Priority Search Trees

Outline:

I. Heap-based point queries

II. Structure of a PST

III. Query

IV. Correctness and running time
Windowing Queries with an Interval Tree

Range tree on left endpoints
\(T_{left}(v) \)

Range tree on right endpoints
\(T_{right}(v) \)

\(I_{left} \)

\(I_{right} \)

Region \(R \)

\([\infty, q_x] \times [q_y, q'_y] \)

Query \(q \)

\((q_x, q_y) \)

Region \(R' \)

\([q_x, \infty] \times [q_y, q'_y] \)

Point \((q_x, q'_y) \)

Point \((q_x, q_y) \)

Point \(x_{mid} \)
Windowing Queries with an Interval Tree

- Complicated data structure due to the uses of range tree and fractional cascading for efficiency.
Windowing Queries with an Interval Tree

- Complicated data structure due to the uses of range tree and fractional cascading for efficiency.
- High storage: $O(n \log n)$
Windowing Queries with an Interval Tree

- High storage: $O(n \log n)$
- Complicated data structure due to the uses of range tree and fractional cascading for efficiency.

Improvement:

- Range tree on left endpoints $T_{left}(v)$
- Range tree on right endpoints $T_{right}(v)$
- l_{left}
- I_{right}

Diagram:

- R: $\left[-\infty, q_x \right] \times [q_y, q_y']$
- q: (q_x, q_y)
- R': $[q_x, \infty] \times [q_y, q_y']$
- x_{mid}
- (q_x, q_y')
- (q_x, q_y)
Windowing Queries with an Interval Tree

- High storage: $O(n \log n)$
- Complicated data structure due to the use of range tree and fractional cascading for efficiency.

Improvement:
- Explore that the query range is unbounded on one side ($-\infty$ or ∞ over x).
Windowing Queries with an Interval Tree

- High storage: $O(n \log n)$
- Complicated data structure due to the uses of range tree and fractional cascading for efficiency.

Improvement:
- Explore that the query range is unbounded on one side ($-\infty$ or ∞ over x).
- Use a simpler data structure to cut down storage to $O(n)$.
Windowing Queries with an Interval Tree

- High storage: $O(n \log n)$
- Complicated data structure due to the uses of range tree and fractional cascading for efficiency.

Improvement:
- Explore that the query range is unbounded on one side ($-\infty$ or ∞ over x).
- Use a simpler data structure to cut down storage to $O(n)$.

Priority search tree
I. Query Problem

Point set: $P = \{p_1, p_2, \ldots, p_n\}$
Query range: $(-\infty, q_x] \times [q_y, q'_y]$
I. Query Problem

Point set: $P = \{p_1, p_2, ..., p_n\}$

Query range: $(-\infty, q_x] \times [q_y, q'_y]$

Let us think small to start with the 1D case first.

Range: $(-\infty, q_x]$
I. Query Problem

Point set: $P = \{p_1, p_2, \ldots, p_n\}$

Query range: $(-\infty, q_x] \times [q_y, q'_y]$

Let us think small to start with the 1D case first.

Range: $(-\infty, q_x]$

- Order the points $p_1 < p_2 < \cdots < p_n$.

```
p_1  p_2  p_k  q_x  p_{k+1}  p_n
```
I. Query Problem

Point set: \(P = \{p_1, p_2, \ldots, p_n\} \)

Query range: \((-\infty, q_x] \times [q_y, q'_y] \)

Let us think small to start with the 1D case first.

Range: \((-\infty, q_x] \)

- Order the points \(p_1 < p_2 < \ldots < p_n \).
- Start at the leftmost point and walk toward right until \(p_{k+1} > q_x \).
I. Query Problem

Point set: \(P = \{p_1, p_2, ..., p_n\} \)

Query range: \((-\infty, q_x] \times [q_y, q'_y]\)

Let us think small to start with the 1D case first.

Range: \((-\infty, q_x]\)

- Order the points \(p_1 < p_2 < \cdots < p_n \).
- Start at the leftmost point and walk toward right until \(p_{k+1} > q_x \).
I. Query Problem

Point set: \(P = \{p_1, p_2, \ldots, p_n\} \)

Query range: \((-\infty, q_x] \times [q_y, q'_y]\)

Let us think small to start with the 1D case first.

Range: \((-\infty, q_x]\)

- Order the points \(p_1 < p_2 < \cdots < p_n \).
- Start at the leftmost point and walk toward right until \(p_{k+1} > q_x \).
- Report \(p_1, p_2, \ldots, p_k \) during the walk.
I. Query Problem

Point set: \(P = \{p_1, p_2, \ldots, p_n\} \)

Query range: \((-\infty, q_x] \times [q_y, q_y']\)

Let us think small to start with the 1D case first.

Range: \((-\infty, q_x]\)

- Order the points \(p_1 < p_2 < \cdots < p_n \).
- Start at the leftmost point and walk toward right until \(p_{k+1} > q_x \).
- Report \(p_1, p_2, \ldots, p_k \) during the walk

\[O(1 + k) \]
Moving on to 2D Query

Among the points with x-coordinates in $(-\infty, q_x]$, select those whose y-coordinates are in $[q_y, q_y']$.

{1, 3, 11, 6, 9, 13, 22, 8, 40}
Moving on to 2D Query

Among the points with \(x\)-coordinates in \((-\infty, q_x]\), select those whose \(y\)-coordinates are in \([q_y, q'_y]\).

- How to exploit \((-\infty, q_x]\) being half-open?
Moving on to 2D Query

Among the points with x-coordinates in $(-\infty, q_x]$, select those whose y-coordinates are in $[q_y, q'_y]$.

- How to exploit $(-\infty, q_x]$ being half-open?

- Use a min heap.

