights and (2) replacing the last output layer with a Gaussian process.

Fig. 4. Pseudo-code of the training and prediction process of the SNGP model.

equipped with spectral normalization to ensure that the hidden mapping ℎ(⋅) is distance preserving. For the model’s output layer,
the dense layer is replaced with an approximate Gaussian process conditioned on the learned hidden representations of the model.
adopts random feature expansion to convert the infinite-dimensional Gaussian process into a featured Bayesian linear model and
uses Laplace approximation to approximate the posterior. The output layer is designed with fixed hidden weights 𝐰𝐿 and trainable
output weights 𝜷, given as:

𝑔 (𝐡) =

√

2
𝐷𝐿

𝑐𝑜𝑠
(

−𝐰𝐿𝐡 + 𝐛𝐿
)⊺ 𝜷,with prior 𝜷𝐷𝐿×1 ∼ 𝑁

(

0, 𝐈𝐷𝐿×𝐷𝐿

)

(5)

where 𝐡 denotes the output features of the penultimate layer with dimension 𝐷𝐿−1, 𝐰𝐿 is a fixed weight matrix with dimension
𝐷𝐿 ×𝐷𝐿−1 whose entries are sampled i.i.d. from ∼ 𝑁 (0, 1). 𝐛𝐿 is a fixed bias term with dimension 𝐷𝐿 ×1 whose entries are sampled
i.i.d. from 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 𝜋). Conditional on 𝐡, 𝜷 is the only trainable variable in the output layer. For K-class classification, the Laplace
method is applied to approximate the posterior for each class as [54]:

𝑝(𝜷𝑘 ∣ 𝐷) ≈ 𝑀𝑉𝑁
(

𝜷𝑘, �̂�𝑘 = 𝐇𝑘
−1)

,where �̂�𝑘 =
𝑁
∑

𝑖=1
𝑝𝑖,𝑘

(

1 − 𝑝𝑖,𝑘
)

𝛷𝑖𝛷
⊺
𝑖 + 𝐈 (6)

and �̂�𝑘 is the model’s maximum a posteriori probability estimate conditioned on the random Fourier hidden representation,
𝑝𝑖,𝑘 = 1∕(1 + 𝑒−𝛷

⊺
𝑖 𝜷𝑘 ), and 𝛷𝑖 =

√

2
𝐷𝐿

∗ 𝑐𝑜𝑠
(

−𝐰𝐿ℎ(𝐱𝑖) + 𝐛𝐿
)

.
Training the SNGP model can be performed using stochastic gradient descent:

− log 𝑝
(

𝜷,
{

𝐰𝑙 ,𝐛𝑙
}𝐿−1
𝑙=1 ∣ 

)

= − log 𝑝
(

 ∣ 𝜷,
{

𝐰𝑙 ,𝐛𝑙
}𝐿−1
𝑙=1

)

+ 1
2
‖𝜷‖2 (7)

where − log 𝑝
(

 ∣ 𝜷,
{

𝐰𝑙 ,𝐛𝑙
}𝐿−1
𝑙=1

)

is the cross-entropy loss for the classification task. The pseudo-code of the training and test
procedure of the SNGP model is summarized in Fig. 4. A good tutorial of SNGP can be found in Ref. [56]. Each client trains a
local model using the local dataset and uploads the model to the server (see Fig. 2).
7
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Fig. 5. Pseudo-code of FedSNGP algorithm.

4.2. Dataset similarity estimation for federated clustering

When dealing with client datasets that are heterogeneous, the typical methods of FL strategies may result in suboptimal
performance. One way to alleviate the negative impact caused by data heterogeneity is to cluster clients [57]. Clustering-based
FL algorithms group clients into clusters based on their dataset similarity. The SNGP model is capable of inferring the distance
between the training dataset and test samples. Therefore, SNGP model can be adopted to infer the similarity between the datasets
of two clients. The FedSNGP algorithm involves uploading the locally trained model from each client to the server after training.
Following this, the clients work together to estimate the similarities between their datasets.

As the SNGP model is distance aware, the model’s prediction result reflects the similarity between the test sample and the training
datasets. To infer client dataset similarity, each client downloads other clients’ models and evaluates other models’ prediction
results against the local training dataset. The SNGP model

{

𝜷,
{

𝐰𝑙 ,𝐛𝑙
}𝐿−1
𝑙=1 , �̂�−1

}

maps the input 𝐱 into random Fourier feature

𝛷 =
√

2
𝐷𝐿

𝑐𝑜𝑠
(

𝐰𝐿ℎ (𝐱) + 𝐛𝐿
)

, and the output posterior predictive probability for each class follows 𝑀𝑉𝑁
(

𝛷⊺𝜷𝑘, 𝛷⊺�̂�−1
𝑘 𝛷

)

, the
expectation of the probability can be approximated by using the mean-field method:

𝐸 (𝑝 (𝐱)) ≈ Softmax
⎛

⎜

⎜

⎜

⎝

𝛷⊺𝜷𝑘
√

1 + 𝜆 ∗ 𝛷⊺𝐇𝑘
−1
𝛷

⎞

⎟

⎟

⎟

⎠

(8)

where 𝜆 is a scaling factor that is commonly set to 𝜋∕8 [54,58]. Then, in this study, the predicted variance is used to infer model
uncertainty:

𝑃𝑣𝑎𝑟 ≈
1
𝑛𝑖

𝑛𝑖
∑

𝑖=1
𝑣𝑎𝑟

(

𝑝
(

𝐱𝐢
))

= 1
𝑛𝑖

𝑛𝑖
∑

𝑖=1
𝐸
(

𝑝
(

𝐱2𝐢
))

−
(

𝐸
(

𝑝
(

𝐱𝑖
)))2 (9)

he predicted variance reflects the distance between a model’s training and test datasets, where higher variance indicates a higher
ifference between two datasets. In the proposed FedSNGP approach, each client downloads all the local models and evaluates those
odels using its local training dataset. Then, the predicted variance results are uploaded to the server and are used for clustering.
he predicted variance is used to form a 2D matrix, where the entry in 𝑖th row, 𝑗th column is the predicted variance from evaluating
he 𝑗th model using the 𝑖th client’s dataset. After performing column-wise normalization, the results form a predictive uncertainty
atrix with the range [0, 1], with dimension 𝑁𝑐𝑙𝑖𝑒𝑛𝑡 ×𝑁𝑐𝑙𝑖𝑒𝑛𝑡, denoted as 𝑀𝑈 .

