Calculus 1

1. Let \(f : [a, b] \to [a, b] \) be a continuous function. Show that \(f \) has a fixed point; i.e. show that there is a \(c \in [a, b] \) with \(f(c) = c \).

2. Find all positive real solutions to \(2^x = x^2 \).

3. Show that not all zeros of the polynomial \(P(x) = x^4 - \sqrt{7}x^3 + 4x^2 - \sqrt{22}x + 15 \) are real.

4. Find all functions \(f : \mathbb{R} \to \mathbb{R} \) satisfying:

\[
|f(x) - f(y)| \leq |x - y|^2.
\]

for all \(x, y \in \mathbb{R} \).

5. Let \(f \) be a three times differentiable function (defined on \(\mathbb{R} \) and real-valued) such that \(f \) has at least five distinct real zeros. Prove that \(f + 6f' + 12f'' + 8f''' \) has at least two distinct real zeros.