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¢ A Markov Chain Monte Carlo (MCMC) algorithm

e specifies a value for every variable at the current state (i.e., sample), and

e generates a next state by making random changes to the current state.

¢ Markov chain is a random process that generates a sequence of
states.



An MCMC algorithm is well suited for Bayes nets that
e Starts with an arbitrary state

e fix evidence variables at their observed values

e chose a variable X; out of the m nonevidence variables with a specified
probability:

p(i) = P(X;is chosen among X;, ..., X, )

e randomly sample a value for the chosen variable X;
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An MCMC algorithm is well suited for Bayes nets that
e Starts with an arbitrary state

e fix evidence variables at their observed values

e chose a variable X; out of the m nonevidence variables with a specified
probability:

p(i) = P(X;is chosen among X;, ..., X, )

e randomly sample a value for the chosen variable X; according to

/[ how to compute?
/Il (described later)

X; is independent of all the variables
outside of its Markov blanket mb(X;).

T

X;’s parents, children, and children’s other parents




function GIBBS-ASK(X,e, bn, N) returns an estimate of P(X |e)
local variables: C, a vector of counts for each value of X, initially zero
Z.. the nonevidence variablesin bn // X € Z

X, the current state of the network, initialized from e

N, number of samples
initialize x with random values for the variables in Z

for k=1to N do
choose any variable Z; from Z according to any distribution p(%)
set the value of Z; in x by sampling from P(Z; | mb(Z;))
C[j] - C[j] + 1 where z; is the value of X in x

return NORMALIZE(C)
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function GIBBS-ASK(X,e, bn, N) returns an estimate of P(X |e)
local variables: C, a vector of counts for each value of X, initially zero
Z.. the nonevidence variablesin bn // X € Z

X, the current state of the network, initialized from e
N, number of samples
initialize x with random values for the variables in Z

for k=1to N do

choose any variable Z; from Z according to any distribution p(%)
set the value of Z; in x by sampling from P(Z; | mb(Z;))
C[j] < C[j| + 1 where z; is the value of X in x

return NORMALIZE(C)

Two cases in iteration k:

Z; = X. xj is the newly sampled value

_ X of X. The index j changes from the previous
Values of X1 | X1| -+ | Xj| .-+ |Xm iteration only if the value x; does.

Z; # X. The value of X does not change,
neither does j. The same counter CJ[j] as in
1« j - m the previous iteration is incremented again.

C:




Example of Gibbs Sampling

Gibbs sampling for X; is conditioned on the current values of the
variables in its Markov blanket.



Gibbs sampling for X; is conditioned on the current values of the
variables in its Markov blanket.

Sprinkler

cPslo ] P(Rlc)
80
7 20

WetGmss

P(Ws.r)

S R
r t 99
t £l w0
f el 90
£ 7l 0o

Order: Cloudy, Sprinkler, Rain, WetGrass



Gibbs sampling for X; is conditioned on the current values of the
variables in its Markov blanket.

Query P(Rain | Sprinkler = true, WetGrass = true)

Sprinkler

C|P(Slo) ) P(RIC)
.80
f1 .20

WetGmss

P(Ws.r)

S R
r t 99
t f|l w0
ftl 90
7l 00

Order: Cloudy, Sprinkler, Rain, WetGrass



Gibbs sampling for X; is conditioned on the current values of the
variables in its Markov blanket.

Query P(Rain | Sprinkler = true, WetGrass = true)

Sprinkler

C|P(Slo) ) P(RIC)
.80
f1 .20

WétGmss

S R[POTs7) e Initial state [true,true,false,true]
r ot 99
t fl 90
7]l 90
f f1 00

Order: Cloudy, Sprinkler, Rain, WetGrass



Gibbs sampling for X; is conditioned on the current values of the
variables in its Markov blanket.

Query P(Rain | Sprinkler = true, WetGrass = true)

Sprinkler

C| P(Sle) C P(Rlc)

t| .10 r| .80

[0 WétGmss A
S R[POTs7) e Initial state [true,true,false,true]
r t 99
t fl 90 : \ / .
el o0 evidence variables Sprinkler and
I WetGrass fixed to their observed values

Order: Cloudy, Sprinkler, Rain, WetGrass



Gibbs sampling for X; is conditioned on the current values of the
variables in its Markov blanket.

Query P(Rain | Sprinkler = true, WetGrass = true)

Sprinkler

C[PGlo) C P(RIC) randomly generated values for
A 1% nonevidence variables Cloudy and Rain
' WétGmss _— \
S R[POTs7) e Initial state [true,true,false,true]
r t 99
t fl 90 . \ / .
71| s evidence variables Sprinkler and
7 £l oo WetGrass fixed to their observed values

Order: Cloudy, Sprinkler, Rain, WetGrass



Query P(Rain | Sprinkler = true, WetGrass = true)
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Query P(Rain | Sprinkler = true, WetGrass = true)
A state need only include all nonevidence variables, for example, {c,r}.
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If the process visits 20 states

Markov chain from uniform choice of the two with Rain = true and 60 states

nonevidence variables (p(Cloudy) = p(Rain) = 0.5) with Rain = false, then the answer
to the query is a(20,60) = (0.25,0.75).

Probabilities with all the outgoing links of each
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Why does Gibbs sampling work? Or, why does its estimates converge to
correct values in the limit?
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A stationary distribution remains unchanged in the Markov chain as time
progresses.



The chain has reached its stationary distribution if ;. (x) = m:(x)
for all x. We then call this stationary distribution .

A probability distribution = over (the states of) the
Markov chain is stationary if, for every state x’,

T(x') = z T(Ok(x - x) ™

X

k(x - x")

A stationary distribution remains unchanged in the Markov chain as time
progresses.

A transition kernel k is ergodic if

a) every state is reachable from every other state, and

b) there exists exactly one stationary distribution .
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