
Solution of Linear Equations

(Com S 477/577 Notes)

Yan-Bin Jia

Sep 8, 2020

We have discussed general methods for solving arbitrary equations, and looked at the special
class of polynomial equations. A subclass of the latter comprises all the systems of linear equations
to which the area of linear algebra is devoted. In fact, many a problem in numerical analysis can
be reduced to one of solving a system of linear equations. We already witnessed this in the use of
Newton’s method to solve a system of nonlinear equations. Other applications include solution of
ordinary or partial differential equations (ODEs or PDEs), the eigenvalue problems of mathematical
analysis, least-squares fitting of data, and polynomial approximation.

1 Elements of Linear Algebra

Recall that a basis for a vector space is a sequence of vectors that are linearly independent and
span the space. Given a linear function f : Rn → R

m, and a pair of bases as below:

B1 = {e1,e2, . . . ,en}, for Rn,

B2 = {d1,d2, . . . ,dm}, for Rm,

we can represent f by an m × n matrix A such that f(x) = Ax for any x ∈ R
n. Note that the

matrix A depends on the choices of the bases B1 and B2.
The rank r of an m× n matrix A is the number of independent rows. The column space of A,

denoted col(A), consists of all the linear combinations of its columns. The row space of A, denoted
row(A), consists of all the linear combinations of its rows. Since each column has m components,
the column space of A is a subspace of Rm. It consists of all the points in R

m that are image
vectors under the mapping A. Similarly, the row space is a subspace of Rn.

The null space null(A) of the matrix is made up of all the solutions to Ax = 0, where x ∈ R
n.

Theorem 1 (Fundamental Theorem of Linear Allegra) Let A be an m×n matrix. Both its
row and column spaces have dimension r. Its null space has dimension n− r and is the orthogonal
complement of its row space (in R

n). In other words,

R
n = row(A)

⊕

null(A),

n = dim(row(A)) + dim(null(A)).

Consider the system of equations
Ax = b.

1



If b is not an element of col(A), then the system is inconsistent (or overdetermined). If b ∈ col(A)
and null(A) is non-trivial, then we say that the system is underdetermined. In this case, every
solution x can be split into a row space component xr and a null space component xn so that

Ax = A(xr + xn)

= Axr +Axn

= Axr.

The null space goes to zero, Axn = 0, while the row space component goes to the column space,
Axr = Ax.

If A is an n× n square matrix, we say that A is singular

iff det(A) = 0

iff rank(A) < n

iff the rows of A are not linearly independent

iff the columns of A are not linearly independent

iff the dimension of the null space of A is non-zero

iff A is not invertible.

2 LU Decomposition

An m× n matrix A, where m ≥ n, can be written in the form

PA = LDU,

where

P is an m×m permutation matrix that specifies row interchanges,

L is an m×m square lower-triangular matrix with 1’s on the diagonal,

U is an m× n upper-triangular matrix with 1’s on the diagonal,

D is an m×m square diagonal matrix.

1. The entries on the diagonal of D are called “pivots” (named after the Gaussian elimination
procedure).

2. When A is a square matrix, the product of the pivots is equal to ± det(A), where the sign
“−” is chosen if odd number of row interchanges are performed and the sign “+” is chosen
otherwise.

3. If A is symmetric and P = I, the identity matrix, then U = L⊤.

4. If A is symmetric and positive definite, then U = L⊤ and the diagonal entries of D are strictly
positive.

2



Example 3.





1 0
1 1
0 −1



 =





1 0 0
1 1 0
0 −1 1









1 0 0
0 1 0
0 0 1









1 0
0 1
0 0



 ;

(

1 1 0
2 1 −1

)

=

(

1 0
2 1

) (

1 0
0 −1

) (

1 1 0
0 1 1

)

.

Like most other decompositions and factorizations, the LU (or LDU) decomposition is used to
simplify the solution of the system

Ax = b.

Suppose A is square and non-singular, solving the above system is equivalent to solving

LDUx = Pb.

We then first solve
Ly = Pb

for the vector y and then solve
Ux = D−1y,

for the vector x. Each of the above systems can be solved easily using forward or backward
substitution.

2.1 Crout’s Algorithm

The LU decomposition for an n × n square matrix A can be generated directly by Gaussian
elimination. Nevertheless, a more efficient procedure is Crout’s algorithm. In case no pivoting is
needed, the algorithm yields two matrices L = {lij} and U = {uij} whose product is A = {aij},
namely,















1 0 0 · · · 0
l21 1 0 · · · 0
l31 l32 1 · · · 0
...

...
...

. . .
...

ln1 ln2 ln3 · · · 1





























u11 u12 u13 · · · u1n
0 u22 u23 · · · u2n
0 0 u33 · · · u3n
...

...
...

. . .
...

0 0 0 · · · unn















=















a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n
a31 a32 a33 · · · a3n
...

...
...

. . .
...

an1 an2 an3 · · · ann















.