Property Every internal node stores the minimum value of the subtree rooted at the node.
Moving on to 2D Query

Among the points with x-coordinates in $(-\infty, q_x]$, select those whose y-coordinates are in $[q_y, q'_y]$.

- How to exploit $(-\infty, q_x]$ being half-open?

- Use a min heap.

Property: Every internal node stores the minimum value of the subtree rooted at the node.

{1, 3, 11, 6, 9, 13, 22, 8, 40}
First Query Range Handled by a Heap

Point set: \(P = \{p_1, p_2, \ldots, p_n\} \) \hspace{1cm} Query range: \((-\infty, q_x]\)
First Query Range Handled by a Heap

Point set: \(P = \{p_1, p_2, \ldots, p_n\} \)

Query range: \((-\infty, q_x]\)

- Walk down the tree.
First Query Range Handled by a Heap

Point set: $P = \{p_1, p_2, \ldots, p_n\}$

Query range: $(-\infty, q_x]$

- Walk down the tree.
- At each node with stored point $p = (p_x, p_y)$ check if $p_x \leq q_x$.

Diagram:

- Node p with pointers to L and R.
First Query Range Handled by a Heap

Point set: \(P = \{p_1, p_2, \ldots, p_n\} \)
Query range: \((-\infty, q_x]\)

- Walk down the tree.
- At each node with stored point \(p = (p_x, p_y) \) check if \(p_x \leq q_x \).
- If yes, report \(p \) and continue in both subtrees \(L \) and \(R \).
First Query Range Handled by a Heap

Point set: \(P = \{p_1, p_2, \ldots, p_n\} \)
Query range: \((-\infty, q_x]\)

- Walk down the tree.
- At each node with stored point \(p = (p_x, p_y) \) check if \(p_x \leq q_x \).
 - If yes, report \(p \) and continue in both subtrees \(L \) and \(R \).
 - Otherwise \((p_x > q_x) \), abort the subtree \(T(p) \) rooted at \(p \).
First Query Range Handled by a Heap

Point set: \(P = \{p_1, p_2, ..., p_n\} \)
Query range: \((-\infty, q_x]\)

- Walk down the tree.

- At each node with stored point \(p = (p_x, p_y) \) check if \(p_x \leq q_x \).

- If yes, report \(p \) and continue in both subtrees \(L \) and \(R \).

- Otherwise \((p_x > q_x) \), abort the subtree \(T(p) \) rooted at \(p \).

Any node \(r = (r_x, r_y) \neq p \) in \(T(p) \) satisfies
\[r_x \geq p_x > q_x \]
Example

\((-\infty, 12]\) on the heap below.
Example

$(-\infty, 12]$ on the heap below.
Example

$(-\infty, 12]$ on the heap below.
Example

\((-\infty, 12]\) on the heap below.
Example

\((-\infty, 12\] on the heap below.)
Example

$(-\infty, 12]$ on the heap below.
Example

\((-\infty, 12]\) on the heap below.
Example

$(-\infty, 12]$ on the heap below.

Report 1, 3, 6, 8, 9, 11.
Both Query Ranges Handled by a Heap

Point set: $P = \{p_1, p_2, ..., p_n\}$

Query range: $(-\infty, q_x] \times [q_y, q'_y]$
Both Query Ranges Handled by a Heap

Point set: $P = \{p_1, p_2, \ldots, p_n\}$

Query range: $(-\infty, q_x] \times [q_y, q'_y]$

- A set can be represented by many heaps, each representing a way of partitioning the set.
Both Query Ranges Handled by a Heap

Point set: $P = \{p_1, p_2, \ldots, p_n\}$

Query range: $(-\infty, q_x] \times [q_y, q'_y]$

- A set can be represented by many heaps, each representing a way of partitioning the set.

- How to integrate the information about the y-coordinate without using the associated structures?
Both Query Ranges Handled by a Heap

Point set: $P = \{p_1, p_2, ..., p_n\}$

Query range: $(-\infty, q_x] \times [q_y, q'_y]$

- A set can be represented by many heaps, each representing a way of partitioning the set.

- How to integrate the information about the y-coordinate without using the associated structures?

- We can choose a heap that partitions the set according to the y-coordinate.
A set can be represented by many heaps, each representing a way of partitioning the set.

How to integrate the information about the y-coordinate without using the associated structures?

We can choose a heap that partitions the set according to the y-coordinate.

Split the remainder of the set into two subsets such that the points in one subset have their y-coordinates less than those of the points in the other subset.
II. Priority Search Tree (PST)
II. Priority Search Tree (PST)

- p_4 is at the root because it has the smallest x-coordinate.
II. Priority Search Tree (PST)

- p_4 is at the root because it has the smallest x-coordinate.
- Of the remaining 6 points, p_7 has the median y-coordinate.
II. Priority Search Tree (PST)

- p_4 is at the root because it has the smallest x-coordinate.
- Of the remaining 6 points, p_7 has the median y-coordinate.
- This median splits them into two groups: p_2, p_6, p_7 stored in the left (lower) subtree and p_1, p_3, p_5 stored in the right (upper) subtree.
II. Priority Search Tree (PST)

- p_4 is at the root because it has the smallest x-coordinate.
- Of the remaining 6 points, p_7 has the median y-coordinate.
- This median splits them into two groups: p_2, p_6, p_7 stored in the left (lower) subtree and p_1, p_3, p_5 stored in the right (upper) subtree.
II. Priority Search Tree (PST)

- p_4 is at the root because it has the smallest x-coordinate.
- Of the remaining 6 points, p_7 has the median y-coordinate.
- This median splits them into two groups: p_2, p_6, p_7 stored in the left (lower) subtree and p_1, p_3, p_5 stored in the right (upper) subtree.
II. Priority Search Tree (PST)

