I. The molding problem

II. Problem transformation

III. Intersection of half-planes
I. The Problem of Molding

Does a given object have a mold from which it can be removed?

mold 1

mold 2
I. The Problem of Molding

Does a given object have a mold from which it can be removed?

- mold 1
- object not removable

- mold 2
I. The Problem of Molding

Does a given object have a mold from which it can be removed?

mold 1
object not removable

mold 2
object removable
I. The Problem of Molding

Does a given object have a mold from which it can be removed?

Assumptions

- The object is polyhedral.
I. The Problem of Molding

Does a given object have a mold from which it can be removed?

Assumptions

- The object is polyhedral.
- The mold has only one piece.
I. The Problem of Molding

Does a given object have a mold from which it can be removed?

Assumptions

- The object is polyhedral.
- The mold has only one piece.

Spherical objects cannot be manufactured using a mold of one piece.
I. The Problem of Molding

Does a given object have a mold from which it can be removed?

Assumptions

- The object is polyhedral.
- The mold has only one piece.
- Spherical objects cannot be manufactured using a mold of one piece.
- The object should be removed by only a single translation.
I. The Problem of Molding

Does a given object have a mold from which it can be removed?

Assumptions

- The object is polyhedral.
- The mold has only one piece.
- Spherical objects cannot be manufactured using a mold of one piece.
- The object should be removed by only a single translation.
  - Real screws cannot be removed by just a translation.
Castability

How to choose the orientation?
Castability

How to choose the orientation?

🌟 The object has a horizontal *top facet* – the only one not in contact with the mold.
Castability

How to choose the orientation?

- The object has a horizontal *top facet* – the only one not in contact with the mold.

- # possible orientations = # facets.
Castability

How to choose the orientation?

🌟 The object has a horizontal *top facet* – the only one not in contact with the mold.

🌟 # possible orientations = # facets.
Because every facet may become horizontal.
Castability

How to choose the orientation?

- The object has a horizontal \textit{top facet} – the only one not in contact with the mold.

- \# possible orientations = \# facets.
  Because every facet may become horizontal.

An object is \textit{castable} if it is removable from its mold for one of the orientations.
How to choose the orientation?

- The object has a horizontal *top facet* – the only one not in contact with the mold.

- # possible orientations = # facets.
  Because every facet may become horizontal.

An object is *castable* if it is removable from its mold for one of the orientations.

How to determine that the object is castable?
Castability

How to choose the orientation?

🌟 The object has a horizontal top facet – the only one not in contact with the mold.

🌟 # possible orientations = # facets. Because every facet may become horizontal.

An object is castable if it is removable from its mold for one of the orientations.

How to determine that the object is castable?

For each potential orientation, determine whether there exists a direction along which the object can be removed from the mold.
Making Things More Precise

decahedron $P$

top facet
Making Things More Precise

The mold is a rectangular block with a concavity that exactly matches the polyhedron.
Making Things More Precise

- The mold is a rectangular block with a concavity that exactly matches the polyhedron.
- Its topmost facet is horizontal and chosen to be \( xy \)-plane.
The mold is a rectangular block with a concavity that exactly matches the polyhedron.

Its topmost facet is horizontal and chosen to be $xy$-plane.

Top facet of the polyhedron is coplanar with the $xy$-plane.
Making Things More Precise

The mold is a rectangular block with a concavity that exactly matches the polyhedron.

Its topmost facet is horizontal and chosen to be \( xy \)-plane.

Top facet of the polyhedron is coplanar with the \( xy \)-plane.

*Ordinary facet* \( f \): a facet of the polyhedron that is not the top.
Making Things More Precise

The mold is a rectangular block with a concavity that exactly matches the polyhedron.

Its topmost facet is *horizontal* and chosen to be $xy$-plane.

Top facet of the polyhedron is coplanar with the $xy$-plane.

*Ordinary facet* $f$: a facet of the polyhedron that is not the top.

$F$ : the facet in the mold that corresponds to $f$. 
Making Things More Precise

The mold is a rectangular block with a concavity that exactly matches the polyhedron.

Its topmost facet is *horizontal* and chosen to be $xy$-plane.

Top facet of the polyhedron is coplanar with the $xy$-plane.

*Ordinary facet* $f$: a facet of the polyhedron that is not the top.

$F$: the facet in the mold that corresponds to $f$.

**Problem**  Decide whether a direction $d$ exists such that $P$ can be translated to infinity without colliding with the mold.
Necessary Condition for Removal

polyhedron $P$
Necessary Condition for Removal

$d$ has a positive $z$ component.
Necessary Condition for Removal

\[
\cos \theta = \frac{v_1 \cdot v_2}{|v_1||v_2|}
\]

\[= v_1 \cdot v_2
\]

\(d\) has a positive \(z\) component.

angle between two vectors

polyhedron \(P\)
Necessary Condition for Removal

\[ \cos \theta = v_1 \cdot v_2 \]

The angle between two vectors \( \theta \) is chosen to be in \([0, \pi]\).

Polyhedron \( P \) has a positive \( z \) component.

