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 AI is the enterprise of design and analysis of intelligent agents.

 Intelligent behavior requires knowledge (e.g., model of the 

    environment).

 Explicit specifications of the knowledge needed for specific tasks 

    are hard, and often infeasible.

 How to acquire knowledge? 

Machine learning (ML) refers to the process in which a computer

• observes some data,

• builds a model based on the data, and

• uses the model as both a hypothesis about the world and a piece 

   of problem solving software. 



Learning Agents

 Learning modifies the agent’s decision mechanisms to improve 

    performance. 

• Which component is to be improved. 

• Which prior knowledge the agent has, which influences the model. 

• What data and feedback on that data is available. 

 Environment changes over time – learning needs to adapt to changes. 

 Learning is essential for unknown environments.
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Data Mining

 Huge amounts of data are available from  

science, medicine, economics, geography, environment, sports, …

 Data is a potentially valuable resource.

 Raw data are useless – need techniques to automatically extract

    information from it. 

• Data: recorded facts

• Information: patterns underlying the data

 Machine learning techniques automatically find patterns in data. 
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Weather condition for playing a certain game:

Learned classification rules:



Contact Lense Data



Learned Decision Tree 
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Predicting CPU Performance

209 different computer configurations

Function obtained through linear regression (fitting): 



Image Translation

Translate a horse into a zebra 

(find corresponding pairs):



Machine Learning Models

 Supervised learning
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 Nearest neighbor methods
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 Probabilistic graphical models 

 Unsupervised learning

 Clustering: mixture models, 

    K-means, hierarchical clustering

 Principal component analysis 

 Independent component analysis 

 Bayesian networks

 Markov random fields

 Sequential data

 HMMs

 Recurrent neural networks

 Markov decision process 

 Reinforcement Learning
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The agent observes input-output pairs and learns a function that maps

from input to output.

Problem Given a training set of 𝑁 input-output pairs:

𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , 𝑥𝑁, 𝑦𝑁

where each pair was generated by an unknown function 𝑦 = 𝑓(𝑥), 

discover a function ℎ to approximate 𝑓.

hypothesis (or model) drawn from a 

hypothesis space ℋ of possible functions

𝑦1, 𝑦2, … , 𝑦𝑛: ground truth to be predicted by our model 

chosen according to some prior

knowledge about data generation
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Best-Fit Function

 With noise in data, we cannot expect an exact match with the 

    ground truth, namely, ℎ 𝑥𝑖 = 𝑦𝑖, for 1 ≤ 𝑖 ≤ 𝑁. 

 Instead, we look for a best-fit function ℎ for which each ℎ 𝑥𝑖  is 

    close 𝑦𝑖 . 

 The true measure of ℎ is how it handles inputs it has not seen. 

Test set: a second sample of (𝑥𝑖 , 𝑦𝑖) pairs

 ℎ generalizes well if it matches the test set with high accuracy. 



Fitting

ℎ 𝑥 = 𝑤1𝑥 + 𝑤0 ℎ 𝑥 = 𝑤1𝑥 + sin(𝑤0𝑥) ℎ 𝑥 = 
𝑖=0

12

𝑤𝑖𝑥𝑖

13 points

ℎ𝑖 𝑥 = 𝑤𝑖1𝑥 + 𝑤𝑖0,
 1 ≤ 𝑖 ≤ 12 such that

ℎ𝑗 𝑥𝑗+1 = ℎ𝑗+1 𝑥𝑗+1

for 1 ≤ 𝑗 ≤ 11.

(Least-squares fitting: https://faculty.sites.iastate.edu/jia/files/inline-files/data-fit.pdf)

https://faculty.sites.iastate.edu/jia/files/inline-files/data-fit.pdf


Fitting

ℎ 𝑥 = 𝑤1𝑥 + 𝑤0 ℎ 𝑥 = 𝑤1𝑥 + sin(𝑤0𝑥) ℎ 𝑥 = 
𝑖=0

12

𝑤𝑖𝑥𝑖

13 points

ℎ𝑖 𝑥 = 𝑤𝑖1𝑥 + 𝑤𝑖0,
 1 ≤ 𝑖 ≤ 12 such that

ℎ𝑗 𝑥𝑗+1 = ℎ𝑗+1 𝑥𝑗+1

for 1 ≤ 𝑗 ≤ 11.

(Least-squares fitting: https://faculty.sites.iastate.edu/jia/files/inline-files/data-fit.pdf)

https://faculty.sites.iastate.edu/jia/files/inline-files/data-fit.pdf


Fitting
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13 points

fitting becomes

 interpolation

ℎ𝑖 𝑥 = 𝑤𝑖1𝑥 + 𝑤𝑖0,
 1 ≤ 𝑖 ≤ 12 such that

ℎ𝑗 𝑥𝑗+1 = ℎ𝑗+1 𝑥𝑗+1

for 1 ≤ 𝑗 ≤ 11.

