Envelopes & Voronoi Diagrams

Outline:

I. Algorithm for 3D Convex Hulls

II. Review of duality

III. Hull-envelope correspondence

IV. Voronoi diagram as a 3D convex hull problem
I. Algorithm for 3D Convex Hulls

ConvexHull(P)

1. find $p_1, p_2, p_3, p_4 \in P$ that form a tetrahedron
2. $C \leftarrow CH(\{p_1, p_2, p_3, p_4\})$
3. compute a random permutation $p_5, p_6, ..., p_n$
4. initialize the conflict graph G over all facets of C and $p_5, p_6, ..., p_n$
5. for $r \leftarrow 5$ to n
 6. do // insert p_r to C
 7. if $F_{conflict}(p_r) \neq \emptyset$ // p_r lies outside C
 8. then
 9. delete all facets in $F_{conflict}(p_r)$ from C
10. find the horizon by walking along the boundary of the visible region of p_r
10. for each edge e on the horizon
11. do connect e to p_r to form a triangle f
Execution Example – Initialization

\[G: \]

\[p_1 \]

\[p_2 \]

\[p_3 \]

\[p_4 \]

\[p_5 \]

\[p_6 \]

\[f_1 \]

\[f_2 \]

\[f_3 \]

\[f_4 \]

\[\triangle p_1 p_2 p_4 \]

\[\triangle p_2 p_3 p_4 \]

\[\triangle p_1 p_3 p_4 \]

\[\triangle p_1 p_2 p_3 \]
Iteration of Adding p_5

$r = 5$

$F_{conflict}(p_5) = \{f_1, f_3, f_4\}$

$G:$

p_5

p_6

p_1

p_2

p_3

p_4
Iteration of Adding p_5

$r = 5$

$F_{\text{conflict}}(p_5) = \{f_1, f_3, f_4\}$

$G:$

p_5
Iteration of Adding p_5

$r = 5$

$F_{conflict}(p_5) = \{f_1, f_3, f_4\}$

$G:$

$p_5 \rightarrow f_2$

$p_6 \rightarrow f_3$

$p_5 \rightarrow f_4$
Iteration of Adding p_5

$r = 5$

$F_{\text{conflict}}(p_5) = \{f_1, f_3, f_4\}$

$G:$

p_5\[\begin{array}{c}
\circ f_1 \\
\circ f_2 \\
\circ f_3 \\
\circ f_4 \\
\end{array}\]
Iteration of Adding p_5

$r = 5$

$F_{conflict}(p_5) = \{f_1, f_3, f_4\}$

$G:$

$\bigcirc f_1$

$\bigcirc f_2$

$\bigcirc f_3$

$\bigcirc f_4$
12. if f is coplanar with its neighbor facet f' along e
13. then merge f with f' and the merged facet inherits the latter’s conflict set
14. else // determine conflicts for f
15. create a node for f in G
16. f_1, f_2: facets incident to e
17. for all $p \in P_{\text{conflict}}(f_1) \cup P_{\text{conflict}}(f_2)$
18. do
19. if f is visible from p
20. add $\langle p, f \rangle$ to G // update $P_{\text{conflict}}(f)$ and $F_{\text{conflict}}(p)$
21. delete the node corresponding to p_r and the nodes corresponding to the facets in $F_{\text{conflict}}(p_r)$ from G, along with incident arcs
22. return C
Iteration (cont’d)

\[r = 5 \]

\[G: \]

\[\begin{align*}
 &p_1 & & & & & & & & & & & f_1 \\
 &p_2 & & & & & & & & & & & f_2 \\
 &p_3 & & & & & & & & & & & f_3 \\
 &p_4 & & & & & & & & & & & f_4 \\
 &p_5 & & & & & & & & & & & f_5 \\
 &p_6 & & & & & & & & & & & f_6
\end{align*} \]
Iteration (cont’d)

\[r = 5 \]

\[G: \]

\[\begin{array}{cccc}
\circ f_1 \\
\circ f_2 \\
\circ f_3 \\
\circ f_4 \\
\circ f_5: \triangle p_2 p_4 p_5
\end{array} \]
Iteration (cont’d)

\[r = 5 \]

\[G: \]

\[f_1, f_2, f_3, f_4, f_5 \]

\[p_1, p_2, p_3, p_4, p_5, p_6 \]

\[f_5 \text{ is not visible from } p_6, \text{ the point that sees } e = \overline{p_2p_4} \text{ and its (old) bordering facets } f_1, f_2. \]
Iteration (cont’d)

$r = 5$

G: $\triangle p_2p_4p_5$

f_5: $\triangle p_3p_4p_5$

f_5 is not visible from p_6, the point that sees $e = \overline{p_2p_4}$ and its (old) bordering facets f_1, f_2.

p_5 p_4 p_6 p_1 p_2 p_3 p_6 p_5

horizon
Iteration (cont’d)

\[r = 5 \]

\[f_5 \text{ is not visible from } p_6, \text{ the point that sees } e = \overrightarrow{p_2 p_4} \text{ and its (old) bordering facets } f_1, f_2. \]

\[f_6 \text{ is not visible from } p_6. \]
Iteration (cont’d)

\[r = 5\]

\(G:\)

\[f_5: \triangle \overline{p_2p_4p_5}\]
\[f_6: \triangle \overline{p_3p_4p_5}\]
\[f_7: \triangle \overline{p_2p_3p_5}\]

\(p_5\) is not visible from \(p_6\), the point that sees \(e = \overline{p_2p_4}\) and its (old) bordering facets \(f_1, f_2\).

