Local Search

Evaluate and modify one or more *current states* rather than systematically exploring paths from an initial state.

* Figures are from the textbook site (or drawn by the instructor).
Local Search

Evaluate and modify one or more *current states* rather than systematically exploring paths from an initial state.

Outline

I. Hill climbing

II. Simulated annealing

III. Genetic algorithms

* Figures are from the textbook site (or drawn by the instructor).
Advantages of Local Search

- Use of very little memory.
- Finding good solutions in state spaces *intractable* for a systematic search.
- Useful in pure optimization (e.g., gradient-based descent methods)
Advantages of Local Search

- Use of very little memory.
- Finding good solutions in state spaces *intractable* for a systematic search.
- Useful in pure optimization (e.g., gradient-based descent methods)

Maximize $f(x, y)$

![Diagram showing level curves and steepest ascent]

$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$

$c_1 > c_2 > c_3 > c_4$
State Space Landscape

- Objective function
- Global maximum
- Shoulder
- Local maximum
- "Flat" local maximum
- Current state
- State space
I. Hill Climbing

function HILL-CLIMBING(problem) returns a state that is a local maximum
 current ← problem.INITIAL
 while true do
 neighbor ← a highest-valued successor state of current
 if VALUE(neighbor) ≤ VALUE(current) then return current
 current ← neighbor
I. Hill Climbing

function HILL-CLIMBING(problem) returns a state that is a local maximum

 current ← problem.INITIAL

while true do

 neighbor ← a highest-valued successor state of current // to break a tile

 if VALUE(neighbor) ≤ VALUE(current) then return current

 current ← neighbor

// random choice
I. Hill Climbing

```plaintext
function HILL-CLIMBING(problem) returns a state that is a local maximum
    current ← problem.INITIAL
    while true do
        neighbor ← a highest-valued successor state of current // random choice
        if VALUE(neighbor) ≤ VALUE(current) then return current // to break a tile
        current ← neighbor
```

8-queens problem
I. Hill Climbing

function HILL-CLIMBING(problem) returns a state that is a local maximum

\begin{verbatim}
current ← problem.INITIAL
while true do
 neighbor ← a highest-valued successor state of current
 if VALUE(neighbor) ≤ VALUE(current) then return current
 current ← neighbor
\end{verbatim}

// random choice
// to break a tile

8-queens problem

- \(h(s) = \# \) pairs of queens attacking each other, directly or indirectly, in the state \(s \).
I. Hill Climbing

function HILL-CLIMBING(problem) returns a state that is a local maximum

\begin{align*}
\text{current} & \leftarrow \text{problem.INITIAL} \\
\text{while true } \text{ do} & \\
\quad \text{neighbor} & \leftarrow \text{a highest-valued successor state of } \text{current} \quad // \text{ random choice} \\
\quad \text{if VALUE(neighbor) \leq VALUE(current) then return current} & \quad // \text{ to break a tile} \\
\quad \text{current} & \leftarrow \text{neighbor}
\end{align*}

8-queens problem

- \(h(s) = \# \text{ pairs of queens attacking each other, directly or indirectly, in the state } s. \)
I. Hill Climbing

\[
\text{function HILL-CLIMBING(problem) returns a state that is a local maximum}
\]
\[
current \leftarrow \text{problem.INITIAL}
\]
\[
\text{while true do}
\]
\[
\quad \text{neighbor} \leftarrow \text{a highest-valued successor state of current} \quad \text{// random choice}
\]
\[
\quad \text{if VALUE(neighbor) \leq VALUE(current) then return current} \quad \text{// to break a tile}
\]
\[
\quad current \leftarrow \text{neighbor}
\]

8-queens problem

- \(h(s) = \# \text{ pairs of queens attacking each other, directly or indirectly, in the state } s. \)
- Successor is a state generated from relocating a queen in the same column.