- p_4 is at the root because it has the smallest x-coordinate.
- Of the remaining 6 points, p_7 has the median y-coordinate.
- This median splits them into two groups: p_2, p_6, p_7 stored in the left (lower) subtree and p_1, p_3, p_5 stored in the right (upper) subtree.
- p_6 and p_1 are the roots of the two subtrees because they have the smallest x-coordinates in their groups, and so on.
II. Priority Search Tree (PST)

- p_4 is at the root because it has the smallest x-coordinate.
- Of the remaining 6 points, p_7 has the median y-coordinate.
- This median splits them into two groups: p_2, p_6, p_7 stored in the left (lower) subtree and p_1, p_3, p_5 stored in the right (upper) subtree.
- p_6 and p_1 are the roots of the two subtrees because they have the smallest x-coordinates in their groups, and so on.
Formal Definition of the PST

Assumption No two points have the same x- or y-coordinate.

(Easily removable with lexicographic ordering)
Formal Definition of the PST

Assumption No two points have the same x- or y-coordinate.

(Easily removable with lexicographic ordering)

- If $|P| = 1$, then the tree has one node.
Formal Definition of the PST

Assumption No two points have the same x- or y-coordinate.
(Easily removable with lexicographic ordering)

- If $|P| = 1$, then the tree has one node.
- Otherwise,
 - $p_{min} \in P$ with the smallest x-coordinate.
Formal Definition of the PST

Assumption No two points have the same x- or y-coordinate.
(Easily removable with lexicographic ordering)

- If $|P| = 1$, then the tree has one node.
- Otherwise,
 - $p_{min} \in P$ with the smallest x-coordinate.
 - y_{mid}: median y-coordinate of the remaining points.
Formal Definition of the PST

Assumption
No two points have the same x- or y-coordinate.

(Easily removable with lexicographic ordering)

- If $|P| = 1$, then the tree has one node.
- Otherwise,
 - $p_{\text{min}} \in P$ with the smallest x-coordinate.
 - y_{mid}: median y-coordinate of the remaining points.
 - $P_{\text{below}} = \{ p \in P \setminus \{ p_{\text{min}} \} \mid p_y \leq y_{\text{mid}} \}$.
Formal Definition of the PST

Assumption No two points have the same x- or y-coordinate.

(Easily removable with lexicographic ordering)

- If $|P| = 1$, then the tree has one node.
- Otherwise,
 - $p_{\text{min}} \in P$ with the smallest x-coordinate.
 - y_{mid} : median y-coordinate of the remaining points.
 - $P_{\text{below}} = \{ p \in P \setminus \{ p_{\text{min}} \} \mid p_y \leq y_{\text{mid}} \}$.
 - $P_{\text{above}} = \{ p \in P \setminus \{ p_{\text{min}} \} \mid p_y > y_{\text{mid}} \}$.
Formal Definition of the PST

Assumption No two points have the same x- or y-coordinate.

(Easily removable with lexicographic ordering)

- If $|P| = 1$, then the tree has one node.
- Otherwise,
 - $p_{min} \in P$ with the smallest x-coordinate.
 - y_{mid} : median y-coordinate of the remaining points.
 - $P_{below} = \{p \in P \setminus \{p_{min}\} | p_y \leq y_{mid}\}$.
 - $P_{above} = \{p \in P \setminus \{p_{min}\} | p_y > y_{mid}\}$.
 - Create $v(p_{min}, y_{mid})$.
Formal Definition of the PST

Assumption No two points have the same x- or y-coordinate.
(Easily removable with lexicographic ordering)

- If $|P| = 1$, then the tree has one node.
- Otherwise,
 - $p_{\text{min}} \in P$ with the smallest x-coordinate.
 - y_{mid} : median y-coordinate of the remaining points.
 - $P_{\text{below}} = \{p \in P \setminus \{p_{\text{min}}\} \mid p_y \leq y_{\text{mid}}\}$.
 - $P_{\text{above}} = \{p \in P \setminus \{p_{\text{min}}\} \mid p_y > y_{\text{mid}}\}$.
 - Create v with $p_{\text{min}}, y_{\text{mid}}$
Formal Definition of the PST

Assumption No two points have the same x- or y-coordinate.

(Easily removable with lexicographic ordering)

- If $|P| = 1$, then the tree has one node.
- Otherwise,
 - $p_{\text{min}} \in P$ with the smallest x-coordinate.
 - y_{mid}: median y-coordinate of the remaining points.
 - $P_{\text{below}} = \{ p \in P \setminus \{ p_{\text{min}} \} \mid p_y \leq y_{\text{mid}} \}$.
 - $P_{\text{above}} = \{ p \in P \setminus \{ p_{\text{min}} \} \mid p_y > y_{\text{mid}} \}$.
 - Create

\[
\begin{align*}
&v \quad p_{\text{min}}, \\
&P_{\text{below}} \\
&P_{\text{above}}
\end{align*}
\]
Construction Time

\[p_{\text{min}}, y_{\text{mid}} \]

\[O(n \log n) \] if recursively (top-down)
Construction Time

\[p_{\text{min}, y_{\text{mid}}} \]

\[p_{\text{below}} \quad p_{\text{above}} \]

\[O(n \log n) \] if recursively (top-down)

\[O(n) \] if

- the points are pre-sorted on \(y \)-coordinate, and
- constructed bottom-up in the way of building a heap.
III. Query

Query range: \((-\infty, q_x] \times [q_y, q'_y]\)

1) Search the PST with \(q_y\) and \(q'_y\) by comparing them with the \(y_{mid}\) value at each node.
III. Query

Query range: $(-\infty, q_x] \times [q_y, q_y']$

1) Search the PST with q_y and q_y' by comparing them with the y_{mid} value at each node.