\(f_6\) is not visible from \(p_6\).
Iteration (cont’d)

\[r = 5 \]

\[G: \]

- \(f_1 \)
- \(f_2 \)
- \(f_3 \)
- \(f_4 \)
- \(f_5: \triangle p_2p_4p_5 \)
- \(f_6: \triangle p_3p_4p_5 \)
- \(f_7: \triangle p_2p_3p_5 \)

- \(f_5 \) is not visible from \(p_6 \), the point that sees \(e = \overline{p_2p_4} \) and its (old) bordering facets \(f_1, f_2 \).
- \(f_6 \) is not visible from \(p_6 \).
- \(f_7 \) is not visible from \(p_6 \).
Iteration (cont’d)

$r = 5$

f_5 is not visible from p_6, the point that sees $e = \overline{p_2p_4}$ and its (old) bordering facets f_1, f_2.

f_6 is not visible from p_6.

f_7 is not visible from p_6.

G:

- $\bigcirc f_1$
- $\bigcirc f_2$
- $\bigcirc f_3$
- $\bigcirc f_4$
- $\bigcirc f_5 \colon \triangle p_2p_4p_5$
- $\bigcirc f_6 \colon \triangle p_3p_4p_5$
- $\bigcirc f_7 \colon \triangle p_2p_3p_5$
Iteration (cont’d)

\[r = 5 \]

\(G \):

\(p_1 \)

\(p_2 \)

\(p_3 \)

\(p_4 \)

\(p_5 \)

\(p_6 \)

\(f_5 \) is not visible from \(p_6 \), the point that sees \(e = \overline{p_2p_4} \) and its (old) bordering facets \(f_1, f_2 \).

\(f_6 \) is not visible from \(p_6 \).

\(f_7 \) is not visible from \(p_6 \).
Iteration for p_6

$r = 6$

$G:$

$p_6 \xrightarrow{f_2} f_5 \xrightarrow{f_6} p_6 \xrightarrow{f_7} f_6 \xrightarrow{f_5} f_2$
Iteration for p_6

$r = 6$

G:

$p_6 \quad o \quad f_2 \quad o \quad f_5 \quad o \quad f_6 \quad o \quad f_7$
Iteration for p_6

$r = 6$

$G:$

$p_6 \bigcirc$

$igcirc f_2$

$igcirc f_5$

$igcirc f_6$

$igcirc f_7$
Iteration for p_6

$r = 6$

$G: \quad \bigcirc f_2 \quad \circ f_5 \quad \circ f_6 \quad \circ f_7 \quad \circ f_8 : \triangle p_2 p_4 p_6$
Iteration for p_6

$r = 6$

$G:$

- f_2
- f_5
- f_6
- f_7
- $f_8: \triangle p_2 p_4 p_6$
- $f_9: \triangle p_3 p_4 p_6$
Iteration for p_6

$r = 6$

G: f_2

$p_6 \bigcirc

f_5

f_6

f_7

f_8

f_9

f_{10}$

$p_6 \triangle p_2 p_4 p_6$

$p_6 \triangle p_3 p_4 p_6$

$p_6 \triangle p_2 p_3 p_6$
Iteration for p_6

$r = 6$

$G:$

$p_6 \circ$

$\circ f_5$

$\circ f_6$

$\circ f_7$

$\circ f_8 \triangle p_2p_4p_6$

$\circ f_9 \triangle p_3p_4p_6$

$\circ f_{10} \triangle p_2p_3p_6$
Analysis

Theorem The randomized incremental algorithm computes the convex hull of n points in 3D in $O(n \log n)$ expected time.

Proof (omitted)
II. Duality: Points ↔ (Non-vertical) Lines

Point $p = (p_x, p_y) \quad \rightarrow \quad \text{Line } p^*: y = p_x x - p_y$

Line $l: y = mx + b \quad \rightarrow \quad \text{Point } l^* = (m, -b)$
Incidence

\[p \in l \Leftrightarrow l^* \in p^* \]

\[p = (p_x, p_y) \]
Collinearity ↔ Concurrency

p_1, p_2, p_3 collinear on the line l

Dual lines p_1^*, p_2^*, p_3^* concurrent at the dual point l^*
Point-Line Order Preserving

p lies above l iff l^* lies above p^*.
Point Set \mapsto Line Arrangement

P: a set of points in the plane.