The algorithm solves for L and U simultaneously and column by column.1 At the jth outer
iteration step, it generates column j of U and then column j of L.

for j = 1, 2, . . . , n do
for i = 1, 2, . . . , j do

uij = aij −
∑i−1

k=1
likukj

for i = j + 1, j + 2, . . . , n do

lij =
1

ujj

(

aij −
∑j−1

k=1
likukj

)

1You can also do it row by row except row i of L has to be determined before row i of U .

3



If you work through a few iterations of the above procedure, you will see that the α’s and β’s
that occur on the right-hand side of the two equations in the procedure are already determined by
the time they are needed. And every aij is used only once and never again. Together these entries
are used column by column as well. For compactness, we can store lij and uij in the location aij
used to occupy, namely,















u11 u12 u13 · · · u1n
l21 u22 u23 · · · u2n
l31 l32 u33 · · · u3n
...

...
...

. . .
...

ln1 ln2 ln3 · · · unn















Looking at step 5 of Crout’s algorithm, we should be worried about the possibility of ujj
becoming zero. Here is an example from [2, p. 97] showing a matrix with no LU decomposition due
to this degeneracy. Suppose





1 2 3
2 4 7
3 5 3



 =





1 0 0
l21 1 0
l31 l32 1









u11 u12 u13
0 u22 u23
0 0 u33



 .

We must have
u11 = 1, l21 = 2, l31 = 3, u12 = 2, and u22 = 0.

The (3, 2) entry determined from the product matrix on the right hand side is

l31u12 + l32u22 = 6.

It is not equal to the (3, 2) entry (value 5) of the original matrix! The contradiction arised because
u22 = 0. In fact, we would not even be able to continue Crout’s algorithm to calculate l32 via a
division by 0. The following theorem on the existence of the LU decomposition is given [2, p. 97]:

Theorem 2 An n × n matrix A has an LU factorization if det(Ai) 6= 0, where Ai is the upper
left i × i submatrix, for i = 1, . . . , n − 1. If the LU factorization exists and det(A) 6= 0, then it is
unique.

For numerical stability, pivoting should be performed in Crout’s algorithm. The key point is to
notice that the first equation in the procedure for uij is exactly the same as the second equation
for lij except for the division in the latter equation. This means that we can choose the largest

aij −
j−1
∑

k=1

aikukj , i = j, . . . , n

as the diagonal element ujj and switch corresponding rows in L and A.

Example 4. To illustrate on pivoting, let us carry out a few steps of Crout’s algorithm on the matrix









2 −7 6 5
4 8 −10 3
9 −6 −4 2
5 1 3 3









.

4



In the first step, we need to determine u11. Which of rows 1, 2, 3, 4 would result in the largest (absolute)
value of u11?

if row 1 1 · u11 = 2 −→ u11 = 2,

if row 2 1 · u11 = 4 −→ u11 = 4,

if row 3 1 · u11 = 9 −→ u11 = 9,

if row 2 1 · u11 = 5 −→ u11 = 5.

Thus we set u11 = 9 and exchange rows 1 and 3 in A:








9 −6 −4 2
4 8 −10 3
2 −7 6 5
5 1 3 3









=









0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

















2 −7 6 5
4 8 −10 3
9 −6 −4 2
5 1 3 3









,

where the first matrix on the right hand side is a permutation matrix which exchanges rows 1 and 3 of the
second (original) matrix via multiplication. In the second step, we use the first column to determine that

l21 =
4

9
, l31 =

2

9
, and l41 =

5

9
.

Next, we let u12 = a12 = −6 and matrices L and U take the form









1 0 0 0
4

9

2

9

5

9

















9 −6
0 u22

0 0
0 0









.

To determine u22, we find out which of rows 2, 3, 4 would result in the largest u22 value:

if row 2
4

9
· (−6) + u22 = 8 −→ u22 =

32

3
,

if row 3
2

9
· (−6) + u22 = −7 −→ u22 = −17

3
,

if row 4
5

9
· (−6) + u22 = 1 −→ u22 =

13

3
.

Since row 2 yields the largest absolute value of u22, we set u22 = 32

3
. Using u22, we obtain the second column

of L:

l32 = −17

32
and l42 =

13

32
.

By this time, we have









1 0 0 0
4

9
1 0 0

2

9
− 17

32

5

9

13

32

















9 −6
0 32

3

0 0
0 0









=









9 −6 −4 2
4 8 −10 3
2 −7 6 5
5 1 3 3









.

3 Factorization Based on Eigenvalues

Suppose the n× n matrix A has n linearly independent eigenvectors, then

A = SΛS−1,

5



where Λ is a diagonal matrix whose entries are the eigenvalues of A and S is an eigenvector matrix
whose columns are the eigenvectors of A.

When the eigenvalues of A are all different, it is automatic that the eigenvectors are independent.
Therefore A can be diagonalized.

Every n× n matrix can be decomposed into the Jordan form, that is,

A = MJM−1,

where

J =







J1
. . .

Js






, Ji =













λi 1
. . .