1D range searching
III. Query

Query range: \((-\infty, q_x] \times [q_y, q_y']\)

1) Search the PST with \(q_y\) and \(q_y'\) by comparing them with the \(y_{\text{mid}}\) value at each node.

1D range searching

The two searches end at the Nodes \(\mu\) and \(\mu'\), respectively.
III. Query

Query range: \((-\infty, q_x] \times [q_y, q'_y]\)

1) Search the PST with \(q_y\) and \(q'_y\) by comparing them with the \(y_{\text{mid}}\) value at each node.

1D range searching

The two searches end at the Nodes \(\mu\) and \(\mu'\), respectively.
III. Query

Query range: $(-\infty, q_x] \times [q_y, q_y']$

1) Search the PST with q_y and q_y' by comparing them with the y_{mid} value at each node.

1D range searching

The two searches end at the Nodes μ and μ', respectively.
III. Query

Query range: \((-\infty, q_x] \times [q_y, q_y']\)

1) Search the PST with \(q_y\) and \(q_y'\) by comparing them with the \(y_{\text{mid}}\) value at each node.

1D range searching

The two searches end at the Nodes \(\mu\) and \(\mu'\), respectively.
Check every node v on either of the paths $v_{\text{split}} \sim \mu$ or $v_{\text{split}} \sim \mu'$ to see if

$$p(v) \in (-\infty, q_x] \times [q_y, q_y']$$
Search in the Selected Subtrees

2) Search every selected subtree based on x-coordinate as in a one-dimensional array.
Search in the Selected Subtrees

2) Search every selected subtree based on x-coordinate as in a one-dimensional array.

ReportInSubtree(v, q_x)

1. If v is not a leaf and $(p(v))_x \leq q_x$
2. then report $p(v)$
3. ReportInSubtree($lc(v), q_x$)
4. ReportInSubtree($rc(v), q_x$)
IV. Correctness of ReportInSubtree()

Lemma ReportInSubtree(v, q_x) reports in $O(1 + k_v)$ time all the k_v points in the subtree $\mathcal{T}(v)$ whose x-coordinate is at most q_x.
IV. Correctness of ReportInSubtree()

Lemma ReportInSubtree(𝑣, 𝑞𝑥) reports in $O(1 + k_𝑣)$ time all the $k_𝑣$ points in the subtree $𝑇(𝑣)$ whose x-coordinate is at most $𝑞_x$.

Proof Consider a node $μ$ in $𝑇(𝑣)$ such that its stored point $p(μ)$ satisfies $(p(μ))_x ≤ 𝑞_x$.

$μ$
IV. Correctness of ReportInSubtree()

Lemma ReportInSubtree(v, q_x) reports in $O(1 + k_v)$ time all the k_v points in the subtree $T(v)$ whose x-coordinate is at most q_x.

Proof Consider a node μ in $T(v)$ such that its stored point $p(\mu)$ satisfies $(p(\mu))_x \leq q_x$.

- Along the (upward) path $\mu \rightsquigarrow v$ the x-coordinates of the stored points decrease.
IV. Correctness of ReportInSubtree()

Lemma ReportInSubtree(v, q_x) reports in $O(1 + k_v)$ time all the k_v points in the subtree $T(v)$ whose x-coordinate is at most q_x.

Proof Consider a node μ in $T(v)$ such that its stored point $p(\mu)$ satisfies $(p(\mu))_x \leq q_x$.

- Along the (upward) path $\mu \leadsto v$ the x-coordinates of the stored points decrease.
IV. Correctness of ReportInSubtree()

Lemma ReportInSubtree(v, q_x) reports in $O(1 + k_v)$ time all the k_v points in the subtree $T(v)$ whose x-coordinate is at most q_x.

Proof Consider a node μ in $T(v)$ such that its stored point $p(\mu)$ satisfies $(p(\mu))_x \leq q_x$.

- Along the (upward) path $\mu \sim v$ the x-coordinates of the stored points decrease.

\[q_x \geq (p(\mu))_x > \cdots > (p(u))_x > \cdots > (p(v))_x \]
IV. Correctness of ReportInSubtree()

Lemma ReportInSubtree(\(v, q_x\)) reports in \(O(1 + k_v)\) time all the \(k_v\) points in the subtree \(T(v)\) whose \(x\)-coordinate is at most \(q_x\).

Proof Consider a node \(\mu\) in \(T(v)\) such that its stored point \(p(\mu)\) satisfies \((p(\mu))_x \leq q_x\).

- Along the (upward) path \(\mu \leadsto v\) the \(x\)-coordinates of the stored points decrease.

\[
q_x \geq (p(\mu))_x > \cdots > (p(u))_x > \cdots > (p(v))_x \\
\downarrow
\]

Recursive calls to ReportInSubtree are invoked at all the nodes on the downward path \(v \leadsto \mu\).
IV. Correctness of ReportInSubtree()

Lemma ReportInSubtree(\(v, q_x\)) reports in \(O(1 + k_v)\) time all the \(k_v\) points in the subtree \(T(v)\) whose \(x\)-coordinate is at most \(q_x\).

Proof Consider a node \(\mu\) in \(T(v)\) such that its stored point \(p(\mu)\) satisfies \((p(\mu))_x \leq q_x\).

- Along the (upward) path \(\mu \sim v\) the \(x\)-coordinates of the stored points decrease.

\[
q_x \geq (p(\mu))_x > \cdots > (p(u))_x > \cdots > (p(v))_x
\]

Recursive calls to ReportInSubtree are invoked at all the nodes on the downward path \(v \sim \mu\).