$P^* = \{p^* | p \in P\}$: a line arrangement
III. Upper Convex Hull & Lower Envelope

\[\text{UH}(P) : \text{upper convex hull of } P \text{ (part of the boundary from the leftmost vertex to the rightmost one).} \]

\[l \text{ above all points } \Rightarrow l^* \text{ below their dual lines} \]
III. Upper Convex Hull & Lower Envelope

UH(P): *upper convex hull* of P (part of the boundary from the leftmost vertex to the rightmost one).

l above all points $\Rightarrow l^*$ below their dual lines
III. Upper Convex Hull & Lower Envelope

UH\((P) \): *upper convex hull* of \(P \) (part of the boundary from the leftmost vertex to the rightmost one).

\(l \) above all points \(\Rightarrow l^* \) below their dual lines

LE\((P^*) \): *lower envelope* of \(P^* \) is the unique bottom cell of the arrangement.
III. Upper Convex Hull & Lower Envelope

UH(P): *upper convex hull* of P (part of the boundary from the leftmost vertex to the rightmost one).

\(l \) above all points \(\Rightarrow \) \(l^* \) below their dual lines

\(p_i \), \(p_j \) leftmost vertex, rightmost vertex

\(l \), \(p_h \) above all points \(\Rightarrow l^* \) below their dual lines

LE(P\(^*\)): *lower envelope* of \(P^* \) is the unique bottom cell of the arrangement.

\(p_{h*} \), \(p_i^* \), \(p_j^* \) in the dual plane

\(p_h \) above all points \(\Rightarrow p_{h*} \) below their dual lines

primal plane, dual plane
III. Upper Convex Hull & Lower Envelope

UH(P): upper convex hull of \(P \) (part of the boundary from the leftmost vertex to the rightmost one).

\(l \) above all points \(\Rightarrow \ l^* \) below their dual lines

LE(P*): lower envelope of \(P^* \) is the unique bottom cell of the arrangement.

Slope of \(p^*_h < \) Slope of \(p^*_i < \) Slope of \(p^*_j \)
III. Upper Convex Hull & Lower Envelope

UH(P): *upper convex hull* of P (part of the boundary from the leftmost vertex to the rightmost one).

l above all points \Rightarrow l^* below their dual lines

LE(P^*): *lower envelope* of P^* is the unique bottom cell of the arrangement.

Slope of $p_h^* <$ Slope of $p_i^* <$ Slope of p_j^*
Vertex \rightarrow Edge

p_j is a vertex of $UH(P)$.

$UH(P)$

primal plane

p_j

$dual plane$

p_j^*

$LE(P^*)$
Vertex \rightarrow Edge

p_j is a vertex of $\text{UH}(P)$. There is a non-vertical line l through p_j such that all other points are below l.

primal plane

$\text{UH}(P)$

p_j is a vertex of $\text{UH}(P)$. There is a non-vertical line l through p_j such that all other points are below l.

dual plane

$\text{LE}(P^*)$
Vertex \rightarrow Edge

p_j is a vertex of $\text{UH}(P)$.

There is a non-vertical line l through p_j such that all other points are below l.

Its dual point l^* on the line $p_j^* \in P^* = \{p^* | p \in P\}$ lies below all other lines of P^*.
p_j is a vertex of $\text{UH}(P)$.

There is a non-vertical line l through p_j such that all other points are below l.

Its dual point l^* on the line $p_j^* \in P^* = \{p^* | p \in P\}$ lies below all other lines of P^*.

$l^* \in p_j^*$ is on the boundary of the bottom cell; i.e., p_j^* contributes an edge to $\text{LE}(P^*)$.

\bullet $p_j \in \text{UH}(P)$

\bullet l

\bullet $l^* \in p_j^*$

\bullet $\text{LE}(P^*)$
Vertex → Edge

p_j is a vertex of $\text{UH}(P)$.

There is a non-vertical line l through p_j such that all other points are below l.

Its dual point l^* on the line $p_j^* \in P^* = \{p^* | p \in P\}$ lies below all other lines of P^*.

$l^* \in p_j^*$ is on the boundary of the bottom cell; i.e., p_j^* contributes an edge to $\text{LE}(P^*)$.
Vertex → Edge

p_j is a vertex of $\text{UH}(P)$.

There is a non-vertical line l through p_j such that all other points are below l.

Its dual point l^* on the line $p_j^* \in P^* = \{p^* | p \in P\}$ lies below all other lines of P^*.

$l^* \in p_j^*$ is on the boundary of the bottom cell; i.e., p_j^* contributes an edge to $\text{LE}(P^*)$.
$p, q \in P$ define an edge e in $\text{UH}(P)$.

\[l \rightarrow \text{Vertex} \]
$p, q \in P$ define an edge e in $UH(P)$.

Edge → Vertex
$p, q \in P$ define an edge e in $\text{UH}(P)$.

All the points $r \in P \setminus e$ lie below the line l through p and q.
Edge \rightarrow Vertex

$p, q \in P$ define an edge e in $\text{UH}(P)$.

All the points $r \in P \setminus e$ lie below the line l through p and q.

All the lines $r^*, r \in P \setminus e$ lie above l^*.

Diagram:
- Points p, q, l, r, r^*, p^*, q^*, l^*
- Line e connecting p and q
$p, q \in P$ define an edge e in $\text{UH}(P)$.