\( d \) has a positive \( z \) component.
Necessary Condition for Removal

\[ \cos \theta = v_1 \cdot v_2 \]

\[ = v_1 \cdot v_2 \]

\[ \theta \text{ chosen to be in } [0, \pi]. \]

\[ d \] has a positive \( z \) component.

The translation of a facet \( f \) cannot penetrate into the corresponding facet \( F \) of the mold.
**Necessary Condition for Removal**

\[ \cos \theta = \frac{v_1 \cdot v_2}{\|v_1\| \|v_2\|} \]

\( \theta \) chosen to be in \([0, \pi]\).
Necessary Condition for Removal

\[ \cos \theta = v_1 \cdot v_2 \]
\[ = v_1 \cdot v_2 \]
\[ \theta \text{ chosen to be in } [0, \pi]. \]

The translation of a facet \( f \) cannot penetrate into the corresponding facet \( F \) of the mold.

\( d \) has a positive \( z \) component.

\( F \) blocks the translation if \( d \) forms an angle \( > \pi/2 \) with its outward normal \( N \).

\( F \) does not block the translation if \( d \) forms an angle \( < \pi/2 \) with its outward normal \( N \).
Necessary Condition for Removal

\[ \cos \theta = \frac{v_1 \cdot v_2}{\|v_1\| \|v_2\|} \]

\( \theta \) chosen to be in \([0, \pi]\).

\( d \) has a positive \( z \) component.

The translation of a facet \( f \) cannot penetrate into the corresponding facet \( F \) of the mold.

\( F \) blocks the translation if \( d \) forms an angle \( > \frac{\pi}{2} \) with its outward normal \( N \).

\( F \) does not block the translation if \( d \) forms an angle \( < \frac{\pi}{2} \) with its outward normal \( N \).

\( d \) must make an angle \( > \frac{\pi}{2} \) with the outward normal \( n = -N \) of every facet \( f \) of \( P \).
Necessary Condition for Removal

\[ \cos \theta = \frac{v_1 \cdot v_2}{\|v_1\| \|v_2\|} \]

\[ = \frac{2 \cdot 2 \cdot \cos \theta}{2 \cdot 2} = \cos \theta \]

\[ \theta \] chosen to be in \([0, \pi]\).

\(d\) has a positive \(z\) component.

The translation of a facet \(f\) cannot penetrate into the corresponding facet \(F\) of the mold.

\(\rightarrow\) \(F\) blocks the translation if \(d\) forms an angle \(\gt \pi/2\) with its outward normal \(N\).

\(\rightarrow\) \(F\) does not block the translation if \(d\) forms an angle \(\lt \pi/2\) with its outward normal \(N\).

\(\rightarrow\) \(d\) must make an angle \(\gt \pi/2\) with the outward normal \(n = -N\) of every facet \(f\) of \(P\).

(necessary condition)
Also a Sufficient Condition

**Theorem** The polyhedron can translate out of the mold in a direction $d$ if and only if $d$ makes an angle $> \pi/2$ with the outward normal of every facet of the polyhedron except the top one.
Also a Sufficient Condition

Theorem  The polyhedron can translate out of the mold in a direction $d$ if and only if $d$ makes an angle $> \pi/2$ with the outward normal of every facet of the polyhedron except the top one.

Proof  ($\Leftrightarrow$) By contradiction.
Theorem  The polyhedron can translate out of the mold in a direction $d$ if and only if $d$ makes an angle $> \pi/2$ with the outward normal of every facet of the polyhedron except the top one.

Proof  $(\Rightarrow)$ By contradiction. Suppose $d$ makes an angle $< \pi/2$ with the outward normal $n$ of some facet $f$. 

$P$
Also a Sufficient Condition

**Theorem** The polyhedron can translate out of the mold in a direction $d$ if and only if $d$ makes an angle $> \pi/2$ with the outward normal of every facet of the polyhedron except the top one.

**Proof** $(\Rightarrow)$ By contradiction.

Suppose $d$ makes an angle $< \pi/2$ with the outward normal $n$ of some facet $f$.

Then any interior point of $f$ collides with the mold in the translation.
Also a Sufficient Condition

Theorem  The polyhedron can translate out of the mold in a direction $d$ if and only if $d$ makes an angle $> \pi/2$ with the outward normal of every facet of the polyhedron except the top one.

Proof  $(\Rightarrow)$ By contradiction.
Suppose $d$ makes an angle $< \pi/2$ with the outward normal $n$ of some facet $f$.
Then any interior point of $f$ collides with the mold in the translation.

$(\Leftarrow)$ By contradiction.
Suppose $P$ collides with the mold translating in direction $d$. 
Also a Sufficient Condition

**Theorem** The polyhedron can translate out of the mold in a direction $d$ if and only if $d$ makes an angle $> \pi/2$ with the outward normal of every facet of the polyhedron except the top one.

**Proof**

$(\Rightarrow)$ By contradiction. Suppose $d$ makes an angle $< \pi/2$ with the outward normal $n$ of some facet $f$. Then any interior point of $f$ collides with the mold in the translation.

