Line Arrangements

Outline:

I. Geometric complexity of a line arrangement

II. Incremental construction

III. Computation of the discrete discrepancy measure

The Discrepancy Problem
The Discrepancy Problem

Continuous measure: \(\mu(h) = \frac{1}{4} \)
The Discrepancy Problem

Continuous measure: $\mu(h) = \frac{1}{4}$

Discrete measure: $\mu_s(h) = \frac{3}{8}$
The Discrepancy Problem

Continuous measure: \(\mu(h) = \frac{1}{4} \)

Discrete measure: \(\mu_s(h) = \frac{3}{8} \)

Maximize \(|\mu_s(h) - \mu(h)| \)
The Discrepancy Problem

Continuous measure: $\mu(h) = \frac{1}{4}$

Discrete measure: $\mu_s(h) = \frac{3}{8}$

Maximize $|\mu_s(h) - \mu(h)|$

h must have ≥ 1 points on its boundary.
The Discrepancy Problem

Continuous measure: $\mu(h) = \frac{1}{4}$

Discrete measure: $\mu_s(h) = \frac{3}{8}$

Maximize $|\mu_s(h) - \mu(h)|$

h must have ≥ 1 points on its boundary.

★ exactly one point (Type i) \Rightarrow brute-force method $O(n^2)$
The Discrepancy Problem

Continuous measure: \(\mu(h) = \frac{1}{4} \)

Discrete measure: \(\mu_s(h) = \frac{3}{8} \)

Maximize \(|\mu_s(h) - \mu(h)| \)

\(h \) must have \(\geq 1 \) points on its boundary.

★ exactly one point (Type i) \(\Rightarrow \) brute-force method \(O(n^2) \)

★ at least two points (Type ii) \(\Rightarrow \) apply duality + line arrangement
I. Arrangement of Lines

L: a set of n lines.
I. Arrangement of Lines

L: a set of n lines.

$A(L)$: planar subdivision induced by L.
I. Arrangement of Lines

L: a set of n lines.

$A(L)$: planar subdivision induced by L.
I. Arrangement of Lines

L: a set of n lines.

$A(L)$: planar subdivision induced by L.

\[
\begin{align*}
\text{vertex} & \quad \text{edge} & \quad \text{face}
\end{align*}
\]

with unbounded edges and faces
I. Arrangement of Lines

L: a set of n lines.

$A(L)$: planar subdivision induced by L.

- with unbounded edges and faces

Simple arrangement if

- no three lines are concurrent;
- no two lines are parallel.
Reduction to Line Arrangement

Problem on points \rightarrow problem on an arrangement of dual lines.

primal plane

dual plane
Reduction to Line Arrangement

Problem on points $\xrightarrow{\text{}}$ problem on an arrangement of dual lines.

Structure of a line arrangement is more apparent than that of a point set.
Combinatorial Complexity

#vertices + #edges + #faces
Combinatorial Complexity

Theorem \#vertices \leq \frac{n(n-1)}{2}
Combinatorial Complexity

Theorem

\[
\text{#vertices} \leq \frac{n(n-1)}{2} \\
\text{#edges} \leq n^2
\]
Combinatorial Complexity

Theorem

\#vertices \leq \frac{n(n-1)}{2}

\#edges \leq n^2

\#faces \leq \frac{n^2}{2} + \frac{n}{2} + 1
Combinatorial Complexity

\[
\text{Theorem} \quad \#\text{vertices} \leq \frac{n(n-1)}{2} \\
\#\text{edges} \leq n^2 \\
\#\text{faces} \leq \frac{n^2}{2} + \frac{n}{2} + 1
\]

Equality holds if and only if \(A(L) \) is simple.
Proof of Complexity

We first show that #vertices, #edges, #faces are maximal when \(A(L) \) is simple (no parallel or \(\geq 3 \) concurrent lines) and not otherwise.
Proof of Complexity

We first show that #vertices, #edges, #faces are maximal when $A(L)$ is simple (no parallel or ≥ 3 concurrent lines) and not otherwise.

1) Let $l \in L$ be parallel to one or more lines.

\[
\begin{align*}
 &l \\
 &l_1
\end{align*}
\]
Proof of Complexity

We first show that #vertices, #edges, #faces are maximal when $A(L)$ is simple (no parallel or ≥ 3 concurrent lines) and not otherwise.

