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Abstract

Bayesian networks (BNs) are directed graphical models that have been widely used in
various tasks for probabilistic reasoning and causal modeling. One major challenge in
these tasks is to learn the BN structures from data. In this paper, we propose a novel
heuristic algorithm for BN structure learning that takes advantage of the idea of curriculum
learning. Our algorithm learns the BN structure by stages. At each stage a subnet is
learned over a selected subset of the random variables conditioned on fixed values of the
rest of the variables. The selected subset grows with stages and eventually includes all the
variables. We prove theoretical advantages of our algorithm and also empirically show that
it outperformed the state-of-the-art heuristic approach in learning BN structures.

Keywords: Bayesian networks, structure learning, curriculum learning.

1. Introduction

A Bayesian network (BN) is a directed acyclic graph (DAG) where nodes are random
variables and directed edges represent probability dependencies among variables. Each
node and its parents are associated with a conditional probability distribution (CPD), which
quantifies the effect of the parents on the node. A BN provides a compact representation of a
joint probability distribution over the set of random variables. These models are also called
belief networks, or causal networks, because the directed edges are sometimes interpreted
as causal relations. BNs have been widely used in various tasks for probabilistic inference
and causal modeling (Pearl, 2000; Spirtes et al., 2001). A major challenge in these tasks is
to learn the structure and the associated CPDs from data.

Learning a BN is usually conducted in two phases. In the first phase, one manages to
construct the topology (structure) of the network. In the second phase, one then estimates
the parameters of the CPDs given the fixed structure. Parameter estimation in the second
phase is considered a well-studied problem. The learning of the topology, or in other words,
structure learning, is more challenging.

1.1. Previous Work on Bayesian Network Structure Learning

There has been an enormous amount of work on learning BNs from data. Methods for this
learning problem fall into two categories: constraint-based and score-based.
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Constraint-based algorithms look for conditional independencies (CIs) in the data and
build the DAG consistent to these CIs. Well-known examples are the Peter-Clark (PC)
algorithm (Spirtes et al., 2001) and the Inductive-Causation (IC) algorithm (Pearl, 2000).
Other later work includes the Grow-Shrink (GS) and Total-Conditioning (TC) algorithms
(Margaritis and Thrun, 2000; Pellet and Elisseeff, 2008). PC or IC algorithms are guar-
anteed to return a DAG that exactly represents the CI relationships implied by the target
distribution if all CI tests are perfect. Such assumption certainly does not hold in reality
since any kind of statistical test will have some probability of making errors given limited
data samples. Even worse, an error of a statistical test can result in propagated errors in
the subsequent learning process.

Score-based approaches convert the problem to an optimization problem, where a de-
composable score is used to measure the fitness of a DAG to the observed data, then a
search strategy is employed to maximize (or minimize) the score over the space of pos-
sible DAGs (Cooper and Herskovits, 1992; Heckerman et al., 1995). However, finding an
optimal BN structure is NP-hard (Chickering, 1996). Algorithms in this category include
exact algorithms that are able to find an optimal solution or heuristic algorithms that of-
ten return sub-optimal models. The research on exact algorithms started with a family
of algorithms using dynamic programming (DP) (Koivisto and Sood, 2004; Silander and
Myllymäki, 2006). These DP algorithms require exponential time and space, thus are only
applicable to problems with up to 30 variables. Latest work in this area used A* or other
techniques to prune the search space so that both time and space complexities were greatly
reduced (Yuan et al., 2011; Malone et al., 2011; Yuan and Malone, 2012). Recently, a set of
algorithms using Integer Linear Programming (ILP) are showed being competitive with the
A* algorithm (Jaakkola et al., 2010; Bartlett and Cussens, 2013). In particular, GOBNILP
(Globally Optimal BN learning using ILP) was demonstrated to be able to handle problems
with up to a few hundred variables (Bartlett and Cussens, 2013). However, it assumes the
indegree of each node is upper-bounded by a small constant.

Heuristic search method encompasses a broad class of algorithms, varying in the scoring
functions being used, the search strategies being employed, and assumptions being made.
The general search strategy is, given a starting point, i.e., any DAG, by adding, deleting or
reversing one or a few edges, the algorithm manages to traverse the DAG space to find a
high-scoring model. However, there are super-exponential number of possible DAGs. Thus,
local search strategies such as greedy or more sophisticated search algorithms are often
used. The searches will often stuck in local maxima.