\(p(\mu)\) is reported.
IV. Correctness of ReportInSubtree()

Lemma ReportInSubtree\((v,q_x)\) reports in \(O(1 + k_v)\) time all the \(k_v\) points in the subtree \(\mathcal{T}(v)\) whose \(x\)-coordinate is at most \(q_x\).

Proof Consider a node \(\mu\) in \(\mathcal{T}(v)\) such that its stored point \(p(\mu)\) satisfies \((p(\mu))_x \leq q_x\).

- Along the (upward) path \(\mu \sim v\) the \(x\)-coordinates of the stored points decrease.

\[
q_x \geq (p(\mu))_x > \cdots > (p(u))_x > \cdots > (p(v))_x
\]

Recursive calls to ReportInSubtree are invoked at all the nodes on the downward path \(v \sim \mu\).

\(p(\mu)\) is reported.

The time \(O(1 + k_v)\) follows from \(O(1)\) effort spent on each node.
Query Algorithm

```
QueryPrioSearchTree(\mathcal{T}, (-\infty, q_x] \times [q_y, q_y'])

1. search with \( q_y \) and \( q_y' \) in \( \mathcal{T} \), ending at the nodes \( \mu \) and \( \mu' \)
2. let \( v_{split} \) be the node where the two paths split.
3. for each node \( v \) on the path \( v_{split} \sim \mu \) or \( v_{split} \sim \mu' \)
   4. do if \( p(v) \in (-\infty, q_x] \times [q_y, q_y'] \)
   5. then report \( p(v) \)
6. for each node \( v \) on \( v_{split} \sim \mu \)
   7. do if the path goes left at \( v \)
   8. then ReportInSubtree(\( rc(v) \), \( q_x \))
9. for each node \( v \) on \( v_{split} \sim \mu' \)
10. do if the path goes right at \( v \)
11. then ReportInSubtree(\( lc(v) \), \( q_x \))
```
Example of Execution

QueryPrioSearchTree(T, (−∞, q_x] × [q_y, q'_y])

1. search with q_y and q'_y in T, ending at the nodes μ and μ'
2. let v_split be the node where the two paths split.
3. for each node v on the path v_split ∼ μ or v_split ∼ μ'
4. do if p(v) ∈ (−∞, q_x] × [q_y, q'_y]
5. then report p(v)
6. for each node v on v_split ∼ μ
7. do if the path goes left at v
8. then ReportInSubtree(rc(v), q_x)
9. for each node v on v_split ∼ μ'
10. do if the path goes right at v
11. then ReportInSubtree(lc(v), q_x)
Example of Execution

QueryPrioSearchTree(T, $(-\infty, q_x] \times [q_y, q'_y]$)

1. search with q_y and q'_y in T, ending at the nodes μ and μ'
2. let v_{split} be the node where the two paths split.
3. for each node v on the path $v_{split} \sim \mu$ or $v_{split} \sim \mu'$
 4. do if $p(v) \in (-\infty, q_x] \times [q_y, q'_y]$ then report $p(v)$
6. for each node v on $v_{split} \sim \mu$
 7. do if the path goes left at v
 8. then ReportInSubtree($rc(v), q_x$)
9. for each node v on $v_{split} \sim \mu'$
 10. do if the path goes right at v
 11. then ReportInSubtree($lc(v), q_x$)

$v_{split} = p_4$

ReportInSubtree(v, q_x)

1. if $(p(v))_x \leq q_x$
2. then report $p(v)$
3. if v is not a leaf
4. then ReportInSubtree($lc(v), q_x$)
5. ReportInSubtree($rc(v), q_x$)
Example of Execution

QueryPrioSearchTree(T, $(-\infty, q_x] \times [q_y, q'_y]$)

1. search with q_y and q'_y in T, ending at the nodes μ and μ'
2. let v_{split} be the node where the two paths split.
3. for each node v on the path $v_{\text{split}} \sim \mu$ or $v_{\text{split}} \sim \mu'$
 4. do if $p(v) \in (-\infty, q_x] \times [q_y, q'_y]
 5. then report $p(v)$
6. for each node v on $v_{\text{split}} \sim \mu$
 7. do if the path goes left at v
 8. then ReportInSubtree($rc(v)$, q_x)
9. for each node v on $v_{\text{split}} \sim \mu'$
10. do if the path goes right at v
11. then ReportInSubtree($lc(v)$, q_x)

ReportInSubtree(v, q_x)

1. if $(p(v))_x \leq q_x$
2. then report $p(v)$
3. if v is not a leaf
4. then ReportInSubtree($lc(v)$, q_x)
5. ReportInSubtree($rc(v)$, q_x)
Example of Execution

QueryPrioSearchTree(T, $(-\infty, q_x] \times [q_y, q'_y]$)

1. search with q_y and q'_y in T, ending at the nodes μ and μ'
2. let v_{split} be the node where the two paths split.
3. for each node v on the path $v_{split} \sim \mu$ or $v_{split} \sim \mu'$
 4. do if $p(v) \in (-\infty, q_x] \times [q_y, q'_y]$ then report $p(v)$
 5. for each node v on $v_{split} \sim \mu$
 6. do if the path goes left at v
 7. then ReportInSubtree($rc(v)$, q_x)
 8. do if the path goes right at v
 9. then ReportInSubtree($lc(v)$, q_x)

$v_{split} = p_4$

ReportInSubtree(v, q_x)

1. if $(p(v))_x \leq q_x$
2. then report $p(v)$
3. if v is not a leaf
4. then ReportInSubtree($lc(v)$, q_x)
5. ReportInSubtree($rc(v)$, q_x)
Example of Execution

QueryPrioSearchTree(T, $(-\infty, q_x] \times [q_y, q'_y]$)