All the points $r \in P \setminus e$ lie below the line l through p and q.

All the lines $r^*, r \in P \setminus e$ lie above l^*.

l^* is a vertex of $\text{LE}(P^*)$.
Order Reversal

$p_{i_1}, p_{i_2}, \ldots, p_{i_k}$: left-to-right order of vertices on $\text{UH}(P)$.
Order Reversal

$p_{i_1}, p_{i_2}, \ldots, p_{i_k}$: left-to-right order of vertices on $\text{UH}(P)$.

$p_{i_s} = (x_{i_s}, y_{i_s})$ precedes $p_{i_t} = (x_{i_t}, y_{i_t})$
Order Reversal

\[p_{i_1}, p_{i_2}, \ldots, p_{i_k} : \text{left-to-right order of vertices on UH}(P). \]

\[p_{i_s} = (x_{i_s}, y_{i_s}) \text{ precedes } p_{i_t} = (x_{i_t}, y_{i_t}) \]

\[x_{i_s} < x_{i_t} \]
Order Reversal

$p_i_1, p_i_2, \ldots, p_i_k$: left-to-right order of vertices on UH(P).

$p_{i_s} = (x_{i_s}, y_{i_s})$ precedes $p_{i_t} = (x_{i_t}, y_{i_t})$

\downarrow left-to-right

$x_{i_s} < x_{i_t}$

The dual line $p_{i_s}^*: y = x_{i_s}x - y_{i_s}$ has a smaller slope than the dual line $p_{i_t}^*: y = x_{i_t}x - y_{i_t}$
Order Reversal

$p_{i_1}, p_{i_2}, \ldots, p_{i_k}$: left-to-right order of vertices on UH(P).

$p_s = (x_{i_s}, y_{i_s})$ precedes $p_t = (x_{i_t}, y_{i_t})$

\[x_{i_s} < x_{i_t} \]

The dual line $p_s^* : y = x_{i_s}x - y_{i_s}$ has a smaller slope than the dual line $p_t^* : y = x_{i_t}x - y_{i_t}$

On the lower envelope, the segment of p_s^* is before that of p_t^* in the right-to-left order.
Order Reversal

$p_{i_1}, p_{i_2}, \ldots, p_{i_k}$: left-to-right order of vertices on UH(P).

$p_{i_1}^*, p_{i_2}^*, \ldots, p_{i_k}^*$: right-to-left order of edges on LE(P^*).

$p_{i_s} = (x_{i_s}, y_{i_s})$ precedes $p_{i_t} = (x_{i_t}, y_{i_t})$

\[x_{i_s} < x_{i_t} \]

The dual line $p_{i_s}^*: y = x_{i_s}x - y_{i_s}$ has a smaller slope than the dual line $p_{i_t}^*: y = x_{i_t}x - y_{i_t}$

On the lower envelope, the segment of $p_{i_s}^*$ is before that of $p_{i_t}^*$ in the right-to-left order.
Order Reversal

\(p_{i_1}, p_{i_2}, \ldots, p_{i_k} \): left-to-right order of vertices on \(\text{UH}(P) \).

\(p_{i_1}^*, p_{i_2}^*, \ldots, p_{i_k}^* \): right-to-left order of edges on \(\text{LE}(P^*) \).

\[p_{i_s} = (x_{i_s}, y_{i_s}) \] precedes \(p_{i_t} = (x_{i_t}, y_{i_t}) \)

\[x_{i_s} < x_{i_t} \]

The dual line \(p_{i_s}^*: y = x_{i_s} x - y_{i_s} \) has a smaller slope than the dual line \(p_{i_t}^*: y = x_{i_t} x - y_{i_t} \)

On the lower envelope, the segment of \(p_{i_s}^* \) is before that of \(p_{i_t}^* \) in the right-to-left order.
Lower Convex Hull & Upper Envelope

\(\text{LH}(P) \): \textit{lower convex hull} of \(P \)

\(\text{UE}(P^*) \): \textit{upper envelope} of \(P^* \)

\[\text{primal plane} \]

\[\text{dual plane} \]
Lower Convex Hull & Upper Envelope

LH(P): *lower convex hull* of P

UE(P*): *upper envelope* of P*

\[p_{i_1}, p_{i_2}, \ldots, p_{i_k} : \text{left-to-right order of vertices on LH(P)}. \]
Lower Convex Hull & Upper Envelope

\textbf{LH}(P): lower convex hull of } P

\textbf{UE}(P^*): upper envelope of } P^*

\(p_{i_1}, p_{i_2}, \ldots, p_{i_k}\): \underline{left-to-right} order of vertices on LH(P).