Finally, ideas combining both constraint-based and score-based approaches have also
been explored. A well-known algorithm is Max-Min Hill-Climbing (MMHC) algorithm
(Tsamardinos et al., 2006). MMHC first estimates the parents and children (PC ) set of
each variable using a local discovery algorithm called MMPC (Tsamardinos et al., 2003).
It then performs a Bayesian-scoring greedy hill-climbing search with the constraint that the
neighbors of each variable must be in the variable’s PC set. Extensive empirical evaluation
showed that MMHC outperformed on average other heuristic algorithms thus it was claimed
to be the current state-of-the-art. MMHC is a two-stage algorithm. In the first stage, the
identification of the PC sets involves a large number of CI tests, which are very sensitive
to noises in data. Thus, the problem of constraint-based method may also trap MMHC.
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An empirical evaluation of the impact of learning strategies on the quality of BNs can
be found in (Malone et al., 2015).

1.2. Curriculum Learning

Humans and animals learn much better when the examples are not randomly presented but
organized in a meaningful order which starts from relatively simple concepts and gradually
introduces more complex ones. This idea has been formalized in the context of machine
learning as curriculum learning (Bengio et al., 2009). A curriculum is a sequence of weight-
ing schemes of the training data, denoted by (W1,W2, ...,Wm). The first scheme W1 assigns
more weight to “easier” training samples, and each next scheme assigns slightly more weight
to “harder” examples, until the last scheme Wm that assigns uniform weight to all exam-
ples. Ideally, the information entropy of the weighting scheme shall increase monotonically,
i.e., ∀i < j, H(Wi) < H(Wj). How to measure the “easiness” or complexity of training
samples may vary depending on the learning problems, and no general measurement has
been proposed. Learning is done iteratively, each time from the training data weighted
by the current weighting scheme and initialized with the learning result from the previous
iteration.

Curriculum learning has been successfully applied to many problems, such as learning
language models and grammars (Elman, 1993; Spitkovsky et al., 2010; Tu and Honavar,
2011) and object recognition and localization (Kumar et al., 2010). There have also been
attempts to explain the advantages of curriculum learning. Bengio et al. (2009) proposed
that a well chosen curriculum strategy can act as a continuation method (Allgower and
Georg, 1990), which first optimizes a highly smoothed objective and then gradually considers
less smoothing. Tu and Honavar (2011) contended that in learning structures such as
grammars, an ideal curriculum decomposes the structure into multiple components and
guides the learner to incrementally construct the target structure. More recently, a few
extensions of the original idea of curriculum learning have been proposed (Kumar et al.,
2010; Jiang et al., 2015).

In BN structure learning, one needs to discover the conditional independence/dependence
between variables. Most of the current approaches try to learn these relations between all
the variables by looking at all the training samples at once. In contrast, human rarely
look at all the variables and samples at once during learning; instead, they learn in a more
organized way, starting with more common data samples that involve dependency relations
between only a small subset of variables (typically with the other variables fixed at certain
values), and only turning to less common data samples involving dependency relations with
additional variables when some knowledge (i.e., a partial model) is obtained. In this way,
learning could be made more accurate and even more efficient. This learning strategy can
be seen as a type of curriculum learning, related to the idea of incremental construction (Tu
and Honavar, 2011) mentioned above. In this paper, we design a novel heuristic algorithm
for BN structure learning that takes advantage of this idea. Our algorithm learns the BN
structure by stages. At each stage a subnet is learned over a selected subset of the random
variables conditioned on fixed values of the rest of the variables. The selected subset grows
with stages until it includes all the variables at the final stage. Figure 1 shows an illustra-
tive example of our algorithm. We prove theoretical advantages of our algorithm and also
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Figure 1: An illustrative example of curriculum learning of a BN structure. Given a curriculum
({S,B,D}, {S,B,D,L,E,X}, {S,B,D,L,E,X,A, T}) and step size t = 3, we learn the
BN structure in three stages: (1) learn a subnet G1 over {S,B,D} from scratch; (2) learn
a larger subnet G2 over {S,B,D,L,E,X} with G1 as the start point of search; (3) learn
a full network with G2 as the start point. Each subnet (in red) is conditioned on the rest
of the variables (in green).

empirically show that it outperformed the state-of-the-art heuristic approach in learning
BN structures.