In the next step, the affinity propagation algorithm [59] is used to automatically determine the number of clusters. Unlike the
-means clustering algorithm, affinity propagation does not require the user to specify the number of clusters in advance. Instead,
t automatically determines a suitable number of clusters. We create a similarity matrix 𝑀𝑆𝑖𝑚 by calculating 1−𝑀𝑈 . The similarity
atrix represents the similarity between clients’ datasets, where values close to 0 indicate high predictive uncertainty and suggest

hat the 𝑗th client’s dataset differs significantly from the 𝑖th client’s dataset, and the clients would not benefit from federating
ogether. The affinity propagation takes the similarity matrix as input and outputs the clustering strategy for model aggregation.
he clustering strategy takes place remotely on the central server. A pseudo-code describing this process is provided in Fig. 5, and
code implementing FedSNGP in Python can be accessed at https://github.com/SalieriLu/FL_fault_diagnosis.

. Training and test configuration

.1. Selected datasets

We evaluate the performance of the proposed algorithm on three bearing fault diagnosis case studies to demonstrate the
ffectiveness of the FedSNGP algorithm. A summary of three case studies is given in Table 1. These case studies are designed
8
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Table 1
Summary of selected bearing datasets.

Name Bearing health conditions Cause of
bearing faults

Sampling
frequency

Other important
quantities

CWRU

Operating condition
ID

Shaft
speed

Bearing fault
diameter

Healthy, Inner race fault,
Outer race fault

Electric
engraver 12 kHz

1 1797 rpm 0.007"
2 1797 rpm 0.014"
3 1772 rpm 0.007"
4 1772 rpm 0.014"
5 1730 rpm 0.007"
6 1730 rpm 0.014"

PU

Operating condition
ID

Shaft
speed

Load
torque

Radial
force

Healthy, Inner race fault,
Outer race fault

Accelerated
degradation 64 kHz

1 1500 rpm 0.7 N m 1000 N
2 900 rpm 0.7 N m 1000 N
3 1500 rpm 0.1 N m 1000 N
4 1500 rpm 0.7 N m 400 N

ISU

Operating condition
ID

Shaft
speed

Radial
force

Healthy, Inner race fault,
Outer race fault,
Combination of bearing faults

Electric
engraver 25.6 kHz

1 2100 rpm 0
2 2100 rpm 25 N
3 1500 rpm 0
4 1500 rpm 25 N

to simulate the data heterogeneity challenges. The dataset for each case study contains vibration signals collected from bearings
with distinct health conditions under various operating conditions. To simulate the FL scenario, the dataset is partitioned into 12
subsets, and each subset is allocated to a client. The objective of each client is to train a fault diagnosis model capable of accurately
identifying the health condition of bearings. The selected bearing datasets chosen for this task are as follows:

1. Case Western Reserve University (CWRU) dataset [60]: Case study 1 uses the Case Western Reserve University (CWRU) bearing
dataset, which is widely used as a standard reference in the bearing diagnosis field. The data was collected with a 12 kHz
sampling frequency under four working conditions. The bearing faults were introduced by using electro-discharge machining.
Three manual fault sizes were created, with diameters of 0.007, 0.014, and 0.021 inches. Considering that outer race and inner
race faults are more frequently appeared in accelerated degradation tests, the healthy, inner race fault, and outer race fault
bearings are selected. For each type of fault, the bearings with fault diameters of 0.007 and 0.014 inches are selected.

2. Paderborn University (PU) dataset [61]: Case study 2 uses an experimental dataset collected by the KAT data center in Paderborn
University (PU). The PU dataset contains high-resolution vibration data, which are collected from six healthy bearings and 26
damaged bearings under four working conditions. The sampling frequency is 64 kHz. Out of the 26 damaged bearing sets, 12
bearings were artificially damaged, and the other 14 were damaged by accelerated lifetime test. Bearings that undergo accelerated
lifetime testing are selected in this case study. In total, bearings with three different health conditions (healthy, inner race fault,
and outer race fault) are included, with three bearings for each health condition.

3. Iowa State University (ISU) dataset: An experimental dataset is collected from a machinery fault simulator in our lab at Iowa
State University, denoted as the Iowa State University Machinery Fault Simulator (ISU-MFS) dataset, or simply the ISU dataset.
The ISU dataset was collected with a 25.6 kHz sampling frequency from four bearings under four working conditions. The bearing
faults were introduced by electrical discharge machining, where the size of each fault is approximately 1.5 mm × 1.0 mm × 0.1
mm. Four health conditions are considered: healthy, inner race fault, outer race fault, and a combination of faults.

The above-mentioned datasets are collected under different sampling rates and different sampling times. All three datasets are
sed in three separate case studies to evaluate the proposed FL method thoroughly. To allow meaningful comparisons between
atasets, this study uses the same settings for data pre-processing, feature extraction, and input size across all three datasets. Keeping
he model input size consistent across all datasets ensures all models have the same number of parameters and makes comparisons
etween datasets meaningful. We first resample vibration signals with sampling frequency = 12.8 kHz and then split each signal

into multiple vibration samples. The length of each sample is equal to 1024 (i.e., each sample has a total of 1024 measurement
points), equivalent to 0.08 s of vibration measurements. Frequency-domain analysis has been widely applied in vibration-based
bearing diagnosis [6,62]. In this study, the fast Fourier transform is used to acquire the single-sided output of a signal’s power
spectrum. After signal pre-processing, each time-domain signal is converted into a frequency-domain feature vector of length 512.
After dataset pre-processing, 80% of the total dataset is used to form training datasets, while the remainder is used for testing.

5.2. Design of the FL scenarios

To demonstrate the impact of dataset heterogeneity, this study considers three FL scenarios in which each client’s dataset is
collected under different working conditions. Moreover, due to the rareness of faults in real-world industrial equipment, each client
9
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Fig. 6. An illustration of the three test conditions examined in this paper.

may not be able to observe every possible fault under all possible operating conditions. In the domain adaptation problem, the
partial domain adaptation scenario is defined by making the source domain have all classes of data and the target domain cover
only a subset of those classes [63]. We extend this definition to FL scenarios where certain clients’ datasets contain a subset of all
classes. For consistency and simplification, such scenarios are also denoted as open-set FL. The training datasets under scenarios 1
and 2 are defined using the partial domain adaptation setting with domain shift. Specifically for Scenario 3, we drastically vary the
number of samples in each client’s dataset to make the problem more difficult.

Fig. 6 shows the three FL scenarios considered in this work. In scenario 1, client datasets are collected under different working
conditions, and differences exist in each client’s label space (partial domain adaptation setting). For example, some clients might
only have healthy and inner race fault samples, while other clients might have healthy and outer race fault samples. Under Scenario
1, each client’s evaluation dataset follows a similar distribution as the training dataset (the types of test data are identical to the
training dataset).

The training datasets in scenario 2 are identical to the settings in scenario 1. However, different from scenario 1, the test datasets
are label-balanced datasets, which means clients need to collaborate to train a model that is capable of identifying unknown fault
types.