$(\Leftarrow)$ By contradiction. Suppose $P$ collides with the mold translating in direction $d$. Let $p$ be the point on $P$ that collides with a facet $F$ of the mold. $p$ is about to move into the interior.
Also a Sufficient Condition

**Theorem** The polyhedron can translate out of the mold in a direction \( d \) if and only if \( d \) makes an angle \( > \pi/2 \) with the outward normal of every facet of the polyhedron except the top one.

**Proof** \((\Rightarrow)\) By contradiction. Suppose \( d \) makes an angle \( < \pi/2 \) with the outward normal \( n \) of some facet \( f \).

Then any interior point of \( f \) collides with the mold in the translation.

\((\Leftarrow)\) By contradiction. Suppose \( P \) collides with the mold translating in direction \( d \).

Let \( p \) be the point on \( P \) that collides with a facet \( F \) of the mold. \( p \) is about to move into the interior.
Theorem  The polyhedron can translate out of the mold in a direction $d$ if and only if $d$ makes an angle $> \pi/2$ with the outward normal of every facet of the polyhedron except the top one.

Proof

$(\Rightarrow)$ By contradiction.
Suppose $d$ makes an angle $< \pi/2$ with the outward normal $n$ of some facet $f$.
Then any interior point of $f$ collides with the mold in the translation.

$(\Leftarrow)$ By contradiction.
Suppose $P$ collides with the mold translating in direction $d$.
Let $p$ be the point on $P$ that collides with a facet $F$ of the mold. $p$ is about to move into the interior.
The outward normal $N$ of $F$ makes an angle $> \pi/2$ with $d$. 
Also a Sufficient Condition

**Theorem**  The polyhedron can translate out of the mold in a direction $d$ if and only if $d$ makes an angle $> \pi/2$ with the outward normal of every facet of the polyhedron except the top one.

**Proof**  

(⇒) By contradiction. Suppose $d$ makes an angle $< \pi/2$ with the outward normal $n$ of some facet $f$. Then any interior point of $f$ collides with the mold in the translation.

(⇐) By contradiction. Suppose $P$ collides with the mold translating in direction $d$. Let $p$ be the point on $P$ that collides with a facet $F$ of the mold. $p$ is about to move into the interior. The outward normal $N$ of $F$ makes an angle $> \pi/2$ with $d$. The outward normal $n$ of $f$ makes an angle $< \pi/2$ with $d$. 
One Translation vs. Multiple Translations

Polyhedron removable by a sequence of translations.
One Translation vs. Multiple Translations

Polyhedron removable by a sequence of translations.

There exists at least one direction \( d \) which makes an angle \( \geq \frac{\pi}{2} \) with the outward normal of every polyhedron face.
One Translation vs. Multiple Translations

Polyhedron removable by a sequence of translations.

- There exists at least one direction $d$ which makes an angle $\geq \pi/2$ with the outward normal of every polyhedron face.

- Removable along the direction $d$. 
One Translation vs. Multiple Translations

Polyhedron removable by a sequence of translations.

- There exists at least one direction $d$ which makes an angle $\geq \pi/2$ with the outward normal of every polyhedron face.

- Removable along the direction $d$.

Allowing for multiple translations does not help.
II. Representing a Direction

$d$ to make an angle $\geq \pi/2$ with the normal of every facet.
II. Representing a Direction

d to make an angle $\geq \pi/2$ with the normal of every facet.

Every point $(x, y, 1)$ represents a direction.
II. Representing a Direction

\( d \) to make an angle \( \geq \pi/2 \) with the normal of every facet.

Every point \((x, y, 1)\) represents a direction.

The set of all directions with a positive \( z \) component is represented by the plane \( z = 1 \).
Geometric Interpretation

Let $d = (d_x, d_y, 1)$. 
Let $d = (d_x, d_y, 1)$.
Let $n = (n_x, n_y, n_z)$ be the outward normal of one facet. Then
Let $d = (d_x, d_y, 1)$. Let $n = (n_x, n_y, n_z)$ be the outward normal of one facet. Then
Let \( d = (d_x, d_y, 1) \).
Let \( n = (n_x, n_y, n_z) \) be the outward normal of one facet. Then

\[
n_x d_x + n_y d_y + n_z \leq 0
\]
Let $d = (d_x, d_y, 1)$.

Let $n = (n_x, n_y, n_z)$ be the outward normal of one facet. Then

$$n_x d_x + n_y d_y + n_z \leq 0$$

variables
Geometric Interpretation

Let $d = (d_x, d_y, 1)$.

Let $n = (n_x, n_y, n_z)$ be the outward normal of one facet. Then

$$n_x d_x + n_y d_y + n_z \leq 0$$

variables
Let $d = (d_x, d_y, 1)$.