2. Preliminaries

Formally, a Bayesian network is a pair B = (G,P ), where G is a DAG that encodes a
joint probability distribution P over a vector of random variables X = (X1, ..., Xn) with
each node of the graph representing a variable in X. For convenience we typically work on
the index set V = {1, ..., n} and represent a variable Xi by its index i. The DAG can be
represented as a vector G = (Pa1, ..., Pan) where each Pai is a subset of the index set V
and specifies the parents of i in the graph.

Definition 1 (I-equivalence) (Verma and Pearl, 1990) Two DAG G1 and G2 over the
same set of variables X are I-equivalent if they represent the same set of conditional inde-
pendence relations.

Two I-equivalent DAGs are statistically indistinguishable. That is, given observational data,
it is impossible to identify a unique data-generating DAG unless there is only one DAG in
the corresponding equivalence class (EC). All BNs in an EC have the same skeleton and
the same v-structures1 (Verma and Pearl, 1990). Thus, we can represent an EC using a
complete partially DAG (CPDAG) which consist of a directed edge for every irreversible
edge and an undirected edge for every reversible edge.2

In the problem of learning BNs from data, we assume that a complete data D are
generated i.i.d from an underlying distribution P ∗(X) which is induced by some BN B∗ =
(G∗, P ∗). Due to the so called I-equivalence, the best we can hope is to recover G∗’s
equivalence class. That is, we target any G that is I-equivalent to G∗.

In this paper, we focus on score-based search. The first component of the score-and-
search method is a scoring criterion measuring the fitness of a DAG G to the data D.
Several commonly used scoring functions are MDL, AIC, BIC and Bayesian score. In this

1. A v-structure in a DAG G is an ordered triple of nodes (u, v, w) such that G contains the directed edges
u → v and w → v and u and w are not adjacent in G.

2. A CPDAG is also called a pattern. Each equivalence class has a unique CPDAG.
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work, we use Bayesian score, defined as follows.

score(G : D) = logP (D|G) + logP (G), (1)

where P (D|G) is the likelihood of the data given the DAG G and P (G) is the prior over the
DAG structures. In this work, we assume discrete random variables which follow a Dirichlet-
Multinomial distribution. That is, each variable Xi follows a multinomial distribution with
parameter vector Θi conditioning on its parents, and the parameter vector Θi follows a
Dirichlet distribution with parameter vector αi as the prior. Assuming global and local
parameter independence, parameter modularity, and uniform structure prior P (G), the
score is decomposable (Heckerman et al., 1995):

score(G : D) =
n∑

i=1

scorei(Pai : D), (2)

where scorei(Pai : D) is called the local score or family score measuring how well a set of
variables Pai serves as parents of Xi. scorei(Pai : D) can be computed efficiently from the
sufficient statistics of the data D. Further we can show for any two I-equivalent DAGs G1

and G2, score(G1 : D) = score(G2 : D). This is called score equivalence. The commonly
used scoring functions such as MDL, AIC, BIC and BDe all satisfy score decomposability
and equivalence.

3. Curriculum Learning of Bayesian Network Structures

The basic idea to apply curriculum learning and incremental construction in BN structure
learning is that we can define a sequence of intermediate learning targets (G1, ..., Gm), where
each Gi is a subnet of the target BN over a subset of variables X(i) conditioned on certain
fixed values x′(i) of the rest of the variables X′(i), where X(i) ⊆ X, X′(i) = X \ X(i) and
X(i) ⊂ X(i+1); at stage i of curriculum learning, we try to learn Gi from a subset of data
samples with X′(i) = x′(i). In terms of the sample weighting scheme (W1,W2, ...,Wm), each

Wi assigns 1 to those samples with X′(i) = x′(i) and 0 to the other samples.
However, training samples are often very limited in practice and thus the subset of sam-

ples with X′(i) = x′(i) would typically be very small. Learning from such small-sized training

sample is deemed unreliable. A key observation is that when we fix X′(i) to different values,
our learning target is actually the same DAG structure Gi but with different parameters
(CPDs). Thus, we can make use of all the training samples in learning Gi at each stage
by revising the scoring function to take into account multiple versions of parameters. This
strategy extends the original curriculum learning framework.

