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Use of Markov Chains

 Markov chain is a random process that generates a sequence of 

    states.

 A Markov Chain Monte Carlo (MCMC) algorithm 

• specifies a value for every variable at the current state (i.e., sample), and 

• generates a next state by making random changes to the current state. 



Gibbs Sampling

An MCMC algorithm is well suited for Bayes nets that 

• starts with an arbitrary state 

• fix evidence variables at their observed values   

• randomly sample a value for the chosen variable 𝑋𝑖 according to

𝜌 𝑖 = 𝑃 𝑋𝑖  is chosen among 𝑋1, … , 𝑋𝑚 

• chose a variable 𝑋𝑖 out of the 𝑚 nonevidence variables with a specified 

   probability:    
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𝑷 𝑋𝑖 | 𝑚𝑏(𝑋𝑖)    // how to compute?

                              // (described later)
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The Algorithm

𝑁, number of samples

// 𝑋 ∈ 𝒁

Values of 𝑋: 𝑥1 𝑥𝑗 𝑥𝑚⋯⋯

𝑪:
1 ⋯  𝑗 ⋯  𝑚

Two cases in iteration 𝑘:

● 𝑍𝑖 = 𝑋.  𝑥𝑗 is the newly sampled value

   of 𝑋. The index 𝑗 changes from the previous 

   iteration only if the value 𝑥𝑗 does. 

● 𝑍𝑖 ≠ 𝑋.  The value of 𝑋 does not change, 

   neither does 𝑗. The same counter 𝑪[𝑗] as in 

   the previous iteration is incremented again. 
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Example (cont’d)
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II. Distribution Given the Markov Blanket
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𝑷 𝑋𝑖  | 𝑚𝑏 𝑋𝑖 = 𝑷 𝑋𝑖  parents 𝑋𝑖 , childre𝑛 𝑋𝑖 , others 𝑋𝑖 )

= 𝛼𝑷 𝑋𝑖  parents 𝑋𝑖 , others 𝑋𝑖 ) ∙ 𝑷 children 𝑋𝑖  | parents 𝑋𝑖 , 𝑋𝑖 , others 𝑋𝑖

= 𝛼𝑷 𝑋𝑖  parents 𝑋𝑖 ) ∙ 𝑷 children 𝑋𝑖  | 𝑋𝑖 , others 𝑋𝑖

= 𝛼𝑷 𝑋𝑖  parents(𝑋𝑖)) ෑ

𝑌𝑗∈Children(𝑋𝑖)

𝑃 𝑦𝑗  parents(𝑌𝑗))

= 𝛼𝑷 (𝑋𝑖 , parents 𝑋𝑖 , childre𝑛 𝑋𝑖 , others 𝑋𝑖 )

 Parents 𝑋𝑖 : parents of 𝑋𝑖 (e.g., 𝑈1, … , 𝑈𝑚)

 Others 𝑋𝑖 : other parents of 𝑋𝑖 ’s children (e.g, 𝑍1𝑗, … , 𝑍𝑛𝑗, …)

 Children 𝑋𝑖 : children of 𝑋𝑖 (e.g., 𝑌1, … , 𝑌𝑛)
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𝑌𝑗∈Children(𝑋𝑖)

𝑃 𝑦𝑗  parents(𝑌𝑗))
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𝑷 𝑋𝑖  𝑚𝑏 𝑋𝑖 ) = 𝛼𝑷 𝑋𝑖  parents(𝑋𝑖)) ෑ

𝑌𝑗∈Children(𝑋𝑖)

𝑃 𝑦𝑗  parents(𝑌𝑗))

𝑷 Cloudy Sprinkler = true, Rain = false}

 Sampling distribution: 



Markov Blanket Distribution

𝑷 𝑋𝑖  𝑚𝑏 𝑋𝑖 ) = 𝛼𝑷 𝑋𝑖  parents(𝑋𝑖)) ෑ

𝑌𝑗∈Children(𝑋𝑖)

𝑃 𝑦𝑗  parents(𝑌𝑗))

𝑷 Cloudy Sprinkler = true, Rain = false}

 Sampling distribution: 𝑚𝑏(Cloudy)



Markov Blanket Distribution

𝑷 𝑋𝑖  𝑚𝑏 𝑋𝑖 ) = 𝛼𝑷 𝑋𝑖  parents(𝑋𝑖)) ෑ

𝑌𝑗∈Children(𝑋𝑖)

𝑃 𝑦𝑗  parents(𝑌𝑗))

𝑷 Cloudy Sprinkler = true, Rain = false}

 Sampling distribution: 