Let $n = (n_x, n_y, n_z)$ be the outward normal of one facet. Then

$$n_x d_x + n_y d_y + n_z \leq 0$$

variables

- an area to one side of the line $n \cdot d = 0$
- on the plane $z = 1$ (the $d_x$-$d_y$ plane)
Let \( d = (d_x, d_y, 1) \).
Let \( n = (n_x, n_y, n_z) \) be the outward normal of one facet. Then

\[
n_x d_x + n_y d_y + n_z \leq 0
\]

- an area to one side of the line \( n \cdot d = 0 \) on the plane \( z = 1 \) (the \( d_x \)-\( d_y \) plane)
- when the facet is horizontal \( (n_x = n_y = 0) \), the constraint is either true for all \( d \) or false for all \( d \) depending on \( n_z \) (easy to verify).
Every non-horizontal facet defines a closed half-plane of $z = 1$. 
Every non-horizontal facet defines a closed half-plane of $z = 1$. 
Geometric Formulation

Every non-horizontal facet defines a closed half-plane of $z = 1$.

The *intersection* of all such half-planes is the set of points that correspond to a direction in which the polygon can be removed.
Every non-horizontal facet defines a closed half-plane of $z = 1$.

The *intersection* of all such half-planes is the set of points that correspond to a direction in which the polygon can be removed.

Given a set of half-planes, compute their common intersection.
Geometric Formulation

Every non-horizontal facet defines a closed half-plane of \( z = 1 \).

The intersection of all such half-planes is the set of points that correspond to a direction in which the polygon can be removed.

Given a set of half-planes, compute their common intersection.

Castability test: Enumerate all facets as top facet.
Geometric Formulation

Every non-horizontal facet defines a closed half-plane of $z = 1$.

The intersection of all such half-planes is the set of points that correspond to a direction in which the polygon can be removed.

Given a set of half-planes, compute their common intersection.

Castability test: Enumerate all facets as top facet.

★ This can be done in expected time $O(n^2)$ and $O(n)$ storage.
Geometric Formulation

Every non-horizontal facet defines a closed half-plane of $z = 1$.

The intersection of all such half-planes is the set of points that correspond to a direction in which the polygon can be removed.

Given a set of half-planes, compute their common intersection.

Castability test: Enumerate all facets as top facet.

⭐ This can be done in expected time $O(n^2)$ and $O(n)$ storage.

⭐ If $P$ is castable, a mold and a removal direction can be computed within the same time bound.
III. Intersection of Half-Planes

4 half-planes:

\[ x_1 - x_2 \leq 2 \]
\[ x_1 + x_2 \leq 6 \]
\[ x_1 \geq 0 \]
\[ x_2 \geq 0 \]
General Problem

$n$ half-planes:

$$h_i : a_i x + b_i y \leq c_i \quad 1 \leq i \leq n$$

each a convex set!
General Problem

\( n \) half-planes:

\[ h_i : a_i x + b_i y \leq c_i \quad 1 \leq i \leq n \]

each a convex set!

Their intersection must be a convex set:

- a convex polygonal region.
- \( \leq n \) edges.
- possibly unbounded
- possibly degenerating into a line, segment, a point, or an empty set.
Some Possible Cases
A Divide-and-Conquer Algorithm

IntersectHalfplane($H$)

**Input**: A set $H$ of $n$ half-planes in the plane

**Output**: The convex polygon region $C = \bigcap_{h \in H} h$

1. if $|H| = 1$
2. then $C \leftarrow$ the unique half-plane $h \in H$
3. else split $H$ into sets $H_1$ and $H_2$ of size $\lfloor n/2 \rfloor$ and $\lceil n/2 \rceil$
4. $C_1 \leftarrow$ IntersectHalfplane($H_1$)
5. $C_2 \leftarrow$ IntersectHalfplane($H_2$)
6. $C \leftarrow$ IntersectConvexRegion($C_1, C_2$)
Intersection of Convex Regions
Intersection of Convex Regions

The intersection of two polygons in $O((n + k) \log n)$ time.
Intersection of Convex Regions

The intersection of two polygons in $O((n + k) \log n)$ time.
Intersection of Convex Regions

The intersection of two polygons in $O((n + k) \log n)$ time.

#vertices  #intersections
Intersection of Convex Regions

The intersection of two polygons in $O((n + k) \log n)$ time.

Modify the algorithm to intersect two convex regions.
Intersection of Convex Regions

The intersection of two polygons in $O((n + k) \log n)$ time.

Modify the algorithm to intersect two convex regions.
Intersection of Convex Regions

The intersection of two polygons in $O((n + k) \log n)$ time.

Modify the algorithm to intersect two convex regions.

Every intersection $v$ of an edge of one region with an edge of the other must be a vertex of the intersection region.
Intersection of Convex Regions

The intersection of two polygons in $O((n + k) \log n)$ time.

Modify the algorithm to intersect two convex regions.

Every intersection $v$ of an edge of one region with an edge of the other must be a vertex of the intersection region.

The intersection region has $\leq n$ edges and vertices.
The intersection of two polygons in $O((n + k) \log n)$ time.

Modify the algorithm to intersect two convex regions.

Every intersection $v$ of an edge of one region with an edge of the other must be a vertex of the intersection region.

The intersection region has $\leq n$ edges and vertices.