Note that in the ideal case, the subnet learned in each stage would have only one type of
discrepancy from the truth BN: it would contain extra edges between variables in X(i) due
to conditioning on X′(i). More specifically, such variables in X(i) must share a child node

that is in, or has a descendant in, X′(i) such that they are not d -separated when conditioning

on X′(i).
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3.1. Scoring Function

In this paper, we use Bayesian score to design a scoring function that uses all training
samples. Assume the domain for X′(i) is {x′(i),1, ...,x

′
(i),q}. Then we can have a set of data

segments Di = {Di,1, ..., Di,q} by grouping samples based on the values of X′(i) and then
projecting on X(i). Assuming Di,1, ..., Di,q are generated by the same DAG Gi but with
“independent” CPDs, we can derive

P (Gi, Di) = P (Gi)

q∏
j=1

P (Di,j |Gi) = P (Gi)
1−q

q∏
j=1

P (Gi, Di,j). (3)

If we take logarithm for both sides, we obtain

logP (Gi, Di) = (1− q) logP (Gi) +

q∑
j=1

logP (Gi, Di,j). (4)

If we set uniform prior for Gi, i.e., P (Gi) ∝ 1, we then have

logP (Gi, Di) = C +

q∑
j=1

logP (Gi, Di,j), (5)

where C is a constant. We use BDe score (Heckerman et al., 1995) for discrete variables,
i.e., logP (Gi, Di,j) = scoreBDe(Gi, Di,j), so we have the following scoring function

score(Gi, Di) =

q∑
j=1

scoreBDe(Gi, Di,j), (6)

i.e., the sum of BDe scores which are individually evaluated on each of the data segments
Di,1, ..., Di,q.

One common problem with curriculum learning is that the learner may overfit the
intermediate learning targets, especially when the number of variables is large and thus we
have to divide learning into many stages. Overfitting also occurs when the sample size is
small. Therefore, we introduce a penalty function that penalizes the size of the network
especially when the number of variables is large or the sample size is small:

Penalty(Gi : Di) =

(
a

SS
+
V (Gi)

b

)
E(Gi), (7)

where SS is the sample size, V (Gi) and E(Gi) denote the number of variables and number
of edges in Gi respectively, and a and b are positive constants. Combined with the penalty
function, the scoring function becomes

score(Gi : Di) =

q∑
j=1

scoreBDe(Gi, Di,j)−
(
a

SS
+
V (Gi)

b

)
E(Gi). (8)
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3.2. Curriculum

A remaining fundamental question is: what curriculum, i.e., the sequence of variable sets
(X(1), ...,X(m)), shall we use? Or equivalently, from stage i−1 to i, which variables X(i−1,i)
should we select to produce X(i) = X(i−1) ∪X(i−1,i)?

Intuitively, we should select the variables that are most connected to the current set of
variables X(i−1), because otherwise we may learn more edges that do not exist in the target
BN. The problem is that the true structure of the target BN is unknown. Nonetheless,
we can measure the strength of the dependency (e.g., using mutual information) with the
current set of variables to heuristically estimate the connectivity.

Thus, in stage i, we compute pairwise mutual information MI(X,Y ) between any node
X in X(i−1) and node Y in X \X(i−1). Then for any node Y in X \X(i−1), compute the
average pairwise mutual information by

AveMI(Y,X(i−1)) =
∑

X∈X(i−1)

MI(X,Y )/|X(i−1)|. (9)

We then pick the variables in a sequential way: we first pick variable Y1 with the largest
AveMI(Y1,X(i−1)); we then pick the second variable Y2 with the largest AveMI(Y2,X(i−1)∪
{Y1}); so on and so forth. The number of variables selected, |X(i−1,i)|, is called the step size
and is a parameter of our algorithm. The step size can be a constant, meaning that we add
the same number of variables in each stage. Or it can be different among stages. Intuitively,
the smaller the step size is, the more cautious and less time-efficient the algorithm is, and
also the more likely the algorithm would overfit the intermediate BNs.

We initialize X(1) with a small number of variables where the first variable has the
largest AveMI with all the other variables in X and the rest are selected in the sequential
way as described above.

3.3. Algorithm

Given the training data D and step size t, we first construct the curriculum (X(1), ...,X(m)).
In each learning stage of the curriculum, we use score-based search to find a good partial
network with the partial network learned from the previous stage plus the new variables
with no edge attached as the start point. Algorithm 1 sketches our algorithm, in which
search(Di,X(i), S,Gi−1) can be any search algorithm that starts from Gi−1 and searches
the space of DAGs over variables X(i) to optimize our scoring function with training data Di;
S is the parents and children (PC) set generated from the MMPC algorithm (Tsamardinos
et al., 2003) that is used to constrain the search, i.e., only edges included in the PC set are
considered during search. In our implementation, we simply use greedy hill climbing as the
search algorithm.