(Least-squares fitting: https://faculty.sites.iastate.edu/jia/files/inline-files/data-fit.pdf)

https://faculty.sites.iastate.edu/jia/files/inline-files/data-fit.pdf


Underfitting, Variance & Overfitting

• A hypothesis is underfitting when it fails to find a pattern in the data.

 Such a hypothesis has high bias and low variance.



Underfitting, Variance & Overfitting

• A hypothesis is underfitting when it fails to find a pattern in the data.

 Such a hypothesis has high bias and low variance.

Underfitting

 (possibly)



Underfitting, Variance & Overfitting

• A hypothesis is underfitting when it fails to find a pattern in the data.

 Such a hypothesis has high bias and low variance.

• Variance characterizes the amount of change in the hypothesis due to 

   fluctuation in the training data.

Underfitting

 (possibly)



Underfitting, Variance & Overfitting

• A hypothesis is underfitting when it fails to find a pattern in the data.

 Such a hypothesis has high bias and low variance.

• Variance characterizes the amount of change in the hypothesis due to 

   fluctuation in the training data.

High varianceUnderfitting

 (possibly)



Underfitting, Variance & Overfitting

• A hypothesis is underfitting when it fails to find a pattern in the data.

 Such a hypothesis has high bias and low variance.

• Variance characterizes the amount of change in the hypothesis due to 

   fluctuation in the training data.

• A hypothesis is overfitting when it pays too much attention to the 

   particular training set. 

High varianceUnderfitting

 (possibly)



Underfitting, Variance & Overfitting

• A hypothesis is underfitting when it fails to find a pattern in the data.

 Such a hypothesis has high bias and low variance.

• Variance characterizes the amount of change in the hypothesis due to 

   fluctuation in the training data.

• A hypothesis is overfitting when it pays too much attention to the 

   particular training set. 

High varianceOverfittingUnderfitting

 (possibly) Overfitting



Underfitting, Variance & Overfitting

• A hypothesis is underfitting when it fails to find a pattern in the data.

 Such a hypothesis has high bias and low variance.

• Variance characterizes the amount of change in the hypothesis due to 

   fluctuation in the training data.

• A hypothesis is overfitting when it pays too much attention to the 

   particular training set. 

High varianceOverfittingUnderfitting

 (possibly) Overfitting

 Such a hypothesis has low bias and high variance.
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Best Hypothesis

It depends on what we knew was represented by the data, or, what

we were expecting from the data ...

Choosing the hypothesis that is most probable given the data:

ℎ∗

= arcmax
ℎ∈ℋ

𝑃 data ℎ)𝑃(ℎ)

= arcmax
ℎ∈ℋ

𝑃 ℎ data)

(Bayes’ rule)

A simple hypothesis space ℋ is often preferred:

 The more expressiveness of ℋ, the higher the computational

    cost of finding a good hypothesis within that space. 

 We will likely be using ℎ for evaluations after we have learned it. 
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1. Alternate: whether there is a suitable alternative restaurant nearby.

2. Bar: whether the restaurant has a comfortable bar area to wait in.

3. Fri/Sat: true on Fridays and Saturdays.

4. Hungry: whether we are hungry right now.

5. Patrons: how many people are in the restaurant (values: None, Some, and Full).

6. Price: the restaurant’s price range ($, $$, $$$).

7. Raining: whether it is raining outside.
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9. Type: the kind of restaurant (French, Italian, Thai, or burger).

10. WaitEstimate: host’s wait estimate: 0-10, 10-30, 30-60, or >60 minutes.



Restaurant Waiting

Problem  Decide whether to wait for a table at a restaurant.

Output: a Boolean variable WillWait (true where we do wait for a table). 

Input: a vector of ten attributes, each with discrete values:

1. Alternate: whether there is a suitable alternative restaurant nearby.

2. Bar: whether the restaurant has a comfortable bar area to wait in.

3. Fri/Sat: true on Fridays and Saturdays.

4. Hungry: whether we are hungry right now.

5. Patrons: how many people are in the restaurant (values: None, Some, and Full).

6. Price: the restaurant’s price range ($, $$, $$$).

7. Raining: whether it is raining outside.

8. Reservation: whether we made a reservation.

9. Type: the kind of restaurant (French, Italian, Thai, or burger).

10. WaitEstimate: host’s wait estimate: 0-10, 10-30, 30-60, or >60 minutes.

26 × 32 × 42 = 9,216 possible combinations of attribute values.
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 The correct output is given for only 12 out of 9,216 examples.



Training Examples

 The correct output is given for only 12 out of 9,216 examples.

 We need to make our best guess at the missing 9,204 output values.
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