. . .

. . . 1
λi













, 1 ≤ i ≤ s,

with λi an eigenvalue of A. Here s is the number of independent eigenvectors of A and M consists
of eigenvectors and “generalized” eigenvectors.

4 QR Factorization

Suppose A is an m× n matrix with independent columns (hence m ≥ n). We can factor A as

A = QR,

Here Q with dimensions m× n has the same column space as A but its columns are orthonormal
vectors. In other words, Q⊤Q = I. And R with dimensions n×n is invertible and upper triangular.

The first application is the “QR algorithm” which repeatedly produces QR factorizations of
matrices derived from A, building the eigenvalues of A in the process.

The second application is in the solution of an overconstrained system Ax = b in the least-
squares sense. The least-squares solution x̄ is given by x̄ = (A⊤A)−1A⊤b, assuming that the
columns of A are independent. But Q⊤Q = I, so

x̄ = (R⊤Q⊤QR)−1R⊤Q⊤b

= (R⊤R)−1R⊤Q⊤b

= R−1(R⊤)−1R⊤Q⊤b

= R−1Q⊤b.

So we can obtain x by computing Q⊤b and then using backsubstitution to solve Rx̄ = Q⊤b. This
is numerically more stable than solving the system A⊤Ax̄ = A⊤b.

The QR factorization can be be computed using the Gram-Schmidt process.

4.1 The Gram-Schmidt Procedure

Given n linearly independent vectors v1, . . . ,vn, the Gram-Schmidt procedure constructs n or-
thonormal vectors û1, . . . , ûn such that these two sets of vectors span the same space. First, it
constructs n orthogonal vectors w1, . . . ,wn below:

w1 = v1, (1)

wj = vj −
j−1
∑

i=1

v⊤

j wi

w⊤

i wi

wi, j = 2, . . . , n. (2)

6



Essentially, we subtract from every new vector vj its projection in the directions w1/‖w1‖, . . . ,
wi−1/‖wj−1‖ that are already set. Next, we simply perform a normalization by letting

ûj =
wj

‖wj‖
, j = 1, . . . , n.

Example 5. Consider three vectors:

v1 =





1
−1
0



 , v2 =





2
0

−2



 , and v3 =





3
−3
3



 .

Carry out the Gram-Schmidt procedure as follows:

w1 =





1
−1
0



 ,

w2 = v2 −
v⊤
2
w1

w⊤
1
w1

w1

=





2
0

−2



− 2

2





1
−1
0





=





1
1

−2



 ,

w3 =





3
−3
3



− 6

2





1
−1
0



− −6

6





1
1

−2





=





1
1
1



 .

Hence the orthonormal basis consists of vectors

û1 =
1√
2





1
−1
0



 , û2 =
1√
6





1
1

−2



 , and û3 =
1√
3





1
1
1



 .

4.2 Generating the QR Factorization

To obtain the QR factorization, we first use Gram-Schmidt to orthogonalize the columns of A.
The resulting orthonormal vectors constitute the columns of Q, that is, Q = (û1, û2, . . . , ûn). The
matrix R is formed by keeping track of the Gram-Schmidt operations. Then, R expresses the
columns of A as linear combinations of the columns of Q.

7



More specifically, we rewrite (1) and (2) into the following:

vj =

j−1
∑

i=1

sijwi +wj, j = 1, . . . , n,

where sij = (v⊤

j wi)/(w
⊤

i wi), 1 ≤ i ≤ j − 1, have already been calculated by the Gram-Schmidt
procedure. The above equations are further rewritten as

vj =

j−1
∑

i=1

sij‖wi‖ûi + ‖wj‖ûj

=
n
∑

i=1

rijûi,

where

rij =





sij‖wi‖ if 1 ≤ i < j,
‖wj‖ if i = j,
0 if i > j.

From A = QR we see that R = (rij).

Example 6. In the last example, we notice that

v1 = w1 =
√
2û1,

v2 = w1 +w2 =
√
2û1 +

√
6û2,

v3 = 3w1 −w2 +w3 = 3
√
2û1 −

√
6û2 +

√
3û3.

So the QR decomposition is given by





1 2 3
−1 0 −3
0 −2 3



 =







1√
2

1√
6

1√
3

− 1√
2

1√
6

1√
3

0 − 2√
6

1√
3











√
2

√
2 3

√
2

0
√
6 −

√
6

0 0
√
3



 .

References

[1] M. Erdmann. Lecture notes for 16-811 Mathematical Fundamentals for Robotics. The Robotics
Institute, Carnegie Mellon University, 1998.

[2] G. Golub and C. F. Van Loan. Matrix Computations, 3rd edition. The Johns Hopkins University
Press, Baltimore, 1996.

[3] G. Strang. Introduction to Linear Algebra. Wellesley-Cambridge Press, 1993.

[4] W. H. Press, et al. Numerical Recipes in C++: The Art of Scientific Computing. Cambridge
University Press, 2nd edition, 2002.

8