In some stages, the number of data segments does not change although additional vari-
ables are selected. In this case, it can be shown that the subnet learned from the previous
stage plus the new variables with no edge attached is already a local optimum, and therefore
we can skip the stage without changing the learning result. In practice, we skip a stage
whenever the number of data segments has no change or very small change from that of the
previous stage.
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Algorithm 1 Curriculum Learning of BN structure

require: variable set X, training data D, PC set S, step size t, curriculum (X(1), ...,X(m)).
Initialize G0 to a network containing variables in X(1) with no edge.
i← 1
for i ≤ m do

Generate the set of data segments Di = {Di,1, ..., Di,q} based on the values of X \X(i)

Gi ← search(Di,X(i), S,Gi−1)
i← i+ 1

end
return Gm

4. Theoretical Analysis

Curriculum learning specifies a sequence of intermediate learning targets. Ideally, each
intermediate target should be closer to the subsequent targets than any of its predecessors
in the sequence. In this section we show that our curriculum learning approach to learning
BNs satisfies this desired property.

With Bayesian networks as our learning targets, there are two different ways to measure
the distance between them. The first is to measure the distance between the structures of
two BNs. One such distance measure is the structural Hamming distance (SHD) (Tsamardi-
nos et al., 2006), which measures the number of extra, missing or differently oriented edges
between the two CPDAGs that respectively represent the equivalence classes of two BNs.
The second is to measure the distance between the probabilistic distributions defined by
two BNs. One such distance measure is the total variation distance (Csisz et al., 1967).
With discrete random variables, the total variation distance between two distributions can
be defined as:

dTV (P,Q) =
1

2

∑
X

|P (X)−Q(X)|

Below we analyze our curriculum learning approaches based on these two types of distance
measures respectively and show that our approach satisfies the desired property based on
both distance measures.

4.1. Analysis Based on Distance between Structures

Suppose X(i) is the set of variables selected in curriculum stage i and X′(i) = X \X(i) is the
rest of the variables. Recall that we try to learn a subnet of the true BN over variables in
X(i) that is conditioned on fixed values of variables in X′(i). Therefore, the actual learning

target at stage i is a BN Gi such that: (a) between variables in X(i), the edges are connected
in accordance with the true BN except that there might be extra edges between variables
that share one or more descendants in X′(i) (recall that the values of the variables in X′(i)
are fixed at stage i); (b) the variables in X′(i) are fully connected with each other (because

at stage i we regard the joint assignments to the variables in X′(i) as the conditions and

do not model any conditional independence between them); (c) there is an edge between
each variable in X(i) and each variable in X′(i) (because the subnet over X(i) is conditioned

on all the variables in X′(i)). The orientation of the edges described in (b) and (c) can
be arbitrary since it is not actually to be learned at stage i , but if we assume that these
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edges are oriented in a way that is consistent with the true BN then we have the following
theorem.

Theorem 2 For any i, j, k s.t. 1 ≤ i < j < k ≤ n, we have

dH(Gi, Gk) ≥ dH(Gj , Gk)

where dH(Gi, Gj) is the structural Hamming distance (SHD) between the structures of two
BNs Gi and Gj.

Proof At each stage of the curriculum, a set of variables V = X(i)\X(i−1) become selected.
This leads to two changes to the intermediate target BN: first, some extra edges between
variables in X(i−1) that share descendants in V are removed because their descendants no
longer have fixed values; second, some edges connected to variables in V are removed to
make the subnet of the variables in X(i) consistent with the true BN. In other words, we
always remove edges and never add or re-orient any edge of the BN at each stage of the
curriculum. Since the corresponding CPDAG has the same structure as the BN except for
some edges becoming undirected, it can also be shown that only edge-removal occurs to
the CPDAG at each stage of the curriculum. Therefore, the structural Hamming distance
dH(Gi, Gj) is simply the number of edges removed during stages i+ 1 to j. Since i < j < k,
the set of edges removed during stages i+ 1 to k is a superset of the set of edges removed
during stages j + 1 to k. Therefore, we have dH(Gi, Gk) ≥ dH(Gj , Gk).