𝑃 𝑐 𝑠, ¬𝑟) =  𝛼𝑃 𝑐 𝑃 𝑠 𝑐)𝑃 ¬𝑟 𝑐) =  𝛼0.5 ∙ 0.1 ∙ 0.2

𝑚𝑏(Cloudy)



Markov Blanket Distribution

𝑷 𝑋𝑖  𝑚𝑏 𝑋𝑖 ) = 𝛼𝑷 𝑋𝑖  parents(𝑋𝑖)) ෑ

𝑌𝑗∈Children(𝑋𝑖)

𝑃 𝑦𝑗  parents(𝑌𝑗))

𝑷 Cloudy Sprinkler = true, Rain = false}

 Sampling distribution: 

𝑃 𝑐 𝑠, ¬𝑟) =  𝛼𝑃 𝑐 𝑃 𝑠 𝑐)𝑃 ¬𝑟 𝑐) =  𝛼0.5 ∙ 0.1 ∙ 0.2

𝑃 ¬𝑐 𝑠, ¬𝑟) =  𝛼𝑃 ¬𝑐 𝑃 𝑠 ¬𝑐)𝑃 ¬𝑟 ¬𝑐) =  𝛼0.5 ∙ 0.5 ∙ 0.8

𝑚𝑏(Cloudy)



Markov Blanket Distribution

𝑷 𝑋𝑖  𝑚𝑏 𝑋𝑖 ) = 𝛼𝑷 𝑋𝑖  parents(𝑋𝑖)) ෑ

𝑌𝑗∈Children(𝑋𝑖)

𝑃 𝑦𝑗  parents(𝑌𝑗))

𝑷 Cloudy Sprinkler = true, Rain = false}

 Sampling distribution: 

𝑃 𝑐 𝑠, ¬𝑟) =  𝛼𝑃 𝑐 𝑃 𝑠 𝑐)𝑃 ¬𝑟 𝑐) =  𝛼0.5 ∙ 0.1 ∙ 0.2

𝑃 ¬𝑐 𝑠, ¬𝑟) =  𝛼𝑃 ¬𝑐 𝑃 𝑠 ¬𝑐)𝑃 ¬𝑟 ¬𝑐) =  𝛼0.5 ∙ 0.5 ∙ 0.8

𝑷 C 𝑠, ¬𝑟} = 𝛼0.001,0.020 ≈ 0.048,0.952

𝑚𝑏(Cloudy)



Query 𝑷(Rain | Sprinkler = true, WetGrass = true)

II. Markov Chain

A state need only include all nonevidence variables, for example, {𝑐, 𝑟}. 

𝑚𝑏 Cloudy = {Sprinkler, Rain}

𝑚𝑏 Rain = {Cloudy, Sprinkler, WetGrass}
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II. Markov Chain

Markov chain from uniform choice of the two

nonevidence variables (𝜌 Cloudy = 𝜌 Rain = 0.5)

A state need only include all nonevidence variables, for example, {𝑐, 𝑟}. 

𝑚𝑏 Cloudy = {Sprinkler, Rain}

𝑚𝑏 Rain = {Cloudy, Sprinkler, WetGrass}



Query 𝑷(Rain | Sprinkler = true, WetGrass = true)

II. Markov Chain

Markov chain from uniform choice of the two

nonevidence variables (𝜌 Cloudy = 𝜌 Rain = 0.5)

A state need only include all nonevidence variables, for example, {𝑐, 𝑟}. 

0.6296 = 𝜌 Cloudy ∙ 𝑃 𝑐 | 𝑟, 𝑠
                  +𝜌 Rain ∙ 𝑃 r | 𝑐, 𝑠, 𝑤                             

𝑚𝑏 Cloudy = {Sprinkler, Rain}

𝑚𝑏 Rain = {Cloudy, Sprinkler, WetGrass}



Query 𝑷(Rain | Sprinkler = true, WetGrass = true)

II. Markov Chain

Markov chain from uniform choice of the two

nonevidence variables (𝜌 Cloudy = 𝜌 Rain = 0.5)

A state need only include all nonevidence variables, for example, {𝑐, 𝑟}. 

0.6296 = 𝜌 Cloudy ∙ 𝑃 𝑐 | 𝑟, 𝑠
                  +𝜌 Rain ∙ 𝑃 r | 𝑐, 𝑠, 𝑤                             

0.2222 = 𝜌 Cloudy ∙ 𝑃 𝑐 | 𝑟, 𝑠                             

𝑚𝑏 Cloudy = {Sprinkler, Rain}

𝑚𝑏 Rain = {Cloudy, Sprinkler, WetGrass}



Query 𝑷(Rain | Sprinkler = true, WetGrass = true)

II. Markov Chain

Markov chain from uniform choice of the two

nonevidence variables (𝜌 Cloudy = 𝜌 Rain = 0.5)

A state need only include all nonevidence variables, for example, {𝑐, 𝑟}. 