Finally, for scenario 3, in addition to the feature distribution shift caused by different working conditions, the clients’ datasets
follow the partial domain adaptation setting with data quantity heterogeneity. The prediction difficulties are increased from scenario
1 to scenario 3.

Three test scenarios are designed for each case study. We first divide each dataset into several subsets, where each subset contains
data collected under the same operating conditions. Then, we further divide each subset of data into clients’ local datasets. For
example, the CWRU training dataset is divided into six subsets, where each subset is further divided into two training datasets, each
produced for one client. Note that the samples within the same subset are collected under the same operating conditions.

For the CWRU dataset, six operating conditions are defined, and 6×2 = 12 client datasets are created, each containing data related
to two particular health conditions. Under this setting, the clients need to work together to train a model capable of classification
for any of three health conditions. For the PU dataset, 4×3 = 12 client datasets are created. Clients 1,4,7 and 10 contain three types
of training samples, while others only own two types of samples. The ISU dataset is also divided into 12 client datasets.

In scenarios 1 and 2, all the training datasets are utilized to generate client training datasets, and in scenario 3, some clients are
assigned a portion of the total data to create the client-wise quantified discrepancy. The design of the training datasets for scenarios
1 and 2 is detailed in Table 5 in the appendix. Table 6 summarizes the design of the training datasets for scenario 3. The design
of the test datasets for scenario 1 is detailed in Table 7 in the appendix. And Table 8 summarizes the design of test datasets for
scenarios 2 and 3.

5.3. Alternative FL algorithms used for comparison

In this section, we evaluate the performance of the proposed FedSNGP algorithm and compare it with the local training
algorithm and FedAvg [15]. The latter two algorithms have been widely used in FL applications. To examine the relative merit
of uncertainty-based client clustering, we compare FedSNGP with a cosine similarity-based clustering algorithm (adopted from the
work in Ref. [31]).

a Standard Locally-Trained Fault Diagnosis Models: To highlight the benefit of performing FL, we include the algorithm where
each client updates their respective model parameters without FL. In the local training algorithm, each client trains the model
10
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Table 2
Summary of average test accuracy (%) for each case study.

Method Scenario 1 Scenario 2 Scenario 3

CWRU PU ISU CWRU PU ISU CWRU PU ISU

Local training 99.58 99.93 100.00 75.69 77.72 50.11 70.56 71.33 45.76
FedAvg 99.37 98.31 98.80 99.16 98.14 98.20 89.17 97.67 92.80
FedCos 99.79 99.47 99.92 99.72 80.06 50.00 72.63 80.39 49.98
FedSNGP 99.58 99.90 100.00 99.44 99.92 100.00 95.56 99.81 99.66

b Federated Averaging: As a widely recognized FL algorithm, FedAvg performs weighted averaging to aggregate all the client’s
parameters. The training procedure of FedAvg is given in Fig. 1 a. When the datasets are non-IID, some models may perform
worse than standard locally-trained models. FedAvg serves again as a second baseline for comparison where all clients’ models
are aggregated without considering data heterogeneity.

c Federated Clustering Using Cosine Similarity: The cosine similarity has been widely utilized in clustering-based FL [23,31].
This study adopts a clustering-based algorithm presented in Ref. [31] as a comparison algorithm, denoted as FedCos. The FedCos
algorithm differs from the FedSNGP in that it determines the clustering strategy by evaluating the cosine similarity between the
parameters of local models instead of utilizing predictive uncertainty results. Given two local model parameters 𝜽𝑖 and 𝜽𝑗 , the
cosine similarity between the two models is defined as:

𝑆𝑖𝑚𝐶𝑜𝑠(𝜽𝑖,𝜽𝑗 ) =
𝜽𝑖 ⋅ 𝜽𝑗

‖𝜽𝑖‖‖𝜽𝑗‖
(10)

The cosine similarity metric measures the angle between 𝜽𝑖 and 𝜽𝑗 , a smaller angle indicates a higher similarity between 𝜽𝑖 and
𝜽𝑗 . Similar to the FedSNGP algorithm, each communication round of the FedCos algorithm is composed of four steps:

(a) Each client trains a local model individually and uploads the model to the server.
(b) The server evaluates the cosine similarity between the parameters of local models and generates a similarity matrix 𝑀𝑆𝑖𝑚.
(c) The affinity propagation algorithm is applied to determine the clustering strategy and generate an updated global model

for each cluster by using Eq. (1).
(d) Each client downloads the updated global model from the server.

he key difference between FedAvg, FedCos, and FedSNGP is the server’s model aggregation algorithm. Therefore, in this study, all
he clients utilize the same SNGP model architecture for their models, and the processed features are a 1D array with a length of 512.
he SNGP model is designed with three spectral normalized residual blocks, and each block contains one fully connected layer with
4 units. The models in this study are trained using FL algorithms for a total of 50 communication rounds. In each communication
ound, each client performs local model updates for a period of five epochs with a fixed learning rate of 0.005.

. Results and discussion

.1. Evaluation results

Each of the 12 clients in the FL process undertakes their own diagnostic task, resulting in a total of 12 tasks for each test scenario.
o evaluate the performance of the algorithms, we begin by examining the average test accuracy across all 12 clients. The average
est accuracies are summarized in Table 2, and the detailed results are listed in Appendix Table 9.

In scenario 1, each client’s training and test data follow a similar distribution. The model training and test are conducted using
amples that have the same types of bearing faults. The performance of FedAvg is worse than the other three methods, which is
aused by the heterogeneity of the dataset. Still, all four algorithms achieved a test accuracy of more than 95% for all three case
tudies.

Compared to scenario 1, scenarios 2 and 3 present greater challenges. In those scenarios, several clients have unbalanced training
atasets, while the test dataset covers all fault types. Clients must acquire diagnosis knowledge from one another. Otherwise, they
annot identify unknown fault types. Consequently, the performance of the local training algorithm experienced a significant decline.
or instance, when examining scenario 2 of the PU case study in Table 9 in the appendix, the prediction accuracy for client 2 by
he local training algorithm is only 66.67%. This low-accuracy performance is expected since client 2’s training dataset contains
nly healthy and outer race fault samples, rendering the locally trained model unable to classify inner race fault samples correctly.
eanwhile, client 2’s model developed by FedAvg achieved a prediction accuracy of over 99%. Although FedAvg demonstrates

ignificant improvement over local training, clients 4, 5, and 6 still achieved only 94.00% accuracy, which is lower than the accuracy
umber (99.67%) achieved by FedSNGP. Another noteworthy thing is that the models trained by FedCos perform worse than
xpected. For example, client 2’s model under FedCos only achieved 66.67% accuracy, possibly due to incorrect client clustering.