\[
h = 17
\]
I. Hill Climbing

function HILL-CLIMBING\((\text{problem})\) \textbf{returns} a state that is a local maximum

\[\text{current} \leftarrow \text{problem.\text{INITIAL}}\]

\textbf{while} true \textbf{do}

\[\text{neighbor} \leftarrow \text{a highest-valued successor state of current} \quad // \text{random choice}\]

\textbf{if} \ \text{VALUE}(\text{neighbor}) \leq \text{VALUE}(\text{current}) \ \textbf{then} \ \textbf{return} \ \text{current}\]

\[\text{current} \leftarrow \text{neighbor} \quad // \text{to break a tile}\]

8-queens problem

\begin{itemize}
 \item \(h(s) = \#\) pairs of queens attacking each other, directly or indirectly, in the state \(s\).
 \item Successor is a state generated from relocating a queen in the same column.
\end{itemize}

\[h = 17\]
1. Hill Climbing

function HILL-CLIMBING(\textit{problem}) returns a state that is a local maximum
\texttt{current} \leftarrow \texttt{problem}.INITIAL
\textbf{while} true \textbf{do}
\hspace{1em} \texttt{neighbor} \leftarrow \text{a highest-valued successor state of current} \hspace{1em} \text{// random choice}
\hspace{1em} \textbf{if} \ \texttt{VALUE(neighbor)} \leq \texttt{VALUE(current)} \textbf{then return current} \hspace{1em} \text{// to break a tile}
\hspace{1em} \texttt{current} \leftarrow \texttt{neighbor}

8-queens problem

- $h(s) =$ # pairs of queens attacking each other, directly or indirectly, in the state s.
- Successor is a state generated from relocating a queen in the same column.
I. Hill Climbing

function HILL-CLIMBING(*problem*) **returns** a state that is a local maximum

current ← problem.INITIAL

while true do

 neighbor ← a highest-valued successor state of current

 if VALUE(neighbor) ≤ VALUE(current) then return current

 current ← neighbor

end

// random choice
// to break a tile

- **8-queens problem**

 - \(h(s) = \# \text{ pairs of queens attacking each other, directly or indirectly, in the state } s. \)

 - Successor is a state generated from relocating a queen in the same column.

 - \(h(s) = 12 \) for the best successor.

- \(h = 17 \)
I. Hill Climbing

function HILL-CLIMBING(problem) returns a state that is a local maximum

\[\text{current} \leftarrow \text{problem.INITIAL} \]

\[\text{while true do} \]

\[\text{neighbor} \leftarrow \text{a highest-valued successor state of current} \]

\[\text{if VALUE(neighbor) \leq VALUE(current) then return current} \]

\[\text{current} \leftarrow \text{neighbor} \]

// random choice
// to break a tile

8-queens problem

- \(h(s) = \) # pairs of queens attacking each other, directly or indirectly, in the state \(s \).

- Successor is a state generated from relocating a queen in the same column.

- \(h(s) = 12 \) for the best successor.
I. Hill Climbing

```
function HILL-CLIMBING(problem) returns a state that is a local maximum
    current ← problem.INITIAL
    while true do
        neighbor ← a highest-valued successor state of current
        if VALUE(neighbor) ≤ VALUE(current) then return current
        current ← neighbor
    // random choice to break a tile
```

8-queens problem

- $h(s) = \#$ pairs of queens attacking each other, directly or indirectly, in the state s.
- Successor is a state generated from relocating a queen in the same column.
- $h(s) = 12$ for the best successor.

8-way tie!.
I. Hill Climbing

function HILL-CLIMBING(problem) returns a state that is a local maximum

current ← problem.INITIAL

while true do

neighbor ← a highest-valued successor state of current

if VALUE(neighbor) ≤ VALUE(current) then return current

current ← neighbor

// random choice
// to break a tile

8-queens problem

- $h(s) = \#$ pairs of queens attacking each other, directly or indirectly, in the state s.

- Successor is a state generated from relocating a queen in the same column.

- $h(s) = 12$ for the best successor.

8-way tie!