4.2. Analysis Based on Distance between Distributions

Based on the discussion in the previous subsection, it can be seen that the intermediate
learning target Gi of stage i represents a probabilistic distribution P (X(i)|X′(i))Q(X′(i)),

where P denotes the true conditional distribution of X(i) given X′(i) as represented by the

target BN, and Q denotes an estimated distribution over X′(i) (e.g., simply estimated based

on the histogram built from the training data). We can prove the following theorem.

Theorem 3 For any i, j, k s.t. 1 ≤ i < j < k ≤ n, we have

dTV (Gi, Gk) ≥ dTV (Gj , Gk)

where dTV (Gi, Gj) is the total variation distance between the two distributions defined by
the two BNs Gi and Gj.

Proof For any i < j, let Yij = X(j) \X(i). We have

dTV (Gi, Gj) =
1

2

∑
X

∣∣∣P (X(i)|X′(i))Q(X′(i))− P (X(j)|X′(j))Q(X′(j))
∣∣∣

=
1

2

∑
X

P (X(i)|X′(i))
∣∣∣Q(X′(i))− P (Yij |X′(j))Q(X′(j))

∣∣∣
=

1

2

∑
X′

(i)

∣∣∣Q(X′(i))− P (Yij |X′(j))Q(X′(j))
∣∣∣
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Therefore, we have

dTV (Gi, Gk) =
1

2

∑
X′

(j)

∑
Yij

∣∣∣Q(X′(i))− P (Yik|X′(k))Q(X′(k))
∣∣∣

and

dTV (Gj , Gk) =
1

2

∑
X′

(j)

∣∣∣Q(X′(j))− P (Yjk|X′(k))Q(X′(k))
∣∣∣

=
1

2

∑
X′

(j)

∣∣∣∣∣∣
∑
Yij

Q(X′(i))−
∑
Yij

P (Yik|X′(k))Q(X′(k))

∣∣∣∣∣∣
Because the absolute value is subadditive, we have

∑
Yij

∣∣∣Q(X′(i))− P (Yik|X′(k))Q(X′(k))
∣∣∣ ≥

∣∣∣∣∣∣
∑
Yij

(
Q(X′(i))− P (Yik|X′(k))Q(X′(k))

)∣∣∣∣∣∣
Therefore,

dTV (Gi, Gk) ≥ dTV (Gj , Gk)

5. Experiments

In this section, we empirically evaluate our algorithm and compare it with MMHC (Tsamardi-
nos et al., 2006), the current state-of-the-art heuristic algorithm in BN structure learning.
For both algorithms, we used BDeu score (Heckerman et al., 1995) with the equivalent sam-
ple size 10 as the scoring function and used the MMPC module included in Causal Explorer
(Aliferis et al., 2003) with the default setting to generate the PC set. For MMHC, we used
the settings mentioned by Tsamardinos et al. (2006).

We collected 10 benchmark BNs from the bnlearn repository3. The statistics of these
BNs are shown in Table 1. From each of these BNs, we generated datasets of various
sample sizes (SS = 100, 500, 1000, 5000, 10000, 50000). For each sample size, we randomly
generated 5 datasets and reported the algorithm performance averaged over these 5 datasets.

When running our algorithm on each dataset, we set the step size (introduced in section
3.2) to 1, 2 and 3 and learned three BNs; we also learned a BN by hill climbing with no
curriculum. We then picked the BN with the largest BDeu score as the final output. In our
experiments, we find that only on a small fraction (50 out of 300) of the datasets did hill
climbing with no curriculum produce the final output. More detailed statistics regarding the
effect of step size on final output can be found in Table S1 of the supplemental material. We
tuned the parameter a and b of the penalty function (Equation 7) on a separate validation
set and fixed them to 1000 and 100 respectively.

3. http://www.bnlearn.com/bnrepository/
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Table 1: Bayesian networks used in experiments.

Num. Num. Max in/out- Cardinality Average
Network vars edges degree range cardinality

alarm 37 46 4/5 2-4 2.84
andes 223 338 6/12 2-2 2.00
asia 8 8 2/2 2-2 2.00
child 20 25 2/7 2-6 3.00
hailfinder 56 66 4/16 2-11 3.98
hepar2 70 123 6/17 2-4 2.31
insurance 27 52 3/7 2-5 3.30
sachs 11 17 3/6 3-3 3.00
water 32 66 5/3 3-4 3.63
win95pts 76 112 7/10 2-2 2.00

Cardinality denotes the number of values that a variable can take.