.1.1. Scenario 2 case studies
Fig. 7 shows the prediction results for scenario 2. The top half of the figure summarizes the average test accuracy. And the

ottom half of the figure shows the specific diagnosis accuracy for each client.
11
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Fig. 7. The prediction results for scenario 2 case studies. The bar charts show the average test accuracy of each algorithm, and the radar chart shows the
prediction accuracy of each client model generated by different training algorithms.

As a benchmark bearing dataset, the fault pattern of the CWRU dataset is obvious, the change in working conditions does not lead
to a significant domain shift, and the fault patterns can be identified easily. Considering that the feature distribution discrepancy
is not severe in scenario 2, the FL algorithms successfully utilize the client’s information, and both FedAvg, FedCos, and FedSNGP
achieved a test accuracy of more than 95%. As a comparison, the locally trained client models cannot identify unknown fault types.
Resulting in an accuracy of around 75%.

For the PU dataset case study, the local datasets of clients 1, 4, 7, and 10 contain all the health conditions. That information is
sufficient to train highly accurate diagnosis models. Therefore, the local training algorithm achieves a testing accuracy of around
100% for those four clients. On the other hand, the remaining eight client datasets were restricted to only one health and one faulty
condition, preventing the client from training an accurate model independently without the knowledge of the missing fault types.
As a result, the locally trained models for those eight clients were unable to effectively diagnose fault types that were not present
in their respective training datasets. As a benchmark FL algorithm, FedAvg aggregates all the client’s information by performing
weighted averages to local models’ parameters. Most of the models trained by FedAvg achieve an accuracy of more than 95%, and
clients 4,5,6 yield a 94.00% accuracy. This decline in performance is attributed to the domain discrepancy among clients, primarily
due to the variance in working conditions. The average accuracy of FedCos is 80.1%, which is slightly higher than the one of the
local training method (77.7%). Based on the radar chart analysis, the performance of FedCos models was inferior to that of FedAvg
models. The models trained by FedCos yield 100% accuracy on clients 1 and 7, and for other clients, the model’s accuracy is around
2∕3. This is mainly because FedCos is not able to accurately cluster the clients. The FedSNGP models achieved almost 100% accuracy
for all the clients. Finally, the ISU dataset case study shows that the proposed FedSNGP outperforms the other three methods.

6.1.2. Scenario 3 case studies
In addition to domain shifts and partial domain adaptation, scenario 3 also considers differences in the number of training

samples. In this scenario, some clients may possess a larger number of samples, while others may have only a limited number.
Previous studies have indicated that unbalanced training sample quantities can significantly impact the performance of the FedAvg
algorithm [23]. The evaluation results for scenario 3 case studies are summarized in Fig. 8. The feature distribution and sample
quantity discrepancy make diagnosis tasks more challenging than scenario 2. As a result of the varying numbers of training samples
held by each client, the training dataset exhibits more pronounced non-IID properties, resulting in the performance decline of
FedAvg and FedCos models. However, the introduction of training sample number discrepancy does not affect the performance
of the proposed FedSNGP. In all three case studies within scenario 3, models trained using FedSNGP outperformed those trained
using other methods, achieving average prediction accuracies higher than 95%.

6.2. Analysis of the clustering strategy

Unlike FedAvg, which creates a single global model for all the clients, clustering-based FL algorithms assign clients to multiple
clusters. Then, the clients in each cluster are federated together to train a global model. Several cosine similarity-based clustering FL
algorithms have been developed [29,31]. This study considers both domain shift and partial domain adaptation setup. It is surprising
that the FedCos algorithm does not show any improvement compared to FedAvg. In this section, the PU case study (scenario 2)
compares the clustering strategy of FedSNGP and FedCos and analyzes why FedCos performs worse than FedSNGP.

The PU dataset was collected under four working conditions, and four data subsets were designed, with each subset containing
vibration signals collected under a specific working condition. The kernel density estimation algorithm is a well-known method for
12
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Fig. 8. The prediction results for scenario 3 case studies. The bar charts show the average test accuracy of each algorithm, and the radar chart shows the
prediction accuracy of each client model generated by different training algorithms.

Fig. 9. Kernel density estimations of datasets by calculating the average amplitude of input features (sorted by different labels), the average amplitude distribution
of subset A and subset C are similar (the kernel density estimations almost overlap), which indicates the data collected under those two operating conditions
can be viewed as following similar data distribution and should be allocated into the same cluster.

estimating a random variable’s probability distribution (probability density function) based on a given set of samples. This algorithm
was used to analyze the average amplitude distribution of vibration signals [64]. Fig. 9 visualizes the distribution of the average
amplitude of the samples. It has been acknowledged that the shaft speed affects the bearing fault characteristic frequencies, and
the change of shaft speed affects the vibration amplitude a lot. The subset B data (marked by blue shade) was collected under 900
rpm, which is significantly different from the other three subsets. The kernel density estimation results also infer that the feature
distribution of subset B is significantly different from the other three subsets. For the remaining three subsets, their healthy samples
seem to follow a similar distribution. The feature distributions of outer race and inner race fault samples suggest that data in subset
D differs slightly from the other two subsets. Based on the kernel density estimation analysis, it appears that subsets A and C have
similar data distributions, while subset D has some differences from subsets A and C. Subset B, on the other hand, is notably different
from the other subsets. A desired clustering strategy needs to make sure that: (a) the clients in the same subset (which means the
client datasets were collected under the same working condition) should be grouped together; and (b) if two subset features share
similar distributions, then those two subsets should be grouped together. Therefore, a satisfactory clustering strategy should yield
the following three clusters for the PU case study: {client 1, client 2, client 3, client 7, client 8, client 9}, {client 4, client 5, client
6}, and {client 10, client 11, client 12}.

Fig. 10 shows the dynamic changes in clustering results by FedCos and FedSNGP in the different communication rounds. In the
first communication round, since the models are still in the early training stage, both FedCos and FedSNGP cannot group clients
13
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Fig. 10. Clustering results produced by FedCos and FedSNGP. The color shade for each client ID represents the subset ID (i.e., working condition) under which
the data owned by the client was collected.

correctly. As the number of communication rounds increased, each client model started to capture the distribution of its training
dataset. FedSNGP assigns clients into three clusters. The subsets A and C form one cluster, while B and subset D clients form two
clusters. On the contrary, FedCos fails to group clients from the same subset into the same cluster. The incorrect clustering strategy
employed by FedCos resulted in a decrease in the model’s performance.

