1. The triangle ABC has an obtuse angle at B, and angle A is less than angle C. The external angle bisector at A meets the line BC at D, and the external angle bisector at B meets the line AC at E. Also, BA = AD = BE. Find angle A.

2. Let \(\alpha \) and \(\beta \) be positive real numbers such that \(\frac{1}{\alpha} + \frac{1}{\beta} = 1 \). Prove that the line \(mx + ny = 1 \) with \(m, n \) positive reals is tangent to the curve \(x^\alpha + y^\alpha = 1 \) in the first quadrant \((x, y \geq 0)\) iff \(m^\beta + n^\beta = 1 \).

3. Show that, for any positive integer \(n \),

\[
\sum_{r=0}^{\lceil (n-1)/2 \rceil} \left(\frac{n-2r}{n} \binom{n}{r} \right)^2 = \frac{1}{n} \binom{2n-2}{n-1},
\]

where \(\lceil x \rceil \) means the greatest integer not exceeding \(x \), and \(\binom{n}{r} \) is the binomial coefficient "\(n \) choose \(r \)," with the convention \(\binom{n}{0} = 1 \).

4. \(S \) and \(T \) and finite sets. \(U \) is a collection of ordered pairs \((s, t)\) with \(s \in S \) and \(t \in T \). There is no element \(s \in S \) such that all possible pairs \((s, t) \in U\). Every element \(t \in T \) appears in at least one element of \(U \). Prove that we can find distinct \(s_1, s_2 \in S \) and distinct \(t_1, t_2 \in T \) such that \((s_1, t_1), (s_2, t_2) \in U\), but \((s_1, t_2), (s_2, t_1) \notin U\).

5. How many possible bijections \(f \) on \(\{1, 2, \ldots, n\} \) are there such that for each \(i = 2, 3, \ldots, n \) we can find \(j < n \) with \(f(i) - f(j) = \pm 1 \)?