We used four metrics to evaluate the learned BNs: BDeu, BIC, KL and SHD. The first
three metrics were evaluated on a separate test dataset of 5000 samples for each BN. The
BDeu score, the scoring function used in our learning algorithms, measures how likely the
network is given the data. BIC (Bayesian information criterion) can be regarded as the
likelihood of the learned structure after having seen the data with a penalty term of model
complexity measured by the number of parameters:

BIC(G : D) =
n∑

i=1

qi∑
j=1

ri∑
k=1

Nijk log
Nijk

Nij
− 1

2
log (N)

n∑
i=1

(ri − 1)qi, (10)

where n denotes the number of variables, ri denotes the number of values that Xi can take,
qi =

∏
Xl∈Pai

rl denotes the number of values that the parent set Pai of Xi can take, Nijk

is the number of samples in D where Xi = k and Pai = j, and Nij is the number of samples
with Pai = j in D.

Both BDeu and BIC have the limitation that they are only reasonable under certain
assumptions. To directly measure how close the gold-standard network and the learned
network are, we used Kullback-Leibler divergence (KL) between the joint probability dis-
tributions associated respectively with the true network(PT ) and the learned network(PL):

KL(PT , PL) =
∑
X

PT (X) log

(
PT (X)

PL(X)

)
, (11)

For the convenience of estimation, we used an equivalent form of Equation 11 by Acid and
de Campos (2001):

KL(PT , PL) = −HPT
(X) +

∑
Xi∈X

HPT
(Xi)−

∑
Xi∈X,PaL(Xi)6=∅

MIPT
(Xi, PaL(Xi)), (12)

where HPT
denotes the Shannon entropy with respect to PT . In Equation 12, the first two

terms are not dependent on the learned network, so following Tsamardinos et al. (2006),

11
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Table 2: Comparison between CL and MMHC on four metrics

Sample Size (SS)

Metric Algorithm 100 500 1000 5000 10000 50000

BDeu
CL 1(0) 1(10) 1(9) 1(8) 1(10) 1(8)
MMHC 0.89(10) 1.06(0) 1.02(1) 1.01(2) 1.02(0) 1.01(2)

BIC
CL 1(0) 1(9) 1(9) 1(6) 1(8) 1(8)
MMHC 0.88(10) 1.07(1) 1.02(1) 1.02(4) 1.02(2) 1.01(2)

KL
CL 1(0) 1(10) 1(9) 1(7) 1(9) 1(9)
MMHC 1.71(10) 0.82(0) 0.96(1) 0.96(2) 0.97(0) 0.97(0)

SHD
CL 1(7) 1(9) 1(7) 1(7) 1(8) 1(6)
MMHC 1.06(3) 1.26(1) 1.29(3) 1.07(2) 1.21(1) 1.24(3)

Each number is an average normalized scores, i.e., the average of the ratios between
the raw scores and the corresponding scores of CL (the ratios are averaged over 10
networks and 5 runs with randomly sampled training datasets on each network).
For BDeu, BIC and SHD, smaller ratios indicate better learning results; for KL,
larger numbers indicate better learning results. Each number in parentheses indi-
cates the number of winning networks among the 10 networks, i.e., on how many
networks the algorithm produced better results than its competitor. The number
of draws (networks with equal scores) are not counted.

we only calculate and report the last term of the equation. Note that the last term appears
with a negative sign, and hence the higher its value is, the smaller the KL-divergence is and
the closer the learned network is to the true network.

Structural Hamming distance (SHD) is another distance metric, which directly measures
the difference between the structures of the two networks as explained in section 4.

Table 2 shows the comparison between our algorithm (CL) and MMHC. Note that we
choose to show the average ratios between the raw scores and the corresponding scores of
CL. This is because the raw scores from different datasets vary significantly in order of
magnitude, and the average of raw scores would be dominated by those from a small subset
of the datasets. It can be seen that CL outperforms MMHC in almost all the cases, in terms
of both the scores and the number of winning networks. A notable exception is that when
SS = 100, CL under-performs MMHC on all the networks for three of the four metrics. We
find that it is mainly because the penalty term (Equation 7) becomes too large when SS
is very small, which drives the learner to produce a network with few edges. For example,
on the Andes network with SS = 100, the learned network contains only around 50 edges
while the number of edges in the true network is 338.