0.6296 = 𝜌 Cloudy ∙ 𝑃 𝑐 | 𝑟, 𝑠
                  +𝜌 Rain ∙ 𝑃 r | 𝑐, 𝑠, 𝑤                             

0.0926 = 𝜌 Rain ∙ 𝑃 ¬r | 𝑐, 𝑠, 𝑤                             

0.2222 = 𝜌 Cloudy ∙ 𝑃 𝑐 | 𝑟, 𝑠                             

𝑚𝑏 Cloudy = {Sprinkler, Rain}

𝑚𝑏 Rain = {Cloudy, Sprinkler, WetGrass}



Query 𝑷(Rain | Sprinkler = true, WetGrass = true)

II. Markov Chain

Markov chain from uniform choice of the two

nonevidence variables (𝜌 Cloudy = 𝜌 Rain = 0.5)

Probabilities with all the outgoing links of each 

node sum to 1, e.g., 0.6296 + 0.0926 + 0.2778 = 1. 

A state need only include all nonevidence variables, for example, {𝑐, 𝑟}. 

0.6296 = 𝜌 Cloudy ∙ 𝑃 𝑐 | 𝑟, 𝑠
                  +𝜌 Rain ∙ 𝑃 r | 𝑐, 𝑠, 𝑤                             

0.0926 = 𝜌 Rain ∙ 𝑃 ¬r | 𝑐, 𝑠, 𝑤                             

0.2222 = 𝜌 Cloudy ∙ 𝑃 𝑐 | 𝑟, 𝑠                             

𝑚𝑏 Cloudy = {Sprinkler, Rain}

𝑚𝑏 Rain = {Cloudy, Sprinkler, WetGrass}



Query 𝑷(Rain | Sprinkler = true, WetGrass = true)

II. Markov Chain

Markov chain from uniform choice of the two

nonevidence variables (𝜌 Cloudy = 𝜌 Rain = 0.5)

 Gibbs sampling simply wanders

    around in the graph, following 

    links with probabilities. 

Probabilities with all the outgoing links of each 

node sum to 1, e.g., 0.6296 + 0.0926 + 0.2778 = 1. 

A state need only include all nonevidence variables, for example, {𝑐, 𝑟}. 

0.6296 = 𝜌 Cloudy ∙ 𝑃 𝑐 | 𝑟, 𝑠
                  +𝜌 Rain ∙ 𝑃 r | 𝑐, 𝑠, 𝑤                             

0.0926 = 𝜌 Rain ∙ 𝑃 ¬r | 𝑐, 𝑠, 𝑤                             

0.2222 = 𝜌 Cloudy ∙ 𝑃 𝑐 | 𝑟, 𝑠                             

𝑚𝑏 Cloudy = {Sprinkler, Rain}

𝑚𝑏 Rain = {Cloudy, Sprinkler, WetGrass}



Query 𝑷(Rain | Sprinkler = true, WetGrass = true)

II. Markov Chain

Markov chain from uniform choice of the two

nonevidence variables (𝜌 Cloudy = 𝜌 Rain = 0.5)

 Gibbs sampling simply wanders

    around in the graph, following 

    links with probabilities. 

Probabilities with all the outgoing links of each 

node sum to 1, e.g., 0.6296 + 0.0926 + 0.2778 = 1. 

 Every state visited is a sample 

    that contributes to the estimate 

    for the query variable Rain.

A state need only include all nonevidence variables, for example, {𝑐, 𝑟}. 

0.6296 = 𝜌 Cloudy ∙ 𝑃 𝑐 | 𝑟, 𝑠
                  +𝜌 Rain ∙ 𝑃 r | 𝑐, 𝑠, 𝑤                             

0.0926 = 𝜌 Rain ∙ 𝑃 ¬r | 𝑐, 𝑠, 𝑤                             

0.2222 = 𝜌 Cloudy ∙ 𝑃 𝑐 | 𝑟, 𝑠                             

𝑚𝑏 Cloudy = {Sprinkler, Rain}

𝑚𝑏 Rain = {Cloudy, Sprinkler, WetGrass}



Query 𝑷(Rain | Sprinkler = true, WetGrass = true)

II. Markov Chain

Markov chain from uniform choice of the two

nonevidence variables (𝜌 Cloudy = 𝜌 Rain = 0.5)

 Gibbs sampling simply wanders

    around in the graph, following 

    links with probabilities. 

Probabilities with all the outgoing links of each 

node sum to 1, e.g., 0.6296 + 0.0926 + 0.2778 = 1. 

 Every state visited is a sample 

    that contributes to the estimate 

    for the query variable Rain.