\(p_{i_1^*}, p_{i_2^*}, \ldots, p_{i_k^*}\): \underline{left-to-right} order of edges on UE(P*).
Hull-Envelope Correspondences

\[\text{UH}(P) \leftrightarrow \text{LE}(P^*) \]

By symmetry,

\[\text{LH}(P) \leftrightarrow \text{UE}(P^*) \]
Hull-Envelope Correspondences

\[\text{UH}(P) \leftrightarrow \text{LE}(P^*) \]

By symmetry,

\[\text{LH}(P) \leftrightarrow \text{UE}(P^*) \]

- The above relationships generalize to convex hulls and intersection of half-spaces in 3D.
Hull-Envelope Correspondences

\[\text{UH}(P) \leftrightarrow \text{LE}(P^*) \]

By symmetry,

\[\text{LH}(P) \leftrightarrow \text{UE}(P^*) \]

- The above relationships generalize to convex hulls and intersection of half-spaces in 3D.
- Convex hulls and intersections of half-planes (or half-spaces) are essentially dual concepts.
Hull-Envelope Correspondences

\[\text{UH}(P) \leftrightarrow \text{LE}(P^*) \]

By symmetry,

\[\text{LH}(P) \leftrightarrow \text{UE}(P^*) \]

- The above relationships generalize to convex hulls and intersection of half-spaces in 3D.
- Convex hulls and intersections of half-planes (or half-spaces) are essentially dual concepts.

Computing an upper (lower) convex hull

\[\uparrow \downarrow \]

Intersecting lower (upper) half-planes
Algorithm for Half-Plane Intersection

H: a set of half-planes

Idea: Dualize a convex hull algorithm.
Algorithm for Half-Plane Intersection

\(H \): a set of half-planes

Idea: Dualize a convex hull algorithm.

a) Split \(H \) into a set \(H_+ \) of upper half-planes and a set \(H_- \) of lower half-planes.
Algorithm for Half-Plane Intersection

\(H \): a set of half-planes

Idea: Dualize a convex hull algorithm.

a) Split \(H \) into a set \(H_+ \) of upper half-planes and a set \(H_- \) of lower half-planes. \(O(n) \)
Algorithm for Half-Plane Intersection

H: a set of half-planes

Idea: Dualize a convex hull algorithm.

a) Split H into a set H_+ of upper half-planes and a set H_- of lower half-planes. $O(n)$

b) Compute $\cap H_+$ by constructing the lower convex hull of H_+^*.
Algorithm for Half-Plane Intersection

H: a set of half-planes

Idea: Dualize a convex hull algorithm.

a) Split H into a set H_+ of upper half-planes and a set H_- of lower half-planes. $O(n)$

b) Compute $\cap H_+$ by constructing the lower convex hull of H^*_+. $O(n \log n)$
Algorithm for Half-Plane Intersection

H: a set of half-planes

Idea: Dualize a convex hull algorithm.

a) Split H into a set H_+ of upper half-planes and a set H_- of lower half-planes. $O(n)$

b) Compute $\cap H_+$ by constructing the lower convex hull of H^*_+. $O(n \log n)$

c) Compute $\cap H_-$ by constructing the upper convex hull of H^*_-.$O(n \log n)$
Algorithm for Half-Plane Intersection

H: a set of half-planes

Idea: Dualize a convex hull algorithm.

1. **Split H into** a set H_+ of upper half-planes and a set H_- of lower half-planes. \(O(n) \)
2. **Compute** $\cap H_+$ by constructing the lower convex hull of H_+^*. \(O(n \log n) \)
3. **Compute** $\cap H_-$ by constructing the upper convex hull of H_-^*. \(O(n \log n) \)
4. **Intersect** H_+ and H_-. \(O(n) \)
IV. Review: Duality with a Parabola

- Dual p^* of p on the parabola is the tangent line at p.

\[
y = \frac{x^2}{2}
\]
Point Not on a Parabola

\[y = \frac{x^2}{2} \]

\[p = (p_x, p_y) \]
Point Not on a Parabola

\[y = \frac{x^2}{2} \]

\[p = (p_x, p_y) \]
Point Not on a Parabola

\[y = \frac{x^2}{2} \]

\[p = (p_x, p_y) \]
Point Not on a Parabola

\[y = \frac{x^2}{2} \]

\[p = (p_x, p_y) \]

\[q = (p_x, p_y - d) \]
Point Not on a Parabola

\[y = \frac{x^2}{2} \]

\[p = (p_x, p_y) \]

\[q = (p_x, p_y - d) \]
Point Not on a Parabola

\[y = \frac{x^2}{2} \]

\[p = (p_x, p_y) \]

\[q = (p_x, p_y - d) \]

\[q' = (p_x, p_y + d) \]
Point Not on a Parabola

\[y = \frac{x^2}{2} \]

\[p = (p_x, p_y) \]

\[q = (p_x, p_y - d) \]

\[q' = (p_x, p_y + d) \]

\[q' - p = p - q \]
Point Not on a Parabola

\[y = \frac{x^2}{2} \]

\[p = (p_x, p_y) \]

\[q = (p_x, p_y - d) \]

\[q' = (p_x, p_y + d) \]

\[q' - p = p - q \]

\[\diamond \text{ The dual line } q^* \parallel p^* \text{ and it passes through } q'. \]
More on Duality

Construct the dual line q^* of q without measuring distances:

$$y = \frac{x^2}{2}$$
Construct the dual line q^* of q without measuring distances:

1) Through q draw two tangent lines to the parabola.
More on Duality

Construct the dual line q^* of q without measuring distances:

1) Through q draw two tangent lines to the parabola.