1. search with q_y and q'_y in T, ending at the nodes μ and μ'
2. let v_{split} be the node where the two paths split.
3. for each node v on the path $v_{split} \sim \mu$ or $v_{split} \sim \mu'$
 4. do if $p(v) \in (-\infty, q_x] \times [q_y, q'_y]$
 5. then report $p(v)$
6. for each node v on $v_{split} \sim \mu'$
 7. do if the path goes left at v
 8. then ReportInSubtree($rc(v)$, q_x)
 9. for each node v on $v_{split} \sim \mu'$
 10. do if the path goes right at v
 11. then ReportInSubtree($lc(v)$, q_x)

$v_{split} = p_4$

ReportInSubtree(v, q_x)

1. if $(p(v))_x \leq q_x$
2. then report $p(v)$
3. if v is not a leaf
4. then ReportInSubtree($lc(v)$, q_x)
5. ReportInSubtree($rc(v)$, q_x)
Example of Execution

QueryPrioSearchTree($T, (-∞, q_x] \times [q_y, q'_y]$)

1. search with q_y and q'_y in T, ending at the nodes μ and μ'
2. let v_{split} be the node where the two paths split.
3. for each node v on the path $v_{split} \sim \mu$ or $v_{split} \sim \mu'$
 4. do if $p(v) \in (-∞, q_x] \times [q_y, q'_y]$
 5. then report $p(v)$
6. for each node v on $v_{split} \sim \mu$
 7. do if the path goes left at v
 8. then **ReportInSubtree**(rc(v), q_x)
9. for each node v on $v_{split} \sim \mu'$
 10. do if the path goes right at v
 11. then **ReportInSubtree**(lc(v), q_x)

$v_{split} = p_4$

ReportInSubtree(v, q_x)

1. if $(p(v))_x \leq q_x$
2. then report $p(v)$
3. if v is not a leaf
4. then **ReportInSubtree**(rc(v), q_x)
5. **ReportInSubtree**(rc(v), q_x)
Example of Execution

QueryPrioSearchTree(T, ($-\infty, q_x] \times [q_y, q_y']$))

1. search with q_y and q_y' in T, ending at the nodes μ and μ'
2. let v_{split} be the node where the two paths split.
3. for each node v on the path $v_{split} \sim \mu$ or $v_{split} \sim \mu'$
 4. do if $p(v) \in (-\infty, q_x] \times [q_y, q_y']$
 5. then report $p(v)$
6. for each node v on $v_{split} \sim \mu$
 7. do if the path goes left at v
 8. then ReportInSubtree(rc(v), q_x)
9. for each node v on $v_{split} \sim \mu'$
 10. do if the path goes right at v
 11. then ReportInSubtree(lc(v), q_x)

$v_{split} = p_4$

ReportInSubtree(v, q_x)

1. if $(p(v))_x \leq q_x$
2. then report $p(v)$
3. if v is not a leaf
4. then ReportInSubtree(lc(v), q_x)
5. ReportInSubtree(rc(v), q_x)
Example of Execution

QueryPrioSearchTree($T, (-\infty, q_x] \times [q_y, q'_y]$)

1. search with q_y and q'_y in T, ending at the nodes μ and μ'
2. let ν_{split} be the node where the two paths split.
3. for each node v on the path $\nu_{\text{split}} \sim \nu$ or $\nu_{\text{split}} \sim \mu'$
 4. do if $p(v) \in (-\infty, q_x] \times [q_y, q'_y]$
 5. then report $p(v)$
6. for each node v on $\nu_{\text{split}} \sim \mu$
 7. do if the path goes left at v
 8. then ReportInSubtree($rc(v), q_x$)
9. for each node v on $\nu_{\text{split}} \sim \mu'$
 10. do if the path goes right at v
 11. then ReportInSubtree($lc(v), q_x$)

$v_{\text{split}} = p_4$

ReportInSubtree(v, q_x)

1. if $(p(v))_x \leq q_x$
2. then report $p(v)$
3. if v is not a leaf
4. then ReportInSubtree($lc(v), q_x$)
5. ReportInSubtree($rc(v), q_x$)
Example of Execution

QueryPrioSearchTree(T, $(-\infty, q_x] \times [q_y, q'_y]$)

1. search with q_y and q'_y in T, ending at the nodes μ and μ'
2. let v_{split} be the node where the two paths split.
3. for each node v on the path $v_{split} \sim \mu$ or $v_{split} \sim \mu'$
4. do if $p(v) \in (-\infty, q_x] \times [q_y, q'_y]$
5. then report $p(v)$
6. for each node v on $v_{split} \sim \mu$
7. do if the path goes left at v
8. then ReportInSubtree($rc(v), q_x$)
9. for each node v on $v_{split} \sim \mu'$
10. do if the path goes right at v
11. then ReportInSubtree($lc(v), q_x$)

$v_{split} = p_4$

ReportInSubtree(v, q_x)

1. if $(p(v))_x \leq q_x$
2. then report $p(v)$
3. if v is not a leaf
4. then ReportInSubtree($lc(v), q_x$)
5. ReportInSubtree($rc(v), q_x$)
Example of Execution

QueryPrioSearchTree(T, $\langle -\infty, q_x \rangle \times [q_y, q'_y]$)

1. search with q_y and q'_y in T, ending at the nodes μ and μ'
2. let v_{split} be the node where the two paths split.
3. for each node v on the path $v_{split} \sim \mu$ or $v_{split} \sim \mu'$

 4. do if $p(v) \in \langle -\infty, q_x \rangle \times [q_y, q'_y]$ then report $p(v)$
5. for each node v on $v_{split} \sim \mu$

 7. do if the path goes left at v

 8. then ReportInSubtree($rc(v)$, q_x)
9. for each node v on $v_{split} \sim \mu'$