$\Rightarrow k \leq n$
Intersection of Convex Regions

The intersection of two polygons in $O((n + k) \log n)$ time.

Modify the algorithm to intersect two convex regions.

- Every intersection $v$ of an edge of one region with an edge of the other must be a vertex of the intersection region.
- The intersection region has $\leq n$ edges and vertices.

$\Rightarrow k \leq n$

$\Rightarrow$ IntersectConvexRegion takes time $O(n \log n)$. 
The Recurrence

Let \( T(n) \) be the running time.

\textbf{IntersectHalfplane}(\( H \))

\textbf{Input}: A set \( H \) of \( n \) half-planes in the plane

\textbf{Output}: The convex polygon region \( C = \cap h \)

1. if \( |H| = 1 \)
2. then \( C \leftarrow \) the unique half-plane \( h \in H \)
3. else split \( H \) into sets \( H_1 \) and \( H_2 \) of size \( \lceil n/2 \rceil \) and \( \lfloor n/2 \rfloor \)
4. \( C_1 \leftarrow \text{IntersectHalfplane}(H_1) \)
5. \( C_2 \leftarrow \text{IntersectHalfplane}(H_2) \)
6. \( C \leftarrow \text{IntersectConvexRegion}(C_1, C_2) \)
The Recurrence

Let $T(n)$ be the running time.

**IntersectHalfplane($H$)**

**Input:** A set $H$ of $n$ half-planes in the plane

**Output:** The convex polygon region $C = \cap h$

1. if $|H| = 1$
2. then $C \leftarrow$ the unique half-plane $h \in H$
3. else split $H$ into sets $H_1$ and $H_2$ of size $\lceil n/2 \rceil$ and $\lfloor n/2 \rfloor$
4. $C_1 \leftarrow$ IntersectHalfplane($H_1$)  // $T(n/2)$
5. $C_2 \leftarrow$ IntersectHalfplane($H_2$)
6. $C \leftarrow$ IntersectConvexRegion($C_1, C_2$)
The Recurrence

Let $T(n)$ be the running time.

**IntersectHalfplane($H$)**

**Input:** A set $H$ of $n$ half-planes in the plane

**Output:** The convex polygon region $C = \cap h$

1. if $|H| = 1$
2. then $C \leftarrow$ the unique half-plane $h \in H$
3. else split $H$ into sets $H_1$ and $H_2$ of size $\left\lceil n/2 \right\rceil$ and $\left\lfloor n/2 \right\rfloor$
4. $C_1 \leftarrow$ IntersectHalfplane($H_1$) // $T(n/2)$
5. $C_2 \leftarrow$ IntersectHalfplane($H_2$) // $T(n/2)$
6. $C \leftarrow$ IntersectConvexRegion($C_1$, $C_2$)
The Recurrence

Let $T(n)$ be the running time.

**IntersectHalfplane($H$)**

**Input:** A set $H$ of $n$ half-planes in the plane

**Output:** The convex polygon region $C = \cap h$

1. **if** $|H| = 1$
2. **then** $C \leftarrow$ the unique half-plane $h \in H$
3. **else** split $H$ into sets $H_1$ and $H_2$ of size $\lceil n/2 \rceil$ and $\lfloor n/2 \rfloor$
4. $C_1 \leftarrow$ IntersectHalfplane($H_1$)  \hspace{1cm} \text{// $T(n/2)$}
5. $C_2 \leftarrow$ IntersectHalfplane($H_2$)  \hspace{1cm} \text{// $T(n/2)$}
6. $C \leftarrow$ IntersectConvexRegion($C_1$, $C_2$) \hspace{1cm} \text{// $O(n \log n)$}
The Recurrence

Let $T(n)$ be the running time.

**IntersectHalfplane($H$)**

**Input:** A set $H$ of $n$ half-planes in the plane

**Output:** The convex polygon region $C = \cap h$

1. if $|H| = 1$
2. then $C \leftarrow$ the unique half-plane $h \in H$
3. else split $H$ into sets $H_1$ and $H_2$ of size $\lfloor n/2 \rfloor$ and $\lceil n/2 \rceil$
4. $C_1 \leftarrow$ IntersectHalfplane($H_1$) // $T(n/2)$
5. $C_2 \leftarrow$ IntersectHalfplane($H_2$) // $T(n/2)$
6. $C \leftarrow$ IntersectConvexRegion($C_1$, $C_2$) // $O(n \log n)$

$$T(n) = \begin{cases} 
O(1) & \text{if } n = 1 
\end{cases}$$
The Recurrence

Let $T(n)$ be the running time.