Hill climbing randomly picks one.

$h = 17$
Efficiency?
Efficiency?

5 moves
Efficiency?

- 5 moves
- $h = 1$
Hill climbing can make rapid progress toward a solution.
Drawback of Hill Climbing (1)

Hill climbing terminates when a peak is reached with no neighbor having a higher value.
Hill climbing terminates when a peak is reached with no neighbor having a higher value.

- **Local maximum**

 Not the global maximum.
Drawback of Hill Climbing (1)

Hill climbing terminates when a peak is reached with no neighbor having a higher value.

♠ Local maximum

Not the global maximum.
Drawback of Hill Climbing (1)

Hill climbing terminates when a peak is reached with no neighbor having a higher value.

♠ Local maximum

Not the global maximum.

Every move of one queen introduces more conflicts.
Drawback of Hill Climbing (1)

Hill climbing terminates when a peak is reached with no neighbor having a higher value.

- **Local maximum**

 Not the global maximum.

 Hill climbing in the vicinity of a local maximum will be drawn toward it and then get stuck there.

 Every move of one queen introduces more conflicts.
Drawback of Hill Climbing (2)

- **Ridge:** A sequence of local maxima difficult to navigate.

At each local maximum, all available actions are downhill.
Drawback of Hill Climbing (2)

- **Ridge:** A sequence of local maxima difficult to navigate.
 - At each local maximum, all available actions are downhill.

- **Plateaus:** No uphill actions exist.
Drawback of Hill Climbing (2)

- **Ridge**: A sequence of local maxima difficult to navigate.

At each local maximum, all available actions are downhill.

- **Plateaus**: No uphill actions exist.
Variations of Hill Climbing

- Stochastic hill climbing
 - Random selection among the uphill moves.
 - Probability of selection varying with steepness..
Variations of Hill Climbing

♦ Stochastic hill climbing
 • Random selection among the uphill moves.
 • Probability of selection varying with steepness..

♦ First-choice hill climbing
 • Random generation of successors until a better (than the current) one is found.
 • Useful when many successors exist and/or the objective function is costly to evaluate.
Variations of Hill Climbing

♦ **Stochastic hill climbing**
 - Random selection among the uphill moves.
 - Probability of selection varying with steepness.

♦ **First-choice hill climbing**
 - Random generation of successors until a better (than the current) one is found.
 - Useful when many successors exist and/or the objective function is costly to evaluate.

♦ **Random restart hill climbing**
 - Restart search from random initial state.
II. Simulated Annealing

Annealing: Heat a metal to a high temperature and then gradually cool it, allowing the material to reach a low-energy crystalline state so it is hardened.
Annealing: Heat a metal to a high temperature and then gradually cool it, allowing the material to reach a low-energy crystalline state so it is hardened.

* from http://www.cs.us.es/~fsancho/?e=206
II. Simulated Annealing

Annealing: Heat a metal to a high temperature and then gradually cool it, allowing the material to reach a low-energy crystalline state so it is hardened.

- Start by shaking hard (i.e., at high temperature).
- Gradually reduce the intensity of shaking (i.e., lower the temperature).

* from http://www.cs.us.es/~fsancho/?e=206
Simulated Annealing Algorithm

```python
function SIMULATED-ANNEALING(problem, schedule) returns a solution state
    current ← problem.INITIAL
    for t = 1 to ∞ do
        T ← schedule(t)
        if T = 0 then return current // solution
        next ← a randomly selected successor of current
        ΔE ← VALUE(current) − VALUE(next)
        if ΔE > 0 then current ← next
        else current ← next only with probability e^{−ΔE/T}
```

Temperature \(\rightarrow\) Minimization

Badness \(\rightarrow\) \(-\Delta E\)
Simulated Annealing Algorithm

```python
function SIMULATED-ANNEALING(problem, schedule) returns a solution state
    current ← problem.INITIAL
    for t = 1 to ∞ do
        T ← schedule(t)
        if T = 0 then return current // solution
        next ← a randomly selected successor of current
        ΔE ← VALUE(current) − VALUE(next)
        if ΔE > 0 then current ← next
        else current ← next only with probability \[ e^{\frac{\Delta E}{T}} \] // \[ \Delta E \leq 0 \]
```