1) Let $l \in L$ be parallel to one or more lines.

\[
\begin{align*}
&\text{small enough} \\
\text{rotation to yield} \\
&\text{one change in } A(L)
\end{align*}
\]
Proof of Complexity

We first show that \#vertices, \#edges, \#faces are maximal when $A(L)$ is simple (no parallel or ≥ 3 concurrent lines) and not otherwise.

1) Let $l \in L$ be parallel to one or more lines.

\[l \]
\[l_1 \]
small enough rotation to yield
one change in $A(L)$

new vertex
\[l \]
\[l_1 \]
Proof of Complexity

We first show that #vertices, #edges, #faces are maximal when $A(L)$ is simple (no parallel or ≥ 3 concurrent lines) and not otherwise.

1) Let $l \in L$ be parallel to one or more lines.

Complexity increases in this case. (Hence such configuration cannot be maximal.)
2) Suppose l passes through a vertex.
Proof (Cont’d)

2) Suppose \(l \) passes through a vertex.

\[l \]
\[l_1 \]
\[l_2 \]

\[\text{translate } l \quad \text{slightly} \]

\[l_1 \]
\[l \]
\[l_2 \]
2) Suppose l passes through a vertex.

2 new vertices
3 new edges
1 new face
Proof (Cont’d)

2) Suppose \(l \) passes through a vertex.

Since complexity increases, such configuration cannot be maximal either.
Proof (Cont’d)

2) Suppose l passes through a vertex.

Since complexity increases, such configuration cannot be maximal either.

The arrangement with maximal complexity must be simple.
Exact Size of a Simple Arrangement

\[n_v = \text{# vertices} \]
\[n_e = \text{# edges} \]
\[n_f = \text{# faces} \]
Exact Size of a Simple Arrangement

\[n_v = \text{# vertices} \]
\[n_e = \text{# edges} \]
\[n_f = \text{# faces} \]

Any pair of lines intersect.
Exact Size of a Simple Arrangement

\(n_v = \) # vertices

\(n_e = \) # edges

\(n_f = \) # faces

Any pair of lines intersect. \(\implies \quad n_v = \binom{n}{2} = \frac{n(n - 1)}{2} \)
Exact Size of a Simple Arrangement

\[n_v = \# \text{ vertices} \]
\[n_e = \# \text{ edges} \]
\[n_f = \# \text{ faces} \]

Any pair of lines intersect. \[n_v = \binom{n}{2} = \frac{n(n-1)}{2} \]

#edges on one line = 1 + #intersections on the line
Exact Size of a Simple Arrangement

\[n_v = \text{# vertices} \]
\[n_e = \text{# edges} \]
\[n_f = \text{# faces} \]

Any pair of lines intersect. \[n_v = \left(\frac{n}{2}\right) = \frac{n(n-1)}{2} \]

#edges on one line = 1 + #intersections on the line
Exact Size of a Simple Arrangement

\(n_v = \text{# vertices} \)

\(n_e = \text{# edges} \)

\(n_f = \text{# faces} \)

Any pair of lines intersect.
\[n_v = \binom{n}{2} = \frac{n(n-1)}{2} \]

#edges on one line = 1 + #intersections on the line
\[n_e = n \cdot (1 + n - 1) = n^2 \]
Number of Faces
Number of Faces

1. Add a vertex v_∞ at infinity.
1. Add a vertex v_∞ at infinity.

2. Extend (and bend) every half-infinite edge to v_∞.
1. Add a vertex v_∞ at infinity.

2. Extend (and bend) every half-infinite edge to v_∞.
1. Add a vertex v_∞ at infinity.

2. Extend (and bend) every half-infinite edge to v_∞.

No edge crossing
Number of Faces

1. Add a vertex v_∞ at infinity.

2. Extend (and bend) every half-infinite edge to v_∞.

No edge crossing

Planar graph
Number of Faces

1. Add a vertex v_∞ at infinity.

2. Extend (and bend) every half-infinite edge to v_∞.

No edge crossing

Planar graph

Euler’s formula:

$$(n_v + 1) + n_f - n_e = 2$$
Number of Faces

1. Add a vertex v_∞ at infinity.

2. Extend (and bend) every half-infinite edge to v_∞.

No edge crossing

Planar graph

Euler’s formula:

$$(n_v + 1) + n_f - n_e = 2 \quad \Rightarrow \quad n_f = 2 - (n_v + 1) + n_e$$
Number of Faces

1. Add a vertex \(v_\infty \) at infinity.

2. Extend (and bend) every half-infinite edge to \(v_\infty \).

No edge crossing

Planar graph

Euler’s formula:

\[
(n_v + 1) + n_f - n_e = 2
\]

\[
n_f = 2 - (n_v + 1) + n_e = 2 - \left(\frac{n(n-1)}{2} + 1\right) + n^2
\]
1. Add a vertex v_∞ at infinity.