Fig. 11 shows the dynamic changes of the similarity matrix provided by FedCos and FedSNGP in each communication round.
Each entry shows the calculated similarities between the two models. The darker blue indicates a higher similarity between the
two clients. It should be noted that while FedCos and FedSNGP utilize the same model architecture, they use different metrics to
infer data distribution similarity. FedCos estimates the similarity by comparing the model parameters. In the initial communication
round, since each client model is initialized with the same parameters and has undergone only five local training epochs, the cosine
similarity matrix between each pair of clients exhibits large values. After the second communication round, it is still difficult to
determine if any two local models are significantly different. After the communication round 10, the results start to indicate high
similarities between certain client models. However, due to the severe distribution discrepancy among clients, some clients are
optimized in different directions. More importantly, within each communication round, the server clusters clients based on the
model parameters, and the model aggregation process affects the updated model parameters. In case a client is assigned to an
inappropriate cluster, it becomes challenging for the algorithm to rectify the mistake and assign the client to the correct cluster. As
a result, the 𝑀𝑆𝑖𝑚 generated by FedCos does not necessarily reflect the dataset similarity, and the algorithm does not assign clients
of the same subset to the same cluster. For example, we expect the models of clients 1, 2, 3, 7, 8, and 9 to show a higher similarity
because those three clients collect data under the same working condition (subset A). However, according to the entries of the first
row, the normalized cosine similarity between clients 1 and 7 is significantly larger than other entries, while the cosine similarity
between 1 and 2 is relatively low. Finally, only clients 1 and 7 are clustered together.

Unlike FedCos, which uses cosine similarity to cluster clients, the FedSNGP uses model predictive uncertainty as a driving force
for clustering. FedSNGP generates a similarity matrix (𝑀𝑆𝑖𝑚) that is non-symmetric, indicating that the similarity between two
datasets is not necessarily the same in both directions. By considering predictive uncertainty, the FedSNGP is better equipped to
estimate dataset similarity, making it more effective than FedCos in clustering clients for FL.

While after the first communication, the FedCos indicates that all the models are similar (with cosine similarity being more
than 0.8 for each pair of clients), FedSNGP starts to indicate that certain client datasets are significantly different from others. For
example, the second row indicates that dataset 2 is significantly different from dataset 4 and 5 (the similarity values are around 0).
It is worth noting that a single client’s estimation results can be unreliable. For instance, if we consider the perspective of client 3
(the third row), its data distribution is significantly different from that of clients 1 and 2. This is due to the fact that the training
dataset of client 3 only covers healthy and outer race fault samples, unlike client 1, which has all the classes of training datasets.
Consequently, the similarity estimations from client 3 may not be as dependable as those from client 1. While both the first row
and second row indicate that clients 1,2,3,6,7, and 12 have similar data distributions, the third row suggests that the dataset of
client 3 differs significantly from those of all the other clients. Affinity propagation clustering considers all clients’ information and
adaptively creates client clusters. Notably, after round 10 of communication, the FedSNGP algorithm formed three clusters: the first
cluster included clients 1, 2, 3, 5, 6, and 7, the second cluster grouped clients 3, 4, and 5, and the third cluster included clients 10,
11, and 12.

Figs. 10 and 11 illustrate how clients are clustered using FedCos and FedSNGP, respectively. Fig. 10 analyzes the training datasets
by examining the average amplitude. To validate the accuracy of the clustering strategy, we conducted the following test.

(a) We divide the whole dataset into four subsets based on the working conditions. We then use each subset to train an individual
SNGP model. The total number of training epochs is 20. After every five epochs, we record the model parameters. Finally, we use
the principal component analysis algorithm to map the parameters of each model onto a 2D plot.
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Fig. 11. Compare the similarity matrix generated by FedCos and FedSNGP at communication rounds 1, 2, and 10.

Fig. 12. Change of model parameters. The model parameters are mapped into 2D plots, and the arrow connects each adjacent model point to show the
optimization direction of each model.

(b) In the context of the PU dataset (scenario 2 setting), we utilized 12 client datasets to train 12 models. The number of training
epochs is 20. Again, model parameters are recorded at every five epochs. Finally, we use principal component analysis to map the
parameters of the 12 models onto a 2D plot. As shown in Fig. 12a, the shift of model parameters indicates that models trained
on subset A or C are being optimized in a comparable direction, suggesting that the data distribution of subset A is similar to
subset C. According to our kernel density feature distribution analysis, subsets B and D should be trained independently without
utilizing information from other subsets. This is further supported by Fig. 12b, which demonstrates that the client models generally
form three clusters. However, for clients with imbalanced training datasets, such as clients 11 and 12, their optimization directions
exhibit slight divergence from the desired direction, especially during the initial stages. This divergence may potentially mislead the
cosine-similarity-based FL approach. Therefore, these findings suggest that at the early stages of local model training, the similarity
of model parameters may not necessarily reflect the similarity or discrepancy of the data.

6.3. Handling out-of-cluster-distribution samples

One limitation of clustering-based FL is that the trained model’s performance may degrade significantly toward out-of-distribution
test samples. In the context of bearing diagnosis, if the testing data falls outside the distribution of the client’s training dataset, the
client may generate inaccurate predictions which can have a substantial impact on availability and maintenance costs. This limitation
poses a challenge to the practical application of the diagnosis algorithm in industrial settings. However, unlike conventional
clustering algorithms, the FedSNGP incorporates predictive uncertainty into the FL framework, which can quantify the predictive
uncertainty toward the model’s prediction result. This property of uncertainty quantification could potentially enhance the reliability
and practicality of the FedSNGP algorithm for industrial applications.

In this section, we show how FedSNGP deals with out-of-distribution samples. If an SNGP model is tested with out-of-distribution
samples, the predictive uncertainty increases significantly higher compared to the uncertainty towards the training dataset. To
15
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Fig. 13. An example of predicted variance-guided model selection: a. the model’s predicted variance results. b. the confusion matrix of prediction results.

identify out-of-distribution samples, a predictive uncertainty threshold is adaptively defined based on a model’s predicted variance on
its training dataset. In this study, we set the threshold for each client’s model to ten times the predicted variance on its own training
dataset. During model evaluation, if a client model’s predicted variance on a test dataset exceeds this threshold, it suggests that the
test dataset falls outside of the client’s training data distribution. Considering these two data distributions may differ substantially,
the client will likely seek help from other clients.

To do this, the client downloads other client clusters’ models from the server and tests them with the test dataset. The client
selects the model that yields the least predicted variance. Fig. 13 provides a numerical example using client 1 in the PU dataset
case study (scenario 2). The client first evaluates the test dataset using model 𝜽1, with a test predicted variance of 0.272, which is
significantly larger than its predicted variance towards its training dataset. The client then seeks help from the server.

On the server side, it is known that clients form three clusters. The server shares the other two clusters’ models (𝜽4 and 𝜽10) with
client 1. The model 𝜽4 yields the least predicted variance, and that value is within the threshold. Therefore, model 𝜽4’s result is more
reliable. The confusion matrix listed in Fig. 13b demonstrates that 𝜽4 yields the highest accuracy. The predicted variance-guided
model selection strategy can fully utilize the information provided by all the clients.