If the process visits 20 states 

with Rain = true and 60 states

with Rain = false, then the answer 

to the query is 𝛼20,60 = 0.25,0.75.

A state need only include all nonevidence variables, for example, {𝑐, 𝑟}. 

0.6296 = 𝜌 Cloudy ∙ 𝑃 𝑐 | 𝑟, 𝑠
                  +𝜌 Rain ∙ 𝑃 r | 𝑐, 𝑠, 𝑤                             

0.0926 = 𝜌 Rain ∙ 𝑃 ¬r | 𝑐, 𝑠, 𝑤                             

0.2222 = 𝜌 Cloudy ∙ 𝑃 𝑐 | 𝑟, 𝑠                             

𝑚𝑏 Cloudy = {Sprinkler, Rain}

𝑚𝑏 Rain = {Cloudy, Sprinkler, WetGrass}



Analysis of Markov Chains

Why does Gibbs sampling work?  Or, why does its estimates converge to

correct values in the limit?
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Why does Gibbs sampling work?  Or, why does its estimates converge to

correct values in the limit?

Transition kernel 𝑘 assigns a probability 𝑘(𝒙 → 𝒙′) to every transition 

from a state 𝒙 to another state 𝒙′ in the Markov chain.
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Analysis of Markov Chains

Why does Gibbs sampling work?  Or, why does its estimates converge to

correct values in the limit?

Transition kernel 𝑘 assigns a probability 𝑘(𝒙 → 𝒙′) to every transition 

from a state 𝒙 to another state 𝒙′ in the Markov chain.

𝜋𝑡 𝒙 : probability that the system is in state 𝒙 

after 𝑡 transitions

𝜋𝑡+1(𝒙′) = ෍

𝒙

𝜋𝑡(𝒙)𝑘(𝒙 → 𝒙′)

𝒙1 𝒙2

𝑘 𝒙1 → 𝒙2

=

𝒙4
𝒙3

𝜋𝑡+1 𝒙2 = 0.0926 𝜋𝑡 𝒙1 + 0.1164𝜋𝑡 𝒙2

                     + 0.0238 𝜋𝑡 𝒙4



Stationary Distribution

The chain has reached its stationary distribution if 𝜋𝑡+1 𝒙 = 𝜋𝑡 𝒙  

for all 𝒙.  We then call this stationary distribution 𝜋.
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Stationary Distribution

A stationary distribution remains unchanged in the Markov chain as time 

progresses.  

A probability distribution 𝜋 over (the states of) the 

Markov chain is stationary if, for every state 𝒙′,  

𝜋(𝒙′) = ෍

𝒙

𝜋(𝒙)𝑘(𝒙 → 𝒙′)

The chain has reached its stationary distribution if 𝜋𝑡+1 𝒙 = 𝜋𝑡 𝒙  

for all 𝒙.  We then call this stationary distribution 𝜋.
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Stationary Distribution

A transition kernel 𝑘 is ergodic if  

A stationary distribution remains unchanged in the Markov chain as time 

progresses.  

A probability distribution 𝜋 over (the states of) the 

Markov chain is stationary if, for every state 𝒙′,  

𝜋(𝒙′) = ෍

𝒙

𝜋(𝒙)𝑘(𝒙 → 𝒙′)

a) every state is reachable from every other state, and 

b) there exists exactly one stationary distribution 𝜋.

The chain has reached its stationary distribution if 𝜋𝑡+1 𝒙 = 𝜋𝑡 𝒙  

for all 𝒙.  We then call this stationary distribution 𝜋.

𝒙

𝒙′
𝑘 𝒙 → 𝒙′



Achieving a Stationary Distribution

𝜋(𝒙′) = ෍

𝒙

𝜋(𝒙)𝑘(𝒙 → 𝒙′)

expected “inflow”
expected 

“outflow”

“population”

In a stationary distribution 𝜋, the expected “outflow” from each state is 

equal to the expected “inflow” from all the other states.
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A detailed balance 𝑘 with 𝜋 is a distribution that satisfies   
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𝜋(𝒙′) = ෍

𝒙

𝜋(𝒙)𝑘(𝒙 → 𝒙′)

expected “inflow”
expected 

“outflow”

“population”

In a stationary distribution 𝜋, the expected “outflow” from each state is 

equal to the expected “inflow” from all the other states.

A detailed balance 𝑘 with 𝜋 is a distribution that satisfies   

𝜋 𝒙 𝑘 𝒙 → 𝒙′ = 𝜋 𝒙′ 𝑘 𝒙′ → 𝒙    for any states 𝒙, 𝒙’. 

The detailed balance 𝑘 makes 𝜋(𝒙) stationary because

෍

𝒙
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