2. Extend (and bend) every half-infinite edge to v_∞.

No edge crossing

Planar graph

Euler’s formula:

$$(n_v + 1) + n_f - n_e = 2$$

$$n_f = 2 - (n_v + 1) + n_e$$

$$= 2 - \left(\frac{n(n-1)}{2} + 1\right) + n^2$$

$$= \frac{n^2}{2} + \frac{n}{2} + 1$$
1. Add a vertex v_∞ at infinity.

2. Extend (and bend) every half-infinite edge to v_∞.

No edge crossing

Planar graph

Euler’s formula:

$$(n_v + 1) + n_f - n_e = 2$$

$n_f = 2 - (n_v + 1) + n_e$

$$= 2 - \left(\frac{n(n-1)}{2} + 1 \right) + n^2$$

$$= \frac{n^2}{2} + \frac{n}{2} + 1$$
II. Storage of Line Arrangement

Doubly-connected edge list.
II. Storage of Line Arrangement

Doubly-connected edge list.

Add a bounding box to contain all vertices in interior.
Construction of DCEL for $A(L)$

Plane sweep?

$O(n \log n + I \log n)$
Construction of DCEL for $A(L)$

Plane sweep?

$O(n \log n + I \log n)$

pairwise intersection
Construction of DCEL for $A(L)$

Plane sweep?

$O(n \log n + I \log n)$

pairwise intersection $\iff I = n(n - 1)/2$
Construction of DCEL for $A(L)$

Plane sweep?

$$O(n \log n + I \log n) = O(n^2 \log n)$$

pairwise intersection $\iff I = n(n - 1)/2$
Construction of DCEL for $A(L)$

Plane sweep?

$$O(n \log n + I \log n) = O(n^2 \log n)$$

pairwise intersection $\iff I = n(n - 1)/2$

Not optimal!
Incremental Algorithm

Preprocessing

Compute the bounding box $B(L)$.

Incremental Algorithm

Preprocessing

Compute the bounding box $B(L)$.

- $n(n - 1)/2$ intersections.
Incremental Algorithm

Preprocessing

- Compute the bounding box $B(L)$.
 - $n(n - 1)/2$ intersections.
 - leftmost, rightmost, top, bottom intersections.
Incremental Algorithm

Preprocessing

- Compute the bounding box $B(L)$.
 - $n(n - 1)/2$ intersections.
 - leftmost, rightmost, top, bottom intersections.
 - each line yielding two intersections with $B(L)$.
Incremental Algorithm

Preprocessing

• Compute the bounding box $B(L)$.
 • $n(n - 1)/2$ intersections.
 • leftmost, rightmost, top, bottom intersections.
 • each line yielding two intersections with $B(L)$.
 • $\frac{n(n-1)}{2} + 2n + 4 = \frac{n^2 + 3n + 8}{2}$ vertices in $B(L)$.
Incremental Algorithm

Preprocessing

- Compute the bounding box $B(L)$. $\Theta(n^2)$
 - $n(n - 1)/2$ intersections.
 - Leftmost, rightmost, top, bottom intersections.
 - Each line yielding two intersections with $B(L)$.
 - $\frac{n(n-1)}{2} + 2n + 4 = \frac{n^2 + 3n + 8}{2}$ vertices in $B(L)$.
Incremental Algorithm

Preprocessing

computed the bounding box $B(L)$, $\Theta(n^2)$

- $n(n - 1)/2$ intersections.
- leftmost, rightmost, top, bottom intersections.
- each line yielding two intersections with $B(L)$.

$$\frac{n(n-1)}{2} + 2n + 4 = \frac{n^2+3n+8}{2}$$ vertices in $B(L)$.

Add lines l_1, l_2, \ldots, l_n one by one.
Incremental Algorithm

Preprocessing

• Compute the bounding box $B(L)$. $\Theta(n^2)$

 • $n(n - 1)/2$ intersections.

 • leftmost, rightmost, top, bottom intersections.

 • each line yielding two intersections with $B(L)$.

 \[
 \frac{n(n-1)}{2} + 2n + 4 = \frac{n^2 + 3n + 8}{2}
 \]

 vertices in $B(L)$.