6.4. Ablation study

The proposed FedSNGP method has two key steps: data similarity estimation and model clustering. The data similarity estimation
step generates a similarity matrix to guide model clustering. In this section, we use the PU case study (scenario 2) as an example
to analyze how these two steps influence the client models’ diagnostic performance. The ablation study is performed by comparing
FedSNGP with the following two baselines.

• The first baseline is designed by removing the ‘‘data similarity estimation’’ step, denoted as FedAP. Instead of having the
affinity propagation algorithm take the similarity matrix as the input for client clustering, FedAP works by having the affinity
propagation algorithm cluster clients according to the local models’ parameters.

• The second baseline is designed by leaving out the ‘‘model clustering’’ step. Note that when the ‘‘model clustering’’ step is
removed, all the models collaborate during the model aggregation to generate a single updated model. This single model
will be allocated to every client for the next FL communication round, effectively making the resulting algorithm identical to
FedAvg. Therefore, FedAvg is selected as the second baseline method.

The ablation study results are summarized in Table 3. It is clear that the client models developed by FedAP (the first baseline,
no data similarity estimation) perform worse than those by the proposed FedSNGP method. Removing the data similarity estimation
step leads to incorrect client clustering, making FedAP perform even worse than FedAvg(the second baseline, no model clustering).

Table 4 summarizes the clustering results by FedAP and FedSNGP. The FedAP method fails to assign clients with similar data
distributions to the same cluster. Similar to the FedCos method (see Section 6.2), FedAp uses the client models’ parameters for
clustering and parameter optimization. At the early stage of FL, the similarity between models’ parameters may not necessarily
reflect the similarity between models’ training datasets. If the clustering results are incorrect at one communication round, it is
challenging for FedAP to rectify the mistake in the following communication rounds.

The above comparisons between FedSNGP and its two baseline methods provide empirical evidence that the ‘‘model similarity
estimation’’ step could allow the server to correctly cluster clients according to their similarity in training data distribution. Also,
correctly clustering clients and then performing model aggregation within each cluster could produce more accurate models than
models trained by the traditional FedAvg method.
16
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Fig. 14. Effects of hyper-parameters on fault diagnosis performance of the PU dataset.

Table 3
Comparison of prediction accuracy (%) of three different FL
methods in the ablation study.

Table 4
Clustering results provided by FedAP and FedSNGP in the ablation study.

6.5. Hyper-parameter analysis

This section investigates the effects of the model hyper-parameters using the PU dataset. Two hyper-parameters are analyzed:
(1) the number of spectral normalized residual blocks and (2) the number of units within each fully connected layer. The default
setting is three residual blocks, and each block contains one fully connected layer with 64 units. Each client selects 20% of the
training data, and after mixing, this subset is uniformly distributed among 12 clients, serving as their respective validation datasets.
The average validation accuracies are summarized in Fig. 14.

The results show that the FedSNGP algorithm is minimally affected by the number of units in each fully connected layer and
the number of residual blocks. The algorithm achieved 97.10% accuracy when the client model had a single block with 64 units.
The setting of three blocks with 16 units achieved comparable results with 96.12% accuracy. With the increase of residual blocks
or units, the validation accuracy shows slight improvement and then becomes stable (around 100%). In FL, a lightweight model
generally leads to less computational burden and faster communication. With this in mind, we used a model with three residual
blocks and 64 units is suitable for the results presented in this study. Note that in all the tested validation scenarios, the FedSNGP
algorithm successfully groups clients to maximize accuracy, as expected. The model with less trainable parameters can be used
based on the communication requirement in the practical implementations.

7. Conclusion

This study proposes an FL algorithm with uncertainty-based dynamic client clustering, called FedSNGP, to address the data
heterogeneity challenges in fault diagnosis on fleets of system/component units. The benefits of using FedSNGP are two-fold.
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First, estimating the data similarity during model training allows the server to effectively cluster clients to develop models better
ustomized to each client’s training dataset distribution. Second, uncertainty quantification during model evaluation enables each
lient to discern out-of-distribution samples and be informed of model confidence in making predictions, enhancing the reliability
nd practicality of the proposed method for industrial applications.

Three case studies are designed by defining client datasets with both domain shifts and open-set label shifts. Experimental results
sing three datasets and three FL scenarios demonstrate that our FedSNGP outperforms FedAvg and FedCos, achieving over 99%
ccuracy for all clients. The models trained by FedSNGP achieve high accuracy on data similar to their training data distribution and
emonstrate the ability to identify out-of-distribution samples, which makes the proposed model applicable to open-set FL scenarios.

Despite the advantages mentioned above, the proposed FedSNGP method has some limitations and challenges that need future
esearch. For example, estimating data similarity requires each client to download models from the server, resulting in more
omputational resources and longer training time compared to FedAvg. A potential strategy to mitigate this limitation is to reduce
ata transmission volumes between the server and clients by encoding model parameters. Another limitation of FedSNGP is that
t requires each client to have access to the other clients’ models, which may lead to privacy concerns. One way to mitigate this
ssue is to shuffle the order of client models and hide the models’ client IDs when a client downloads other models. This makes it
ore challenging for each client to reconstruct other clients’ training datasets. Besides the aforementioned improvement strategies,

xploring transfer learning-based FL across datasets is also a topic of interest for future research.
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ppendix

esign of the training datasets for scenarios 1 and 2

The training datasets of 12 clients in scenarios 1 and 2 follow the same design, summarized as Table 5.

esign of the training datasets for scenarios 3

To create data sample heterogeneity, in scenario 3, some clients only use a portion of the training dataset to train the model.
he design of the training dataset for scenario 3 is listed as Table 6.

esign of the test datasets for scenarios 1

The design of test datasets for scenario 1 is summarized in Table 7.

esign of the test datasets for scenarios 2 and 3

The design of test datasets for scenarios 2 and 3 is summarized in Table 8.
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Table 5
Design of training datasets for scenarios 1 and 2.