$y = \frac{x^2}{2}$
More on Duality

Construct the dual line q^* of q without measuring distances:

1) Through q draw two tangent lines to the parabola.

2) Let p_1 and p_2 be the points of tangency, respectively.

$y = \frac{x^2}{2}$
Construct the dual line q^* of q without measuring distances:

1) Through q draw two tangent lines to the parabola.

2) Let p_1 and p_2 be the points of tangency, respectively.
More on Duality

Construct the dual line q^* of q without measuring distances:

1) Through q draw two tangent lines to the parabola.

2) Let p_1 and p_2 be the points of tangency, respectively.

The two tangent lines are p_1^* and p_2^*.

$$y = \frac{x^2}{2}$$
Construct the dual line q^* of q without measuring distances:

1) Through q draw two tangent lines to the parabola.

2) Let p_1 and p_2 be the points of tangency, respectively.

3) q^* is the line through p_1 and p_2.

The two tangent lines are p_1^* and p_2^*.

$y = \frac{x^2}{2}$
Construct the dual line q^* of q without measuring distances:

1) Through q draw two tangent lines to the parabola.

2) Let p_1 and p_2 be the points of tangency, respectively.

3) q^* is the line through p_1 and p_2.

The two tangent lines are p_1^* and p_2^*.

\[y = \frac{x^2}{2} \]
More on Duality

Construct the dual line q^* of q without measuring distances:

1) Through q draw two tangent lines to the parabola.

2) Let p_1 and p_2 be the points of tangency, respectively.

3) q^* is the line through p_1 and p_2.

The two tangent lines are p_1^* and p_2^*.

p_1^* and p_2^* intersect at $q \iff q^*$ passes through p_1 and p_2.

\[y = \frac{x^2}{2} \]
Voronoi Diagram Revisited

P: a set of n sites.
Unit Paraboloid

\[U: z = x^2 + y^2 \]
Unit Paraboloid

\[U: z = x^2 + y^2 \]

\[p = (p_x, p_y, 0) \]
Unit Paraboloid

\[U: z = x^2 + y^2 \]

Projection of \(p \) onto \(U \):

\[p' = (p_x, p_y, p_x^2 + p_y^2) \]

\[p = (p_x, p_y, 0) \]
Unit Paraboloid

\[U: z = x^2 + y^2 \]

i.e. \(g(x, y, z) \equiv x^2 + y^2 - z = 0 \)

Projection of \(p \) onto \(U \):

\[p = (p_x, p_y, 0) \]

\[p' = (p_x, p_y, p_x^2 + p_y^2) \]
Unit Paraboloid

\[U: z = x^2 + y^2 \]
i.e. \(g(x, y, z) \equiv x^2 + y^2 - z = 0 \)

Projection of \(p \) onto \(U \):
\[p' = (p_x, p_y, p_x^2 + p_y^2) : \]
Tangent plane \(h(p) \) to \(U \) through \(p' \) has normal:
\[\nabla g(p') = \left(\frac{\partial g}{\partial x}, \frac{\partial g}{\partial y}, \frac{\partial g}{\partial z} \right) \bigg|_{p'} = (2p_x, 2p_y, -1) \]

\[p = (p_x, p_y, 0) \]
Unit Paraboloid

\[U: z = x^2 + y^2 \]
i.e. \(g(x, y, z) \equiv x^2 + y^2 - z = 0 \)

\[p = (p_x, p_y, 0) \]

Projection of \(p \) onto \(U \):
\[p' = (p_x, p_y, p_x^2 + p_y^2) : \]

Tangent plane \(h(p) \) to \(U \) through \(p' \) has normal:
\[\nabla g(p') = \left(\frac{\partial g}{\partial x}, \frac{\partial g}{\partial y}, \frac{\partial g}{\partial z} \right) \bigg|_{p'} = (2p_x, 2p_y, -1) \]
Unit Paraboloid

$U: z = x^2 + y^2$

i.e. $g(x, y, z) \equiv x^2 + y^2 - z = 0$

Projection of p onto U:

$p' = (p_x, p_y, p_x^2 + p_y^2)$:

Tangent plane $h(p)$ to U through p' has normal:

$\nabla g(p') = \left(\frac{\partial g}{\partial x}, \frac{\partial g}{\partial y}, \frac{\partial g}{\partial z}\right)|_{p'} = (2p_x, 2p_y, -1)$

\[((x, y, z) - p') \cdot \nabla g(p') = 0 \]
Unit Paraboloid

\[U: z = x^2 + y^2 \]

i.e. \(g(x, y, z) \equiv x^2 + y^2 - z = 0 \)

\[p = (p_x, p_y, 0) \]

Projection of \(p \) onto \(U \):

\[p' = (p_x, p_y, p_x^2 + p_y^2) \]