• Add lines l_1, l_2, \ldots, l_n one by one.

Update the DCEL after each addition.
Preprocessing

- Compute the bounding box $B(L)$. \(\Theta(n^2) \)
 - \(n(n - 1)/2 \) intersections.
 - leftmost, rightmost, top, bottom intersections.
 - each line yielding two intersections with $B(L)$.
 - \(\frac{n(n-1)}{2} + 2n + 4 = \frac{n^2+3n+8}{2} \) vertices in $B(L)$.

Add lines l_1, l_2, \ldots, l_n one by one.

Update the DCEL after each addition.
Updating the Subdivision

A_i: subdivision due to $\{l_1, l_2, \ldots, l_i\}$

Case 1 Enter a face f through edge e.
Updating the Subdivision

\[A_i: \text{subdivision due to } \{l_1, l_2, \ldots, l_i\} \]

Case 1 Enter a face \(f \) through edge \(e \).

\[A_{i-1} \]
Updating the Subdivision

A_i: subdivision due to $\{l_1, l_2, \ldots, l_i\}$

Case 1 Enter a face f through edge e.
- Walk along boundary of f using the Next pointer.
Updating the Subdivision

A_i: subdivision due to $\{l_1, l_2, \ldots, l_i\}$

Case 1 Enter a face f through edge e.

- Walk along boundary of f using the the Next pointer.
- Find exit edge e'.

A_{i-1}
Updating the Subdivision

\(A_i: \) subdivision due to \(\{l_1, l_2, \ldots, l_i\} \)

Case 1 Enter a face \(f \) through edge \(e \).

- Walk along boundary of \(f \) using the Next pointer.
- Find exit edge \(e' \).
- Use its Twin() pointer to enter face \(g \).
Case 2 Leave a face \((g)\) through a vertex \((u)\).
Updating the Subdivision

Case 2 Leave a face \((g)\) through a vertex \((u)\).

- walk around \(u\) to find the next face \((h)\) intersected by \(l_i\).
Updating the Subdivision

Case 2 Leave a face \((g)\) through a vertex \((u)\).

- walk around \(u\) to find the next face \((h)\) intersected by \(l_i\).

Alternatively use \texttt{Next()} and \texttt{Twin()} pointers.
First Edge of Intersection

How to find the first edge (leftmost edge) intersected by l_i?
How to find the first edge (leftmost edge) intersected by \(l_i \)?

It must be an edge on the bounding box \(B(L) \).
How to find the first edge (leftmost edge) intersected by l_i?

- It must be an edge on the bounding box $B(L)$.
- Just test all the edges on $B(L)$.
How to find the first edge (leftmost edge) intersected by l_i?

- It must be an edge on the bounding box $B(L)$.
- Just test all the edges on $B(L)$.
- In case l_i is vertical, locate the bottom intersection to start off traversal.
First Edge of Intersection

How to find the first edge (leftmost edge) intersected by \(l_i \)?

- It must be an edge on the bounding box \(B(L) \).
- Just test all the edges on \(B(L) \).
- In case \(l_i \) is vertical, locate the bottom intersection to start off traversal.

\[A_{i-1} \text{ has } 2(i - 1) + 4 \text{ edges on } B(L) \text{ since each edge intersects it twice.} \]
First Edge of Intersection

How to find the first edge (leftmost edge) intersected by l_i?

- It must be an edge on the bounding box $B(L)$.
- Just test all the edges on $B(L)$.
- In case l_i is vertical, locate the bottom intersection to start off traversal.

A_{i-1} has $2(i - 1) + 4$ edges on $B(L)$ since each edge intersects it twice.

First intersection edge can be found in $O(i)$ time.
Splitting a Face

- h
- l_i
- f

edge already split when exiting h
Splitting a Face

Splitting a face involves an edge already split when exiting h. This results in the division of the face into two new faces, f_1 and f_2. The diagram illustrates the process with a line l_i and the face f split at the indicated point.
Splitting a Face

- Edge already split when exiting h

- New vertex

- Faces f_1 and f_2
Splitting a Face

edge already split when exiting h

2 new faces
1 new vertex
6 new half-edges
The Algorithm

ConstructArrangement(L)

1. Compute a bounding box $B(L)$ to contain all vertices of $A(L)$ \(\text{// } O(n^2)\)
2. Initialize DCEL for $B(L)$ \(\text{// } O(1)\)
3. for $i \leftarrow 1$ to n
4. \hspace{1em} do $e \leftarrow$ edge on $B(L)$ that first intersects with l_i
5. \hspace{2em} $f \leftarrow$ bounded face incident on e \(\text{// } O(i)\)
6. \hspace{1em} while f is bounded
7. \hspace{2em} split f
8. \hspace{2em} $f \leftarrow$ next intersected face
Face Splitting

Split faces in A_{i-1} intersected by l_i.
Face Splitting

Split faces in A_{i-1} intersected by l_i.