**IntersectHalfplane($H$)**

**Input**: A set $H$ of $n$ half-planes in the plane

**Output**: The convex polygon region $C = \cap h$

1. if $|H| = 1$
2. then $C \leftarrow$ the unique half-plane $h \in H$
3. else split $H$ into sets $H_1$ and $H_2$ of size \(\lceil n/2 \rceil\) and \(\lfloor n/2 \rfloor\)
4. $C_1 \leftarrow$ IntersectHalfplane($H_1$) // $T(n/2)$
5. $C_2 \leftarrow$ IntersectHalfplane($H_2$) // $T(n/2)$
6. $C \leftarrow$ IntersectConvexRegion($C_1$, $C_2$) // $O(n \log n)$

$$T(n) = \begin{cases} 
O(1) & \text{if } n = 1 \\
O(n \log n) + 2T(n/2), & \text{if } n > 1.
\end{cases}$$
The Recurrence

Let $T(n)$ be the running time.

**IntersectHalfplane($H$)**

**Input**: A set $H$ of $n$ half-planes in the plane

**Output**: The convex polygon region $C = \cap h$

1. if $|H| = 1$
2. then $C \leftarrow$ the unique half-plane $h \in H$
3. else split $H$ into sets $H_1$ and $H_2$ of size \( \left\lceil \frac{n}{2} \right\rceil \) and \( \left\lfloor \frac{n}{2} \right\rfloor \)
4. $C_1 \leftarrow$ IntersectHalfplane($H_1$)  // $T(n/2)$
5. $C_2 \leftarrow$ IntersectHalfplane($H_2$)  // $T(n/2)$
6. $C \leftarrow$ IntersectConvexRegion($C_1$, $C_2$)  // $O(n \log n)$

\[
T(n) = \begin{cases} 
O(1) & \text{if } n = 1 \\
O(n \log n) + 2T(n/2), & \text{if } n > 1.
\end{cases}
\]

\[\Rightarrow T(n) = O(n \log^2 n)\]
Improvement

Can we do better?
The subroutine for intersection of convex regions is a transplant from that for intersecting two simple polygons.
Improvement

Can we do better?

- The subroutine for intersection of convex regions is a transplant from that for intersecting two simple polygons.
- We made use of the *convexity* in our analysis.
Improvement

Can we do better?

- The subroutine for intersection of convex regions is a transplant from that for intersecting two simple polygons.
- We made use of the *convexity* in our analysis.
- But we haven’t taken full advantage of convexity yet …
Improvement

Can we do better?

- The subroutine for intersection of convex regions is a transplant from that for intersecting two simple polygons.
- We made use of the *convexity* in our analysis.
- But we haven’t taken full advantage of convexity yet …

Yes!
Improvement

Can we do better?

- The subroutine for intersection of convex regions is a transplant from that for intersecting two simple polygons.
- We made use of the *convexity* in our analysis.
- But we haven’t taken full advantage of convexity yet …

Yes!

Assumption (non-degeneracy):

The regions to be intersected are 2-dimensional.
Improvement

Can we do better?

- The subroutine for intersection of convex regions is a transplant from that for intersecting two simple polygons.
- We made use of the *convexity* in our analysis.
- But we haven’t taken full advantage of convexity yet …

Yes!

**Assumption** (non-degeneracy):

The regions to be intersected are 2-dimensional.

(The degenerate cases are easier.)
Representing a Convex Region

Left and right boundaries as *sorted* lists of half-planes during traversals from top to bottom.
Representing a Convex Region

Left and right boundaries as *sorted* lists of half-planes during traversals from top to bottom.
Representing a Convex Region

Left and right boundaries as *sorted* lists of half-planes during traversals from top to bottom.
Representing a Convex Region

Left and right boundaries as sorted lists of half-planes during traversals from top to bottom.

Denote the two lists by $L$ and $R$. 
Representing a Convex Region

Left and right boundaries as sorted lists of half-planes during traversals from top to bottom.

Denote the two lists by $L$ and $R$.

$L(C) : h_1, h_5, h_4$

$R(C) : h_2, h_3, h_6$
Representing a Convex Region

Left and right boundaries as sorted lists of half-planes during traversals from top to bottom.

Denote the two lists by $L$ and $R$.

Vertices can be easily computed by intersecting consecutive bounding lines.

$L(C) : h_1, h_5, h_4$  
$R(C) : h_2, h_3, h_6$
Representing a Convex Region

Left and right boundaries as *sorted* lists of half-planes during traversals from top to bottom.

Denote the two lists by $L$ and $R$.

Vertices can be easily computed by intersecting consecutive bounding lines. So they are not stored explicitly.

$L(C) : h_1, h_5, h_4$

$R(C) : h_2, h_3, h_6$
Representing a Convex Region

Left and right boundaries as *sorted* lists of half-planes during traversals from top to bottom.

Denote the two lists by $L$ and $R$.

Vertices can be easily computed by intersecting consecutive bounding lines. So they are *not* stored explicitly.

A horizontal edge, if exists, belongs to the left boundary if bounding $C$ from above and to the right boundary otherwise.

$L(C) : h_1, h_5, h_4$

$R(C) : h_2, h_3, h_6$
Plane Sweep Again

Assumption: no horizontal edge (easy to dealt with if not true).
Plane Sweep Again

Assumption: no horizontal edge (easy to dealt with if not true).

Sweep downward to merge two convex regions $C_1$ and $C_2$. 
Assumption: no horizontal edge (easy to deal with if not true).