Tangent plane \(h(p) \) to \(U \) through \(p' \) has normal:

\[\nabla g(p') = \left(\frac{\partial g}{\partial x}, \frac{\partial g}{\partial y}, \frac{\partial g}{\partial z} \right) |_{p'} = (2p_x, 2p_y, -1) \]

\[((x, y, z) - p') \cdot \nabla g(p') = 0 \]

\[h(p): z = 2p_xx + 2p_yy - (p_x^2 + p_y^2) \]
Unit Paraboloid

\[U: z = x^2 + y^2 \]

i.e. \[g(x, y, z) \equiv x^2 + y^2 - z = 0 \]

Projection of \(p \) onto \(U \):

\[p' = (p_x, p_y, p_x^2 + p_y^2) \]

Tangent plane \(h(p) \) to \(U \) through \(p' \) has normal:

\[\nabla g(p') = \left(\frac{\partial g}{\partial x}, \frac{\partial g}{\partial y}, \frac{\partial g}{\partial z} \right) \bigg|_{p'} = (2p_x, 2p_y, -1) \]

\[((x, y, z) - p') \cdot \nabla g(p') = 0 \]

\[h(p): z = 2p_xx + 2p_yy - (p_x^2 + p_y^2) \]
Unit Paraboloid

\[U: z = x^2 + y^2 \]

i.e. \(g(x, y, z) \equiv x^2 + y^2 - z = 0 \)

- Projection of \(p \) onto \(U \):
 \[p' = (p_x, p_y, p_x^2 + p_y^2) \]

- Tangent plane \(h(p) \) to \(U \) through \(p' \) has normal:
 \[\nabla g(p') = \left(\frac{\partial g}{\partial x}, \frac{\partial g}{\partial y}, \frac{\partial g}{\partial z} \right) \bigg|_{p'} = (2p_x, 2p_y, -1) \]

- Vertical line through \(q \) intersects
 - \(U \) at \(q' = (q_x, q_y, q_x^2 + q_y^2) \)
 - \(h(p) \) at \(q(p) \).
Distance Encoded in Tangent Plane

\[d(p, q) \]: distance between two points \(p \) and \(q \)

\[q' = (q_x, q_y, q_x^2 + q_y^2) \]
Distance Encoded in Tangent Plane

\[d(p, q) : \text{distance between two points } p \text{ and } q \]

\[q' = (q_x, q_y, q_x^2 + q_y^2) \]
Distance Encoded in Tangent Plane

$d(p, q)$: distance between two points p and q

$q' = (q_x, q_y, q_x^2 + q_y^2)$

$d(q', q(p)) = q'_z - (q(p))_z$
Distance Encoded in Tangent Plane

\[d(p, q): \text{distance between two points } p \text{ and } q \]

\[q' = (q_x, q_y, q_x^2 + q_y^2) \]

\[d(q', q(p)) = q'_z - (q(p))_z \]

\[= (q_x^2 + q_y^2) - (2p_x q_x + 2p_y q_y - (p_x^2 + p_y^2)) \]
Distance Encoded in Tangent Plane

\(d(p, q) \): distance between two points \(p \) and \(q \)

\[
q' = (q_x, q_y, q_x^2 + q_y^2)
\]

\[
d(q', q(p)) = q'_z - (q(p))_z
\]

\[
= (q_x^2 + q_y^2) - (2p_x q_x + 2p_y q_y - (p_x^2 + p_y^2))
\]

\[
= (q_x - p_x)^2 + (q_y - p_y)^2
\]
Distance Encoded in Tangent Plane

d(p, q): distance between two points *p* and *q*

\[q' = (q_x, q_y, q_x^2 + q_y^2) \]

\[d(q', q(p)) = q'_z - (q(p))_z \]

\[= (q_x^2 + q_y^2) - (2p_xq_x + 2p_yq_y - (p_x^2 + p_y^2)) \]

\[= (q_x - p_x)^2 + (q_y - p_y)^2 \]

\[= d(p, q)^2 \]
Distance Encoded in Tangent Plane

\[d(p, q) : \text{distance between two points } p \text{ and } q \]

\[q' = (q_x, q_y, q_x^2 + q_y^2) \]

\[d(q', q(p)) = q'_z - (q(p))_z \]

\[= (q_x^2 + q_y^2) - (2p_x q_x + 2p_y q_y - (p_x^2 + p_y^2)) \]

\[= (q_x - p_x)^2 + (q_y - p_y)^2 \]

\[= d(p, q)^2 \]

The square of \(d(p, q)\) equals the distance between the two projection points (onto \(h(p)\) and \(U\)) from \(q\).
Upper Envelope of Planes

\[H = \{ \text{tangent plane } h(p) \mid p \in P \} \]

\(\text{UE}(H) \): upper envelope of the planes in \(H \).

Theorem 1 The projection of \(\text{UE}(H) \) onto the plane \(z = 0 \) is the Voronoi diagram of \(P \).
Upper Envelope of Planes

\[H = \{ \text{tangent plane } h(p) \mid p \in P \} \]

\(\text{UE}(H) \): upper envelope of the planes in \(H \).

Theorem 1 The projection of \(\text{UE}(H) \) onto the plane \(z = 0 \) is the Voronoi diagram of \(P \).