Minimization
Simulated Annealing Algorithm

function SIMULATED-ANNEALING(problem, schedule) returns a solution state
 current ← problem.INITIAL
 for t = 1 to ∞ do
 T ← schedule(t)
 if T = 0 then return current // solution
 next ← a randomly selected successor of current
 ΔE ← VALUE(current) − VALUE(next)
 if ΔE > 0 then current ← next
 else current ← next only with probability $e^{\Delta E / T}$
 end for

• Accept the next state if it is an improvement ($\Delta E > 0$).

Minimization

Temperature → Badness $-\Delta E$ → $e^{\Delta E / T}$ // $\Delta E \leq 0$
Simulated Annealing Algorithm

```
function SIMULATED-ANNEALING(problem, schedule) returns a solution state
  current ← problem.INITIAL
  for t = 1 to ∞ do
    T ← schedule(t)
    if T = 0 then return current // solution
    next ← a randomly selected successor of current
    ΔE ← VALUE(current) - VALUE(next)
    if ΔE > 0 then current ← next
    else current ← next only with probability e^{ΔE/T} // ΔE ≤ 0
```

- Accept the next state if it is an improvement (ΔE > 0).
- Otherwise, accept it with a probability that decreases exponentially
 - as the badness −ΔE of the move increases, and
 - as the “temperature” goes down.
Simulated Annealing Algorithm

```
f\text{unction SIMULATED-ANNEALING}(\text{problem, schedule}) \text{return}s a solution state
  \text{current} \leftarrow \text{problem.\textsc{INITIAL}}
  \text{for } t = 1 \text{ to } \infty \text{ do}
    T \leftarrow \text{schedule}(t)
    \text{if } T = 0 \text{ then return current // solution}
    \text{next} \leftarrow \text{a randomly selected successor of current}
    \Delta E \leftarrow \text{VALUE(current)} - \text{VALUE(next)}
    \text{if } \Delta E > 0 \text{ then } \text{current} \leftarrow \text{next}
    \text{else current} \leftarrow \text{next only with probability } e^{\Delta E / T}
\text{Minimization}

\Delta E \leq 0
```

- Accept the next state if it is an improvement ($\Delta E > 0$).
- Otherwise, accept it with a probability that decreases exponentially
 - as the badness $-\Delta E$ of the move increases, and
 - as the “temperature” goes down.

Bad moves are more tolerated at the start when T is high, and become less likely as T decreases.
Simulated Annealing Algorithm

function SIMULATED-ANNEALING(problem, schedule) returns a solution state

\begin{itemize}
 \item current \leftarrow \text{problem}.\text{INITIAL}
 \item for \(t = 1 \) to \(\infty \) do
 \begin{align*}
 & T \leftarrow \text{schedule}(t) \\
 & \text{if } T = 0 \text{ then return current} \quad \text{// solution} \\
 & \text{next} \leftarrow \text{a randomly selected successor of } \text{current} \\
 & \Delta E \leftarrow \text{VALUE}(\text{current}) - \text{VALUE}(\text{next}) \\
 & \text{if } \Delta E > 0 \text{ then } \text{current} \leftarrow \text{next} \\
 & \text{else } \text{current} \leftarrow \text{next} \text{ only with probability } e^{\frac{-\Delta E}{T}} \\
 \end{align*}
 \end{itemize}

- Accept the next state if it is an improvement (\(\Delta E > 0 \)).
- Otherwise, accept it with a probability that decreases exponentially
 - as the badness \(-\Delta E\) of the move increases, and
 - as the “temperature” goes down.

- Escape local minima by allowing bad moves.