Sweep downward to merge two convex regions $C_1$ and $C_2$.

At most four edges intersecting the sweep line.

$l_e\_C1, r_e\_C1, l_e\_C2, r_e\_C2$
Plane Sweep Again

Assumption: no horizontal edge (easy to dealt with if not true).

Sweep downward to merge two convex regions $C_1$ and $C_2$.

At most four edges intersecting the sweep line.

$l_e_{C1}, r_e_{C1}, l_e_{C2}, r_e_{C2}$
Plane Sweep Again

**Assumption**: no horizontal edge (easy to dealt with if not true).

Sweep downward to merge two convex regions $C_1$ and $C_2$.

🌟 At most four edges intersecting the sweep line.

$l_e_{C1}, r_e_{C1}, l_e_{C2}, r_e_{C2}$
Assumption: no horizontal edge (easy to dealt with if not true).

Sweep downward to merge two convex regions $C_1$ and $C_2$.

- At most four edges intersecting the sweep line.

$\text{l\_e\_C1, r\_e\_C1, l\_e\_C2, r\_e\_C2}$
Plane Sweep Again

**Assumption**: no horizontal edge (easy to dealt with if not true).

Sweep downward to merge two convex regions $C_1$ and $C_2$.

- At most four edges intersecting the sweep line.

\[ l_{eC1}, r_{eC1}, l_{eC2}, r_{eC2} \]
Plane Sweep Again

Assumption: no horizontal edge (easy to deal with if not true).

Sweep downward to merge two convex regions $C_1$ and $C_2$.

- At most four edges intersecting the sweep line.
  
  $l\_e\_C1, r\_e\_C1, l\_e\_C2, r\_e\_C2$

- Corresponding pointer is set to nil if no intersection.
No Event Queue

Start at

the \( y \)-coordinate of the highest vertex of the two chains,
or \( \infty \) if one chain has one edge extending upward.
No Event Queue

Start at

the $y$-coordinate of the highest vertex of the two chains, or $\infty$ if one chain has one edge extending upward.

Next event point:
No Event Queue

Start at

the $y$-coordinate of the highest vertex of the two chains, or $\infty$ if one chain has one edge extending upward.

Next event point:

*Highest* of the *lower* endpoints of the four edges that intersect the sweep line.
No Event Queue

Start at

the \( y \)-coordinate of the highest vertex of the two chains, or \( \infty \) if one chain has one edge extending upward.

Next event point:

\textit{Highest} of the \textit{lower} endpoints of the four edges that intersect the sweep line. \( O(1) \)
No Event Queue

Start at

the $y$-coordinate of the highest vertex of the two chains, or $\infty$ if one chain has one edge extending upward.

Next event point:

*Highest* of the *lower* endpoints of the four edges that intersect the sweep line. $O(1)$

The new edge $e$ is one of the following:

1. part of $C_1$ and on the left chain
2. part of $C_1$ and on the right chain
3. part of $C_2$ and on the left chain
4. part of $C_2$ and on the right chain
No Event Queue

Start at

the $y$-coordinate of the highest vertex of the two chains, or $\infty$ if one chain has one edge extending upward.

Next event point:

*Highest* of the *lower* endpoints of the four edges that intersect the sweep line. $O(1)$

The new edge $e$ is one of the following:

1. part of $C_1$ and on the left chain
2. part of $C_1$ and on the right chain
3. part of $C_2$ and on the left chain
4. part of $C_2$ and on the right chain
Left Boundary of Chain 1

$p$: upper endpoint of $e$.

Three possible cases involving $e$ and $p$ in the intersection $C$:
$p$: upper endpoint of $e$.

Three possible cases involving $e$ and $p$ in the intersection $C$:

- $p$ lies inside $C_2$
Left Boundary of Chain 1

$p$: upper endpoint of $e$.

Three possible cases involving $e$ and $p$ in the intersection $C$:

- $p$ lies inside $C_2$
- $C$ has an edge with $p$ as the upper endpoint.
Left Boundary of Chain 1

$p$: upper endpoint of $e$.

Three possible cases involving $e$ and $p$ in the intersection $C$:

- $p$ lies inside $C_2$
- $C$ has an edge with $p$ as the upper endpoint.
  This can be determined by checking whether $p$ is between $l_eC_2$ and $r_eC_2$. 
$p$: upper endpoint of $e$.

Three possible cases involving $e$ and $p$ in the intersection $C$:

- **$p$ lies inside $C_2$**
- **$C$ has an edge with $p$ as the upper endpoint.**
  - This can be determined by checking whether $p$ is between $l_e_{C2}$ and $r_e_{C2}$.

Add the half-plane with $e$ part of its boundary to the list $L$. 
**Left Boundary of Chain 1**

\( p \): upper endpoint of \( e \).

Three possible cases involving \( e \) and \( p \) in the intersection \( C \):

- \( p \) lies inside \( C_2 \)
- \( C \) has an edge with \( p \) as the upper endpoint.

This can be determined by checking whether \( p \) is between \( l\_e\_C2 \) and \( r\_e\_C2 \).