CWRU

Client ID Operating conditions Number of samples

Healthy Inner race
fault

Outer race
fault

1 Shaft speed = 1797 rpm
Fault diameter = 0.007′′

80 80 0
2 80 0 80

3 Shaft speed = 1797 rpm
Fault diameter = 0.014′′

80 80 0
4 80 0 80

5 Shaft speed = 1772 rpm
Fault diameter = 0.007′′

80 80 0
6 80 0 80

7 Shaft speed = 1772 rpm
Fault diameter = 0.014′′

80 80 0
8 80 0 80

9 Shaft speed = 1730 rpm
Fault diameter = 0.007′′

80 80 0
10 80 0 80

11 Shaft speed = 1730 rpm
Fault diameter = 0.014′′

80 80 0
12 80 0 80

PU

Client ID Operating conditions Number of samples

Healthy Inner race
fault

Outer race
fault

1 Shaft speed = 1500 rpm
Load torque = 0.7 N m
Radial force = 1000 N

1200 1200 1200
2 1200 1200 0
3 1200 0 1200

4 Shaft speed = 900 rpm
Load torque = 0.7 N m
Radial force = 1000 N

1200 1200 1200
5 1200 1200 0
6 1200 0 1200

7 Shaft speed = 1500 rpm
Load torque = 0.1 N m
Radial force = 1000 N

1200 1200 1200
8 1200 1200 0
9 1200 0 1200

10 Shaft speed = 1500 rpm
Load torque = 0.7 N m
Radial force = 400 N

1200 1200 1200
11 1200 1200 0
12 1200 0 1200

ISU

Client ID Operating conditions Number of samples

Healthy Inner race
fault

Outer race
fault

Combination
of faults

1 Shaft speed = 2100 rpm
Radial force = 0

2000 2000 0 0
2 2000 0 2000 0
3 2000 0 0 2000

4 Shaft speed = 2100 rpm
Radial force = 25 N

2000 2000 0 0
5 2000 0 2000 0
6 2000 0 0 2000

7 Shaft speed = 1500 rpm
Radial force = 0

2000 2000 0 0
8 2000 0 2000 0
9 2000 0 0 2000

10 Shaft speed = 1500 rpm
Radial force = 25 N

2000 2000 0 0
11 2000 0 2000 0
12 2000 0 0 2000
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Table 6
The design of training datasets for scenario 3.

CWRU

Client ID Operating conditions Number of samples

Healthy Inner race
fault

Outer race
fault

1 Shaft speed = 1797 rpm
Fault diameter = 0.007′′

64 64 0
2 64 0 64

3 Shaft speed = 1797 rpm
Fault diameter = 0.014′′

64 64 0
4 56 0 56

5 Shaft speed = 1772 rpm
Fault diameter = 0.007′′

56 56 0
6 64 0 64

7 Shaft speed = 1772 rpm
Fault diameter = 0.014′′

64 64 0
8 64 0 64

9 Shaft speed = 1730 rpm
Fault diameter = 0.007′′

64 64 0
10 72 0 72

11 Shaft speed = 1730 rpm
Fault diameter = 0.014′′

72 72 0
12 72 0 72

PU

Client ID Operating conditions Number of samples

Healthy Inner race
fault

Outer race
fault

1 Shaft speed = 1500 rpm
Load torque = 0.7 N m
Radial force = 1000 N

480 480 480
2 480 480 0
3 480 0 480

4 Shaft speed = 900 rpm
Load torque = 0.7 N m
Radial force = 1000 N

1200 1200 1200
5 1200 1200 0
6 1200 0 1200

7 Shaft speed = 1500 rpm
Load torque = 0.1 N m
Radial force = 1000 N

600 600 600
8 600 600 0
9 600 0 600

10 Shaft speed = 1500 rpm
Load torque = 0.7 N m
Radial force = 400 N

720 720 720
11 720 720 0
12 720 0 720

ISU

Client ID Operating conditions Number of samples

Healthy Inner race
fault

Outer race
fault

Combination
of faults

1 Shaft speed = 2100 rpm
Radial force = 0

1200 1200 0 0
2 1200 0 1200 0
3 1200 0 0 1200

4 Shaft speed = 2100 rpm
Radial force = 25 N

1800 1800 0 0
5 1800 0 1800 0
6 1800 0 0 1800

7 Shaft speed = 1500 rpm
Radial force = 0

800 800 0 0
8 800 0 800 0
9 800 0 0 800

10 Shaft speed = 1500 rpm
Radial force = 25 N

1600 1600 0 0
11 1600 0 1600 0
12 1600 0 0 1600
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Table 7
The design of test datasets for scenario 1.

CWRU

Client ID Operating conditions Number of samples

Healthy Inner race
fault

Outer race
fault

1 Shaft speed = 1797 rpm
Fault diameter = 0.007′′

20 20 0
2 20 0 20

3 Shaft speed = 1797 rpm
Fault diameter = 0.014′′

20 20 0
4 20 0 20

5 Shaft speed = 1772 rpm
Fault diameter = 0.007′′

20 20 0
6 20 0 20

7 Shaft speed = 1772 rpm
Fault diameter = 0.014′′

20 20 0
8 20 0 20

9 Shaft speed = 1730 rpm
Fault diameter = 0.007′′

20 20 0
10 20 0 20

11 Shaft speed = 1730 rpm
Fault diameter = 0.014′′

20 20 0
12 20 0 20

PU

Client ID Operating conditions Number of samples

Healthy Inner race
fault

Outer race
fault

1 Shaft speed = 1500 rpm
Load torque = 0.7 N m
Radial force = 1000 N

300 300 300
2 300 300 0
3 300 0 300

4 Shaft speed = 900 rpm
Load torque = 0.7 N m
Radial force = 1000 N

300 300 300
5 300 300 0
6 300 0 300

7 Shaft speed = 1500 rpm
Load torque = 0.1 N m
Radial force = 1000 N

300 300 300
8 300 300 0
9 300 0 300

10 Shaft speed = 1500 rpm
Load torque = 0.7 N m
Radial force = 400 N

300 300 300
11 300 300 0
12 300 0 300

ISU

Client ID Operating conditions Number of samples

Healthy Inner race
fault

Outer race
fault

Combination
of faults

1 Shaft speed = 2100 rpm
Radial force = 0

500 500 0 0
2 500 0 500 0
3 500 0 0 500

4 Shaft speed = 2100 rpm
Radial force = 25 N

500 500 0 0
5 500 0 500 0
6 500 0 0 500

7 Shaft speed = 1500 rpm
Radial force = 0

500 500 0 0
8 500 0 500 0
9 500 0 0 500

10 Shaft speed = 1500 rpm
Radial force = 25 N

500 500 0 0
11 500 0 500 0
12 500 0 0 500
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Table 8
The design of test datasets for scenarios 2 and 3.