Since SHD is one of the most widely used evaluation metrics for BN structure learning,
we further investigate the SHD scores of the two algorithms under different settings. Figure
2 plots the SHD averaged over five runs on the Andes, Hailfinder, Hepar2 and Win95pts
networks (other plots are presented in Figure S1 of the supplemental material). It again
shows that CL outperforms MMHC in almost all the cases.

In section 4 we have proved that each intermediate BN in our curriculum is closer to the
subsequent BNs (including the target BN) than any of its predecessors. Here we would like
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Figure 2: Comparison of the average SHD on the Andes, Hailfinder, Hepar2 and Win95pts networks
between CL and MMHC

to empirically demonstrate that the learner is indeed guided by these intermediate target
BNs to produce intermediate learning results that become increasingly closer to the target
BN with more curriculum stages. Note that while at stage i of the curriculum we learn a
subnet over the selected variables X(i), this subnet is conditioned on fixed values of the rest
of the variables X′(i) = X\X(i). Hence we can view the intermediate learning result at stage

i as a BN over all the variables consisting of three parts: (a) the learned subnet over X(i);
(b) a fully connected subnet over X′(i); (c) a fully connected bipartite network between X(i)

and X′(i). In order to correctly measure the distances between the intermediate learning
results and the target BN, we first randomly generated a fully connected BN over all the
variables, and then at each stage i we replaced the local structure over X(i) with the subnet
that we have learned. Figure 3 plots the SHD between the intermediate learning result at
each stage and the target BN on two different networks. It can be seen that the intermediate
learning results indeed become closer to the learning target with more curriculum stages.

With respect to running-time, our algorithm is in general slower than MMHC, on average
taking 2.7 times as much time. One reason is that our algorithm has to perform hill
climbing for multiple times, once at each stage, and the number of stages is proportional
to the number of variables. Another reason is that our scoring function takes more time
to compute: we have to compute a separate score for each data segment, which becomes
slow when the data is partitioned into too many segments. The number of segments is
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Figure 3: Changes of SHD from the target BN during curriculum learning with SS = 5000 on the
Alarm and Hailfinder networks

determined by the number of variables as well as the cardinality of each variable. Our
experiments show that the average cardinality of variables has a larger impact to the running
time of our algorithm than the number of variables. With SS = 5000, the Andes network
(223 variables with average cardinality of 2) takes only a few minutes for our algorithm
to run, while the Mildew network (35 variables with average cardinality of 17.6) takes a
few hours. To verify that the good performance of our algorithm does not come from the
extra running time, we ran TABU search4 of BN structures on each dataset with the same
amount of time as used by our algorithm and found that our algorithm still has significantly
better performance.

6. Conclusion and Discussion

In this paper, we propose a novel heuristic algorithm for BN structure learning that takes
advantage of the idea of curriculum learning. Our algorithm learns the BN structure by
stages. At each stage a subnet is learned over a selected subset of the random variables
conditioned on fixed values of the rest of the variables. The selected subset grows with
stages and eventually includes all the variables. We have tailored the scoring function for
our algorithm and discussed an approach to order variables for curriculum construction.
We have proved two theorems that show theoretical properties of our algorithm. Finally,
we have empirically shown that our algorithm outperformed the state-of-the-art MMHC
algorithm in learning BN structures.

While at each curriculum stage our algorithm tries to learn a network over a subset of
the variables X(i) conditioned on fixed values of the rest of the variables X′(i), there is an

obvious alternative approach which learns a network over X(i) while ignoring X′(i). In the
ideal case, the subnet learned by this approach would have exactly one type of discrepancy
from the true BN: it would contain extra edges between variables in X(i) that cannot be
d-separated in the true BN without fixing certain variables in X′(i). In this alternative
approach, the scoring function of the subnet can be computed much faster than in our

4. TABU search augments greedy hill-climbing by allowing worsening moves and using a tabu list to keep
track of and avoid recently visited solutions.
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original algorithm because no data partition is involved and hence we only need to compute
a single score. However, the theoretical guarantees given in Theorem 2 and 3 are no longer
true because counter-examples exist. Our experiments also showed that this approach in
general resulted in worse learning accuracy than our original algorithm.
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