Minimization

\[\mathcal{E} \leftarrow e^{\Delta E/T} \quad \text{// } \Delta E \leq 0 \]
More About SA

- $T \to 0$ slowly enough
More About SA

- $T \to 0$ slowly enough

\[e^{\Delta E / T} \]

A property of Boltzmann distribution $e^{\Delta E / T}$ guarantees the global minimum with probability $\to 1$.
More About SA

- $T \to 0$ slowly enough

\[e^{\Delta E/T} \]

A property of Boltzmann distribution $e^{\Delta E/T}$ guarantees the global minimum with probability $\to 1$.

- Commonly used $T \leftarrow cT$ with constant $c < 1$ and close to 1 at each step.
More About SA

- $T \to 0$ slowly enough

 $e^{\Delta E/T}$ guarantees the global minimum with probability $\to 1$.

- Commonly used $T \leftarrow cT$ with constant $c < 1$ and close to 1 at each step.

- Applied to many problems:

 - VLSL layout
 - factory scheduling
 - aircraft trajectory planning
 - NP-hard optimization (i.e., the traveling salesman problem)
 - large-scale stochastic optimization tasks
Local Beam Search

Keep track of k states rather than one.

1. Start with k randomly generated states.
2. Generate all their successors.
3. Stop if any successor is a goal.
4. Otherwise, keep the k best successors and go back to step 2.
Local Beam Search

Keep track of k states rather than one.

1. Start with k randomly generated states.
2. Generate all their successors.
3. Stop if any successor is a goal.
4. Otherwise, keep the k best successors and go back to step 2.

May suffer from a lack of diversity among the k states.
Local Beam Search

Keep track of k states rather than one.

1. Start with k randomly generated states.
2. Generate all their successors.
3. Stop if any successor is a goal.
4. Otherwise, keep the k best successors and go back to step 2.

- May suffer from a lack of diversity among the k states.

Solution: stochastic beam search which chooses successors with probabilities proportional to their values.
III. Evolutionary Algorithms

- Also called *genetic algorithms*.
- Inspired by natural selection in biology.
III. Evolutionary Algorithms

- Also called genetic algorithms.
- Inspired by natural selection in biology.

1. Start with a population of k randomly generated states (individuals).
III. Evolutionary Algorithms

✩ Also called genetic algorithms.

✩ Inspired by natural selection in biology.

1. Start with a population of k randomly generated states (individuals).

2. Select the most fit individuals to become parents of the next generation
III. Evolutionary Algorithms

- Also called *genetic algorithms*.
- Inspired by natural selection in biology.

1. Start with a population of k randomly generated states (individuals).
2. Select the *most fit* individuals to become parents of the next generation.
3. Combine every ρ parents to form an offspring (typically $\rho = 2$).
III. Evolutionary Algorithms

- Also called *genetic algorithms*.
- Inspired by natural selection in biology.

1. Start with a population of k randomly generated states (individuals).

2. Select the *most fit* individuals to become parents of the next generation.

3. Combine every ρ parents to form an offspring (typically $\rho = 2$).

 Crossover: Split each of the parent strings and recombine the parts to form two children.
III. Evolutionary Algorithms

- Also called *genetic algorithms*.
- Inspired by natural selection in biology.

1. Start with a population of k randomly generated states (individuals).
2. Select the *most fit* individuals to become parents of the next generation.
3. Combine every ρ parents to form an offspring (typically $\rho = 2$).

Crossover: Split each of the parent strings and recombine the parts to form two children.

Mutation: Randomly change the bits of an offspring.
III. Evolutionary Algorithms

Also called *genetic algorithms*.

Inspired by natural selection in biology.

1. Start with a population of k randomly generated states (individuals).

2. Select the *most fit* individuals to become parents of the next generation.

3. Combine every ρ parents to form an offspring (typically $\rho = 2$).

 - **Crossover**: Split each of the parent strings and recombine the parts to form two children.
 - **Mutation**: Randomly change the bits of an offspring.
 - **Culling**: All individuals below a threshold are discarded from the population.
III. Evolutionary Algorithms

- Also called *genetic algorithms*.
- Inspired by natural selection in biology.