Add the half-plane with \( e \) part of its boundary to the list \( L \).

- \( e \) intersects \( l\_e\_C2 \).
Left Boundary of Chain 1

$p$: upper endpoint of $e$.

Three possible cases involving $e$ and $p$ in the intersection $C$:

- **$p$ lies inside $C_2$**: $C$ has an edge with $p$ as the upper endpoint. This can be determined by checking whether $p$ is between $l_eC2$ and $r_eC2$.
  
  Add the half-plane with $e$ part of its boundary to the list $L$.

- **$e$ intersects $l_eC2$**.
  
  The intersection $q$ is a vertex of $C$. 
$p$: upper endpoint of $e$.

Three possible cases involving $e$ and $p$ in the intersection $C$:

- **$p$ lies inside $C_2$**
  - $C$ has an edge with $p$ as the upper endpoint.
  - This can be determined by checking whether $p$ is between $l_{e_{\text{C2}}}$ and $r_{e_{\text{C2}}}$.
  - Add the half-plane with $e$ part of its boundary to the list $L$.

- **$e$ intersects $l_{e_{\text{C2}}}$**.
  - The intersection $q$ is a vertex of $C$.
  - The edge of $C$ starting at $q$ is part of either $e$ ($p$ outside of $C_2$) or $l_{e_{\text{C2}}}$.
**Left Boundary of Chain 1**

$p$: upper endpoint of $e$.

Three possible cases involving $e$ and $p$ in the intersection $C$:

- **$p$ lies inside $C_2**
  - $C$ has an edge with $p$ as the upper endpoint.
  - This can be determined by checking whether $p$ is between $l_eC_2$ and $r_eC_2$.
  - Add the half-plane with $e$ part of its boundary to the list $L$.

- **$e$ intersects $l_eC_2$**.
  - The intersection $q$ is a vertex of $C$.
  - The edge of $C$ starting at $q$ is part of either $e$ ($p$ outside of $C_2$) or $l_eC_2$.
  - Add the appropriate edge(s) to the list $L$. 

cont’d


\( e \) intersects \( r_e C2 \).
$e$ intersects $r_e C_2$.

$p$ (outside of $C_2$)
Cont’d

$e$ intersects $r\_e\_C2$.

$p$ (outside of $C_2$)
$e$ intersects $\text{r}_e\text{C}2$. $p$ (outside of $C_2$)

Each of $e$ and $\text{r}_e\text{C}2$ contributes an edge to $C$ at the intersection.
e intersects \( r_eC2 \).

Each of \( e \) and \( r_eC2 \) contributes an edge to \( C \) at the intersection.

Case 1. The new edges start at the intersection.
e intersects \( r_e_C2 \).

Each of \( e \) and \( r_e_C2 \) contributes an edge to \( C \) at the intersection.

Case 1. The new edges start at the intersection. Add the half-plane defining \( e \) to \( L \) and the one defining \( r_e_C2 \) to \( R \).
cont’d

*e intersects r_e_C2.*

Each of $e$ and $r_e_C2$ contributes an edge to $C$ at the intersection.

**Case 1.** The new edges start at the intersection.
Add the half-plane defining $e$ to $L$ and the one defining $r_e_C2$ to $R$.

**Case 2.** The new edges end at the intersection.
cont’d

*e* intersects *r_e_C2*.

Each of *e* and *r_e_C2* contributes an edge to *C* at the intersection.

**Case 1.** The new edges start at the intersection. Add the half-plane defining *e* to *L* and the one defining *r_e_C2* to *R*.

**Case 2.** The new edges end at the intersection. Do nothing because these edges have been discovered.
Running Time

It takes $O(1)$ time to handle an edge.
Running Time

It takes $O(1)$ time to handle an edge.

Intersection of two convex polygonal regions takes $O(n)$ time.
Running Time

It takes $O(1)$ time to handle an edge.

Intersection of two convex polygonal regions takes $O(n)$ time.

Recurrence for the total running time:

\[
T(n) = \begin{cases} 
    O(1) & \text{if } n = 1 \\
    O(n) + 2T(n/2), & \text{if } n > 1. 
\end{cases}
\]
Running Time

It takes $O(1)$ time to handle an edge.

Intersection of two convex polygonal regions takes $O(n)$ time.

Recurrence for the total running time:

$$T(n) = \begin{cases} 
O(1) & \text{if } n = 1 \\
O(n) + 2T(n/2), & \text{if } n > 1.
\end{cases}$$

$\Rightarrow T(n) = O(n \log n)$
Running Time

It takes $O(1)$ time to handle an edge.

Intersection of two convex polygonal regions takes $O(n)$ time.

Recurrence for the total running time:

$$T(n) = \begin{cases} 
O(1) & \text{if } n = 1 \\
O(n) + 2T(n/2), & \text{if } n > 1.
\end{cases}$$

$\Rightarrow \hspace{0.5cm} T(n) = O(n \log n)$

**Theorem** The common intersection of $n$ half-planes in the plane can be computed in $O(n \log n)$ time and $O(n)$ storage.