- $A(L)$ simple
Face Splitting

Split faces in A_{i-1} intersected by l_i.

★ $A(L)$ simple

• Splitting a face f and finding the next intersected face $O(\text{complexity of } f)$
Face Splitting

Split faces in A_{i-1} intersected by l_i.

⭐ $A(L)$ simple

- Splitting a face f and finding the next intersected face $O(\text{complexity of } f)$
- Insertion of l_i takes time linear in total complexity of faces intersected by the line.
Face Splitting

Split faces in A_{i-1} intersected by l_i.

★ $A(L)$ simple

- Splitting a face f and finding the next intersected face
 $O(\text{complexity of } f)$

 \[\downarrow \]

- Insertion of l_i takes time linear in total complexity of faces intersected by the line.

★ $A(L)$ not simple
Face Splitting

Split faces in A_{i-1} intersected by l_i.

- $A(L)$ simple
 - Splitting a face f and finding the next intersected face $O(\text{complexity of } f)$
 - Insertion of l_i takes time linear in total complexity of faces intersected by the line.

- $A(L)$ not simple
 - l_i may leave f through a vertex v where ≥ 3 lines including l_i intersect.
Face Splitting

Split faces in A_{i-1} intersected by l_i.

★ $A(L)$ simple

- Splitting a face f and finding the next intersected face
 \[O(\text{complexity of } f)\]

 ▼

- Insertion of l_i takes time linear in total complexity of faces intersected by the line.

★ $A(L)$ not simple

- l_i may leave f through a vertex v where ≥ 3 lines including l_i intersect.

 ▼

- Walk around v to find the next face (g) to split, scanning over edges that bound faces intersected by l_i.

[Diagram: Diagram showing a face f, line l_i, and vertices v and g.]
Face Splitting

Split faces in A_{i-1} intersected by l_i.

- $A(L)$ simple
 - Splitting a face f and finding the next intersected face $O(\text{complexity of } f)$
 - Insertion of l_i takes time linear in total complexity of faces intersected by the line.

- $A(L)$ not simple
 - l_i may leave f through a vertex v where ≥ 3 lines including l_i intersect.
 - Walk around v to find the next face (g) to split, scanning over edges that bound faces intersected by l_i.
Zone

\[Z(l) = \{ f \mid f \text{ is a face of } A(L) \text{ intersected by } l \} \]
Zone

\[Z(l) = \{ f \mid f \text{ is a face of } A(L) \text{ intersected by } l \} \]

Complexity of \(Z \) = total complexity of faces (\#vertices + \#edges).
Zone

\[Z(l) = \{ f \mid f \text{ is a face of } A(L) \text{ intersected by } l \} \]

Complexity of \(Z \) = total complexity of faces (\#vertices + \#edges).
Zone

\[Z(l) = \{ f \mid f \text{ is a face of } A(L) \text{ intersected by } l \} \]

 Complexity of \(Z \) = total complexity of faces (\#vertices + \#edges).
Zone

\[Z(l) = \{ f \mid f \text{ is a face of } A(L) \text{ intersected by } l \} \]

Complexity of \(Z \) = total complexity of faces (\#vertices + \#edges).
Zone

\[Z(l) = \{ f \mid f \text{ is a face of } A(L) \text{ intersected by } l \} \]

Complexity of \(Z \) = total complexity of faces (\#vertices + \#edges).
Zone

\[Z(l) = \{ f \mid f \text{ is a face of } A(L) \text{ intersected by } l \} \]

Complexity of \(Z \) = total complexity of faces (\#vertices + \#edges).
A vertex may be counted \(\leq 4 \) times.
Zone Theorem Complexity of zone in an arrangement of m lines is $O(m)$.

Proof By induction.
Zone Theorem Complexity of zone in an arrangement of \(m \) lines is \(O(m) \).

Proof By induction.