CWRU

Client ID Operating conditions Number of samples

Healthy Inner race
fault

Outer race
fault

1 Shaft speed = 1797 rpm
Fault diameter = 0.007′′

20 20 20
2 20 20 20

3 Shaft speed = 1797 rpm
Fault diameter = 0.014′′

20 20 20
4 20 20 20

5 Shaft speed = 1772 rpm
Fault diameter = 0.007′′

20 20 20
6 20 20 20

7 Shaft speed = 1772 rpm
Fault diameter = 0.014′′

20 20 20
8 20 20 20

9 Shaft speed = 1730 rpm
Fault diameter = 0.007′′

20 20 20
10 20 20 20

11 Shaft speed = 1730 rpm
Fault diameter = 0.014′′

20 20 20
12 20 20 20

PU

Client ID Operating conditions Number of samples

Healthy Inner race
fault

Outer race
fault

1 Shaft speed = 1500 rpm
Load torque = 0.7 N m
Radial force = 1000 N

300 300 300
2 300 300 300
3 300 300 300

4 Shaft speed = 900 rpm
Load torque = 0.7 N m
Radial force = 1000 N

300 300 300
5 300 300 300
6 300 300 300

7 Shaft speed = 1500 rpm
Load torque = 0.1 N m
Radial force = 1000 N

300 300 300
8 300 300 300
9 300 300 300

10 Shaft speed = 1500 rpm
Load torque = 0.7 N m
Radial force = 400 N

300 300 300
11 300 300 300
12 300 300 300

ISU

Client ID Operating conditions Number of samples

Healthy Inner race
fault

Outer race
fault

Combination
of faults

1 Shaft speed = 2100 rpm
Radial force = 0

500 500 500 500
2 500 500 500 500
3 500 0 500 500

4 Shaft speed = 2100 rpm
Radial force = 25 N

500 500 500 500
5 500 500 500 500
6 500 500 500 500

7 Shaft speed = 1500 rpm
Radial force = 0

500 500 500 500
8 500 500 500 500
9 500 0 500 500

10 Shaft speed = 1500 rpm
Radial force = 25 N

500 500 500 500
11 500 500 500 500
12 500 500 500 500
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Table 9
Summary of prediction accuracy (%) for three case studies.

CWRU

Scenario 1 Scenario 2 Scenario 3

Local training FedAvg FedCos FedSNGP Local training FedAvg FedCos FedSNGP Local training FedAvg FedCos FedSNGP

1 100.00 100.00 100.00 100.00 81.67 100.00 100.00 100.00 78.33 93.33 71.67 96.67
2 95.00 97.50 100.00 97.50 73.33 98.33 100.00 98.33 65.00 95.00 66.67 98.33
3 100.00 100.00 100.00 100.00 75.00 100.00 100.00 100.00 75.00 93.33 66.67 96.67
4 100.00 100.00 100.00 100.00 85.00 98.33 100.00 98.33 75.00 95.00 66.67 98.33
5 100.00 100.00 100.00 100.00 76.67 100.00 100.00 100.00 73.33 93.33 100.00 100.00
6 100.00 100.00 100.00 97.50 75.00 98.33 98.33 98.33 58.33 80.00 66.67 85.00
7 100.00 100.00 100.00 100.00 71.67 100.00 100.00 100.00 58.33 93.33 100.00 100.00
8 100.00 97.50 97.50 100.00 73.33 98.33 98.33 98.33 71.67 80.00 66.67 85.00
9 100.00 100.00 100.00 100.00 71.67 100.00 100.00 100.00 70.00 90.00 66.67 98.33
10 100.00 100.00 100.00 100.00 78.33 98.33 100.00 100.00 76.67 83.33 66.67 95.00
11 100.00 100.00 100.00 100.00 76.67 100.00 100.00 100.00 68.33 90.00 66.67 98.33
12 100.00 97.50 100.00 100.00 70.00 98.33 100.00 100.00 76.67 83.33 66.67 95.00

PU

Scenario 1 Scenario 2 Scenario 3

Local training FedAvg FedCos FedSNGP Local training FedAvg FedCos FedSNGP Local training FedAvg FedCos FedSNGP

1 99.89 99.78 100.00 100.00 99.89 99.78 100.00 100.00 100.00 97.56 99.56 99.89
2 100.00 99.65 100.00 100.00 66.67 99.78 66.67 100.00 51.00 97.56 66.89 99.89
3 100.00 100.00 100.00 100.00 66.67 99.78 66.56 100.00 35.11 97.56 66.67 99.89
4 99.56 94.00 99.11 99.67 99.56 94.00 99.11 99.67 99.56 98.44 99.67 99.56
5 100.00 97.21 100.00 100.00 66.67 94.00 99.11 99.67 66.67 98.44 99.67 99.56
6 99.66 92.33 95.40 99.15 66.56 94.00 63.67 99.67 66.44 98.44 66.22 99.56
7 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.89 97.22 99.67 99.78
8 100.00 99.83 100.00 100.00 66.67 100.00 66.67 100.00 66.67 97.22 66.67 99.78
9 100.00 100.00 100.00 100.00 66.67 100.00 66.44 100.00 67.22 97.22 66.67 99.78
10 100.00 98.78 99.22 100.00 100.00 98.78 99.22 100.00 100.00 97.44 99.56 100.00
11 100.00 100.00 100.00 100.00 66.67 98.78 66.67 100.00 66.78 97.44 66.67 100.00
12 100.00 98.26 100.00 100.00 66.67 98.78 66.67 100.00 36.67 97.44 66.89 100.00

ISU

Scenario 1 Scenario 2 Scenario 3

Local training FedAvg FedCos FedSNGP Local training FedAvg FedCos FedSNGP Local training FedAvg FedCos FedSNGP

1 100.00 98.00 100.00 100.00 50.00 98.30 50.00 100.00 52.35 90.85 50.00 100.00
2 100.00 99.50 100.00 100.00 50.35 98.30 50.00 100.00 53.60 90.85 50.00 100.00
3 100.00 99.10 100.00 100.00 50.20 98.30 50.00 100.00 55.85 90.85 50.00 100.00
4 100.00 99.70 100.00 100.00 50.00 99.20 50.00 100.00 50.15 100.00 50.00 100.00
5 100.00 100.00 100.00 100.00 50.00 99.20 50.00 100.00 54.40 100.00 50.00 100.00
6 100.00 98.70 100.00 100.00 50.00 99.20 50.00 100.00 50.25 100.00 50.00 100.00
7 100.00 98.10 100.00 100.00 50.00 96.75 50.00 100.00 24.75 80.95 50.00 98.65
8 100.00 95.80 100.00 100.00 50.05 96.75 50.00 100.00 26.60 80.95 49.85 98.65
9 100.00 99.60 99.90 100.00 50.25 96.75 49.95 100.00 27.45 80.95 49.90 98.65
10 100.00 99.60 100.00 100.00 50.00 98.55 50.00 100.00 50.20 99.40 50.00 100.00
11 100.00 99.70 100.00 100.00 50.40 98.55 50.00 100.00 50.25 99.40 50.00 100.00
12 100.00 97.80 100.00 100.00 50.05 98.55 50.00 100.00 53.25 99.40 50.00 100.00

Results for each of the three test conditions

The results of the three case studies are summarized in Table 9.
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