Proof A point \(q \in \text{Vor}(p) \), the Voronoi cell of \(p \).
Upper Envelope of Planes

\[H = \{ \text{tangent plane } h(p) \mid p \in P \} \]

UE(\(H\)): upper envelope of the planes in \(H\).

Theorem 1 The projection of UE(\(H\)) onto the plane \(z = 0\) is the Voronoi diagram of \(P\).

Proof A point \(q \in \text{Vor}(p)\), the Voronoi cell of \(p\).

\[d(q, p) < d(q, r) \text{ for } r \in P \text{ and } r \neq p \]

[Diagram showing the upper envelope and Voronoi diagram]
Upper Envelope of Planes

\[H = \{ \text{tangent plane } h(p) \mid p \in P \} \]

UE(\(H\)): upper envelope of the planes in \(H\).

Theorem 1 The projection of UE(\(H\)) onto the plane \(z = 0\) is the Voronoi diagram of \(P\).

Proof A point \(q \in \text{Vor}(p)\), the Voronoi cell of \(p\).

\[d(q, p) < d(q, r) \quad \text{for } r \in P \text{ and } r \neq p \]

\[q_x^2 + q_y^2 - d(q, p)^2 > q_x^2 + q_y^2 - d(q, r)^2 \]
Proof (cont’d)

\[q_x^2 + q_y^2 - d(q, p)^2 > q_x^2 + q_y^2 - d(q, r)^2 \]
Proof (cont’d)

\[q_x^2 + q_y^2 - d(q, p)^2 > q_x^2 + q_y^2 - d(q, r)^2 \]

\[q(p) = (q_x, q_y, q_x^2 + q_y^2 - d(p, q)^2) \]

\[q(p) \cdot (0,0,1) > q(r) \cdot (0,0,1) \]
Proof (cont’d)

\[q_x^2 + q_y^2 - d(q, p)^2 > q_x^2 + q_y^2 - d(q, r)^2 \]

\[\iff q(p) = (q_x, q_y, q_x^2 + q_y^2 - d(p, q)^2) \]

\[q(p) \cdot (0,0,1) > q(r) \cdot (0,0,1) \]

The vertical line through \(q \) intersects UE(\(H \)) at a point on \(h(p) \), i.e., inside the facet contributed by \(h(p) \).
Proof (cont’d)

\[q_x^2 + q_y^2 - d(q, p)^2 > q_x^2 + q_y^2 - d(q, r)^2 \]

\[\iff q(p) = (q_x, q_y, q_x^2 + q_y^2 - d(p, q)^2) \]

\[q(p) \cdot (0, 0, 1) > q(r) \cdot (0, 0, 1) \]

The vertical line through \(q \) intersects UE(\(H \)) at a point on \(h(p) \), i.e., inside the facet contributed by \(h(p) \).
Projection of Upper Envelope

Upper envelope $\text{UE}(H)$

Voronoi diagram $\text{Vor}(P)$
Construction of Voronoi Diagram

Constructing the Voronoi diagram of P in 2D
Construction of Voronoi Diagram

Constructing the Voronoi diagram of \(P \) in 2D

\[\downarrow \text{reduces to} \]

Computing an upper envelope of the set of planes \(H = \{ h(p) \mid p \in P \} \) in 3D

Point \(p = (p_x, p_y, p_z) \) \(\mapsto \) plane \(h(p): z = p_x x + p_y y - p_z \)
Constructing the Voronoi diagram of P in 2D

\[\downarrow \text{ reduces to } \]

Computing an upper envelope of the set of planes

\[H = \{ h(p) \mid p \in P \} \] in 3D

\[\downarrow \text{ reduces to } \]

Computing the lower convex hull of the set of dual points

\[H^* = \{ h(p)^* \mid p \in P \} \] in 3D

Point $p = (p_x, p_y, p_z)$ \leftrightarrow plane $h(p)$: $z = p_x x + p_y y - p_z$
Construction of Voronoi Diagram

Constructing the Voronoi diagram of P in 2D

\[\downarrow \text{reduces to} \]

Computing an upper envelope of the set of planes

$H = \{ h(p) | p \in P \}$ in 3D

\[\downarrow \text{reduces to} \]

Computing the lower convex hull of the set of dual points

$H^* = \{ h(p)^* | p \in P \}$ in 3D

Point $p = (p_x, p_y, p_z)$ \mapsto plane $h(p)$: $z = p_x x + p_y y - p_z$

Theorem 2 The projection of the lower convex hull of H^* onto the plane $z = 0$ is the Delaunay graph of P.
Summary

P: a set of n sites.

$H = \{ h(p): z = 2p_x x + 2p_y y - (p_x^2 + p_y^2) | p \in P \}$

\[
\begin{align*}
P \rightarrow H \rightarrow \text{UE}(H) \rightarrow \text{LH}(H^*) \\
\downarrow \text{projected onto the } x-y \text{ plane} \quad \downarrow \text{projected onto the } x-y \text{ plane}
\end{align*}
\]

$\text{Vor}(P) \quad \text{DG}(P)$