 10. do if the path goes right at v

 11. then ReportInSubtree($lc(v)$, q_x)

$v_{split} = p_4$

ReportInSubtree(v, q_x)

1. if $(p(v))_x \leq q_x$
2. then report $p(v)$
3. if v is not a leaf
4. then ReportInSubtree($lc(v)$, q_x)
5. ReportInSubtree($rc(v)$, q_x)
Example of Execution

1. search with q_y and q'_y in T, ending at the nodes μ and μ'
2. let v_{split} be the node where the two paths split.
3. for each node v on the path $v_{\text{split}} \sim \mu$ or $v_{\text{split}} \sim \mu'$
 4. do if $p(v) \in (-\infty, q_x] \times [q_y, q'_y]$
 5. then report $p(v)$
6. for each node v on $v_{\text{split}} \sim \mu$
 7. do if the path goes left at v
 8. then ReportInSubtree($rc(v), q_x$)
9. for each node v on $v_{\text{split}} \sim \mu'$
 10. do if the path goes right at v
 11. then ReportInSubtree($lc(v), q_x$)

$v_{\text{split}} = p_4$

ReportInSubtree(p_5, q_x)

QueryPrioSearchTree($T, (-\infty, q_x] \times [q_y, q'_y]$)

1. if $p(v)_x \leq q_x$
2. then report $p(v)$
3. if v is not a leaf
4. then ReportInSubtree($lc(v), q_x$)
5. ReportInSubtree($rc(v), q_x$)
Example of Execution

QueryPriorSearchTree(T, $(-\infty, q_x] \times [q_y, q'_y]$)

1. search with q_y and q'_y in T, ending at the nodes μ and μ'
2. let v_{split} be the node where the two paths split.
3. for each node v on the path $v_{split} \sim \mu$ or $v_{split} \sim \mu'$
 4. do if $p(v) \in (-\infty, q_x] \times [q_y, q'_y]$
 then report $p(v)$
 5. for each node v on $v_{split} \sim \mu$
 6. do if the path goes left at v
 then ReportInSubtree($p(v)$, q_x)
 9. for each node v on $v_{split} \sim \mu'$
 10. do if the path goes right at v
 then ReportInSubtree($p(v)$, q_x)

ReportInSubtree(p_5, q_x)

1. if $(p(v))_x \leq q_x$
 2. then report $p(v)$
3. if v is not a leaf
 4. then ReportInSubtree($p(v)$, q_x)
5. ReportInSubtree(p_5, q_x)

$v_{split} = p_4$
QueryPrioSearchTree($T, (-\infty, q_x] \times [q_y, q'_y]$)

1. search with q_y and q'_y in T, ending at the nodes μ and μ'
2. let v_{split} be the node where the two paths split.
3. for each node v on the path $v_{split} \sim \mu$ or $v_{split} \sim \mu'$
 4. do if $p(v) \in (-\infty, q_x] \times [q_y, q'_y]$ then report $p(v)$
 5. for each node v on $v_{split} \sim \mu$
 6. do if the path goes left at v
 7. then ReportInSubtree($rc(v), q_x$)
 8. do if the path goes right at v
 9. then ReportInSubtree($lc(v), q_x$)

Example of Execution
Example of Execution

QueryPrioSearchTree(T, (-∞, q_x] × [q_y, q'_y])

1. search with q_y and q'_y in T, ending at the nodes μ and μ'
2. let v_{split} be the node where the two paths split.
3. for each node v on the path v_{split} ∼ μ or v_{split} ∼ μ'
 4. do if p(v) ∈ (-∞, q_x] × [q_y, q'_y]
 5. then report p(v)
 6. for each node v on v_{split} ∼ μ
 7. do if the path goes left at v
 8. then ReportInSubtree(rc(v), q_x)
 9. for each node v on v_{split} ∼ μ'
 10. do if the path goes right at v
 11. then ReportInSubtree(lc(v), q_x)

ReportInSubtree(p_5, q_x)

Returns p_4, p_7, p_1.

ν_{split} = p_4

ReportInSubtree(v, q_x)

1. if (p(v))_x ≤ q_x
2. then report p(v)
3. if v is not a leaf
4. then ReportInSubtree(lc(v), q_x)
5. ReportInSubtree(rc(v), q_x)
Running Time

QueryPrioSearchTree(\(T, (-\infty, q_x] \times [q_y, q'_y]\))

1. search with \(q_y\) and \(q'_y\) in \(T\), ending at the nodes \(\mu\) and \(\mu'\)
2. let \(v_{\text{split}}\) be the node where the two paths split.
3. for each node \(v\) on the path \(v_{\text{split}} \sim \mu\) or \(v_{\text{split}} \sim \mu'\)
4. do if \(p(v) \in (-\infty, q_x] \times [q_y, q'_y]\)
5. then report \(p(v)\)
6. for each node \(v\) on \(v_{\text{split}} \sim \mu\)
7. do if the path goes left at \(v\)
8. then ReportInSubtree(rc(\(v\)), \(q_x\))
9. for each node \(v\) on \(v_{\text{split}} \sim \mu'\)
10. do if the path goes right at \(v\)
11. then ReportInSubtree(lc(\(v\)), \(q_x\))

Time cost breaks down to two parts:
Running Time

\[\text{QueryPrioSearchTree}(T, (-\infty, q_x] \times [q_y, q'_y]) \]

