1. Show that
\[\sum_{n \in A} \frac{1}{n} < \infty, \]
where \(A \) is the set of positive integers that do not contain a '9' in their decimal expansion.

2. Evaluate
\[\sum_{n=0}^{\infty} \text{Arccot}(n^2 + n + 1), \]
where \(\text{Arccot}(t) \) for \(t \geq 0 \) denotes the number \(\theta \) in the interval \(0 < \theta \leq \pi/2 \) with \(\cot \theta = t \).

3. A not uncommon calculus mistake is to believe that the product rule for derivatives says that \((fg)' = f'g'\). If \(f(x) = e^{x^2} \), determine, with proof, whether there exists an open interval \((a, b)\) and a non-zero function \(g \) defined on \((a, b)\) such that the wrong product rule is true for \(x \) in \((a, b)\).

4. Find all real-valued continuously differentiable functions \(f \) on the real line such that for all \(x \),
\[(f(x))^2 = \int_0^x [(f(t))^2 + (f'(t))^2] \, dt + 1990. \]

5. Let \(f \) be a real function on the real line with continuous third derivative. Prove that there exists a point \(a \) such that
\[f(a) \cdot f'(a) \cdot f''(a) \cdot f'''(a) \geq 0. \]