1. Start with a population of \(k \) randomly generated states (individuals).

2. Select the *most fit* individuals to become parents of the next generation.

3. Combine every \(\rho \) parents to form an offspring (typically \(\rho = 2 \)).

 Crossover: Split each of the parent strings and recombine the parts to form two children.

 Mutation: Randomly change the bits of an offspring.

 Culling: All individuals below a threshold are discarded from the population.

4. Go back to step 2 and repeat until *sufficiently fit* states are discovered (in which case the best one is chosen as a solution).
Genetic Algorithm on 8-Queen

(a) Initial Population
(b) Fitness Function
Genetic Algorithm on 8-Queen

Row number of the queen in column 1

(a) Initial Population

(b) Fitness Function

- 24748552
- 32752411
- 24415124
- 32543213
Genetic Algorithm on 8-Queen

Row number of the queen in column 1

Score = # non-attacking pairs of queens

(a) Initial Population
(b) Fitness Function
Genetic Algorithm on 8-Queen

Row number of the queen in column 1

Score =
non-attacking pairs of queens

(a) Initial Population

(b) Fitness Function

14% = \frac{11}{24 + 23 + 20 + 11}
Genetic Algorithm on 8-Queen

Row number of the queen in column 1

Score = # non-attacking pairs of queens

(a) Initial Population
(b) Fitness Function
(c) Selection

14% = \frac{11}{24 + 23 + 20 + 11}
Genetic Algorithm on 8-Queen

Row number of the queen in column 1

Score = \# non-attacking pairs of queens

(a) Initial Population
(b) Fitness Function
(c) Selection
(d) Crossover

\[14\% = \frac{11}{24 + 23 + 20 + 11} \]
Genetic Algorithm on 8-Queen

Row number of the queen in column 1

Score = # non-attacking pairs of queens

(a) Initial Population
(b) Fitness Function
(c) Selection
14% = \(\frac{11}{24 + 23 + 20 + 11} \)

(d) Crossover
(e) Mutation
Genetic Algorithm on 8-Queen

Row number of the queen in column 1

Score = # non-attacking pairs of queens

(a) Initial Population
(b) Fitness Function
(c) Selection
(d) Crossover
(e) Mutation

14% = \frac{11}{24 + 23 + 20 + 11}

Move the queen in column 8 to a random square (7).
Crossover

(d)
Crossover
Crossover
Crossover

(d) Crossover
Genetic Algorithm (Pseudocode)

function GENETIC-ALGORITHM(population, fitness) returns an individual
 repeat
 weights \leftarrow WEIGHTED-BY(population, fitness)
 population2 \leftarrow empty list
 for $i = 1$ to SIZE(population) do
 parent1, parent2 \leftarrow WEIGHTED-RANDOM-CHOICES(population, weights, 2)
 child \leftarrow REPRODUCE(parent1, parent2)
 if (small random probability) then child \leftarrow MUTATE(child)
 add child to population2
 population \leftarrow population2
 until some individual is fit enough, or enough time has elapsed
 return the best individual in population, according to fitness

function REPRODUCE(parent1, parent2) returns an individual
 $n \leftarrow$ LENGTH(parent1)
 $c \leftarrow$ random number from 1 to n
 return APPEND(SUBSTRING(parent1, 1, c), SUBSTRING(parent2, $c + 1$, n))
Applications of GA

- Complex structured problems
 - Circuit layout, job-shop scheduling

- Evolving the architecture of deep neural networks

- Finding bugs of hardware

- Molecular structure optimization

- Image processing.

- Learning robots, etc.
Applications of GA

- Complex structured problems
 Circuit layout, job-shop scheduling
- Evolving the architecture of deep neural networks
- Finding bugs of hardware
- Molecular structure optimization
- Image processing.
- Learning robots, etc.