1. search with \(q_y \) and \(q'_y \) in \(T \), ending at the nodes \(\mu \) and \(\mu' \)
2. let \(v_{\text{split}} \) be the node where the two paths split.
3. for each node \(v \) on the path \(v_{\text{split}} \sim \mu \) or \(v_{\text{split}} \sim \mu' \)
 4. do if \(p(v) \in (-\infty, q_x] \times [q_y, q'_y] \)
 5. then report \(p(v) \)
6. for each node \(v \) on \(v_{\text{split}} \sim \mu \)
7. do if the path goes left at \(v \)
 8. then \(\text{ReportInSubtree}(rc(v), q_x) \)
9. for each node \(v \) on \(v_{\text{split}} \sim \mu' \)
10. do if the path goes right at \(v \)
11. then \(\text{ReportInSubtree}(lc(v), q_x) \)

Time cost breaks down to two parts:

- number of nodes on the path \(v_{\text{split}} \sim \mu \) or \(v_{\text{split}} \sim \mu' \)
Running Time

QueryPrioSearchTree(\(T, (\infty, q_x] \times [q_y, q'_y]\))

1. search with \(q_y\) and \(q'_y\) in \(T\), ending at the nodes \(\mu\) and \(\mu'\)
2. let \(v_{split}\) be the node where the two paths split.
3. for each node \(v\) on the path \(v_{split} \leadsto \mu\) or \(v_{split} \leadsto \mu'\)
 4. do if \(p(v) \in (-\infty, q_x] \times [q_y, q'_y]\)
 then report \(p(v)\)
6. for each node \(v\) on \(v_{split} \leadsto \mu\)
7. do if the path goes left at \(v\)
 8. then ReportInSubtree(rc(v), q_x)
9. for each node \(v\) on \(v_{split} \leadsto \mu'\)
10. do if the path goes right at \(v\)
11. then ReportInSubtree(lc(v), q_x)

Time cost breaks down to two parts:

- number of nodes on the path \(v_{split} \leadsto \mu\) or \(v_{split} \leadsto \mu'\) \(O(\log n)\)
Running Time

QueryPrioSearchTree(T, $(-\infty, q_x] \times [q_y, q'_y]$)

1. search with q_y and q'_y in T, ending at the nodes μ and μ'
2. let v_{split} be the node where the two paths split.
3. for each node v on the path $v_{split} \rightarrow \mu$ or $v_{split} \rightarrow \mu'$
4. \hspace{1em} do if $p(v) \in (-\infty, q_x] \times [q_y, q'_y]$
5. \hspace{2em} then report $p(v)$
6. for each node v on $v_{split} \rightarrow \mu$
7. \hspace{1em} do if the path goes left at v
8. \hspace{2em} then $\text{ReportInSubtree}(rc(v), q_x)$
9. for each node v on $v_{split} \rightarrow \mu'$
10. \hspace{1em} do if the path goes right at v
11. \hspace{2em} then $\text{ReportInSubtree}(lc(v), q_x)$

Time cost breaks down to two parts:

- number of nodes on the path $v_{split} \rightarrow \mu$ or $v_{split} \rightarrow \mu'$ $O(\log n)$
- number of recursive calls to ReportInSubtree().
Running Time

QueryPrioSearchTree(\(T, (-\infty, q_x] \times [q_y, q'_y]\))

1. search with \(q_y\) and \(q'_y\) in \(T\), ending at the nodes \(\mu\) and \(\mu'\)
2. let \(v_{\text{split}}\) be the node where the two paths split.
3. for each node \(v\) on the path \(v_{\text{split}} \sim \mu\) or \(v_{\text{split}} \sim \mu'\)
4. do if \(p(v) \in (-\infty, q_x] \times [q_y, q'_y]\)
5. then report \(p(v)\)
6. for each node \(v\) on \(v_{\text{split}} \sim \mu\)
7. do if the path goes left at \(v\)
8. then ReportInSubtree(rc(\(v\), \(q_x\))
9. for each node \(v\) on \(v_{\text{split}} \sim \mu'\)
10. do if the path goes right at \(v\)
11. then ReportInSubtree(lc(\(v\), \(q_x\))

Time cost breaks down to two parts:

- number of nodes on the path \(v_{\text{split}} \sim \mu\) or \(v_{\text{split}} \sim \mu'\) \(O(\log n)\)
- number of recursive calls to ReportInSubtree() \(O(k)\)

\# reported points
Running Time

\[\text{QueryPrioSearchTree}(T, (-\infty, q_x) \times [q_y, q'_y]) \]

1. search with \(q_y \) and \(q'_y \) in \(T \), ending at the nodes \(\mu \) and \(\mu' \)
2. let \(v_{\text{split}} \) be the node where the two paths split.
3. for each node \(v \) on the path \(v_{\text{split}} \sim \mu \) or \(v_{\text{split}} \sim \mu' \)
4. \hspace{1em} do if \(p(v) \in (-\infty, q_x) \times [q_y, q'_y] \)
5. \hspace{2em} then report \(p(v) \)
6. for each node \(v \) on \(v_{\text{split}} \sim \mu \)
7. \hspace{1em} do if the path goes left at \(v \)
8. \hspace{2em} then \text{ReportInSubtree}(rc(v), q_x)
9. for each node \(v \) on \(v_{\text{split}} \sim \mu' \)
10. \hspace{1em} do if the path goes right at \(v \)
11. \hspace{2em} then \text{ReportInSubtree}(lc(v), q_x)

Time cost breaks down to two parts:

- number of nodes on the path \(v_{\text{split}} \sim \mu \) or \(v_{\text{split}} \sim \mu' \) \(O(\log n) \)
- number of recursive calls to \text{ReportInSubtree()} \(O(k) \)
- # reported points
Summary on PST

<table>
<thead>
<tr>
<th></th>
<th>Storage</th>
<th>Construction time</th>
<th>Query time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min heap over the x-coordinate.</td>
<td>$O(n)$</td>
<td>$O(n \log n)$</td>
<td>$O(\log n + k)$</td>
</tr>
<tr>
<td>Binary search tree over the y-coordinate.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>