Thus, insertion of one line takes \(O(i) \) time.
Zone Theorem Complexity of zone in an arrangement of \(m \) lines is \(O(m) \).

Proof By induction.

Thus, insertion of one line takes \(O(i) \) time.

Time to insert all lines, and thus to construct line arrangement:
Zone Theorem Complexity of zone in an arrangement of m lines is $O(m)$.

Proof By induction.

Thus, insertion of one line takes $O(i)$ time.

Time to insert all lines, and thus to construct line arrangement:

$$ \sum_{i=1}^{n} O(i) = O(n^2) $$
III. Discrete Measure

Primal plane

\(l(p, q) \)

Points \(p \) and \(q \) on the primal plane.
III. Discrete Measure

Primal plane

(points below $l(p, q)$)
III. Discrete Measure

Primal plane

Dual plane

points below \(l(p, q) \)

\(\Leftrightarrow \) lines strictly above dual point \(l(p, q)^* \)
III. Discrete Measure

Primal plane

points below $l(p, q)$

\iff lines strictly above dual point $l(p, q)^*$

Efficient algorithm exists!
How to Use Duality?

A set S of n sample points
How to Use Duality?

A set S of n sample points

\longrightarrow A set S^* of n (dual) lines
How to Use Duality?

A set S of n sample points

\[\rightarrow \] A set S^* of n (dual) lines

A line through ≥ 2 sample points
How to Use Duality?

A set S of n sample points

\rightarrow A set S^* of n (dual) lines

A line through ≥ 2 sample points

\rightarrow A vertex in the arrangement $A(S^*)$
How to Use Duality?

A set S of n sample points

\implies A set S^* of n (dual) lines

A line through ≥ 2 sample points

\implies A vertex in the arrangement $A(S^*)$

Because p lies above l iff l^* lies above p^*, the discrepancy problem reduces to the following:
How to Use Duality?

A set S of n sample points

\longrightarrow A set S^* of n (dual) lines

A line through ≥ 2 sample points

\longrightarrow A vertex in the arrangement $A(S^*)$

Because p lies above l iff l^* lies above p^*, the discrepancy problem reduces to the following:

Problem For every vertex in $A(S^*)$, compute the numbers of lines above it, passing through it, and below it.
Reduction

\[n_a = \# \text{ lines above a vertex} \]
\[n_b = \# \text{ lines below the vertex} \]
\[n_o = \# \text{ lines through the vertex} \]
Reduction

\[n_a = \# \text{ lines above a vertex} \]
\[n_b = \# \text{ lines below the vertex} \]
\[n_o = \# \text{ lines through the vertex} \]

★ Sufficient to compute 2 of 3 numbers (with sum \(n \)).
Reduction

\[n_a = \# \text{ lines above a vertex} \]
\[n_b = \# \text{ lines below the vertex} \]
\[n_o = \# \text{ lines through the vertex} \]

⭐ Sufficient to compute 2 of 3 numbers (with sum \(n \)).

⭐ \(n_o \) is known from DCEL.
Reduction

\[n_a = \# \text{ lines above a vertex} \]
\[n_b = \# \text{ lines below the vertex} \]
\[n_o = \# \text{ lines through the vertex} \]

★ Sufficient to compute 2 of 3 numbers (with sum \(n \)).

★ \(n_o \) is known from DCEL.

Need only compute \(n_a \) of every vertex in \(A(S^*) \).
Levels of Vertices in an Arrangement

level of a point = # lines strictly above it.

A line l is *above* a point p if its intersection with the vertical line through p is above p.
Levels of Vertices in an Arrangement

level of a point = # lines strictly above it.

A line l is *above* a point p if its intersection with the vertical line through p is above p.
Levels of Vertices in an Arrangement

level of a point = # lines strictly above it.

A line l is *above* a point p if its intersection with the vertical line through p is above p.
Levels of Vertices in an Arrangement

level of a point = # lines strictly above it.

A line l is *above* a point p if its intersection with the vertical line through p is above p.
Levels of Vertices in an Arrangement

level of a point = # lines strictly above it.

A line l is *above* a point p if its intersection with the vertical line through p is above p.
Levels of Vertices in an Arrangement

level of a point = \# lines strictly above it.

A line l is \textit{above} a point p if its intersection with the vertical line through p is above p.
Levels of Vertices in an Arrangement

level of a point = # lines strictly above it.

A line *l* is *above* a point *p* if its intersection with the vertical line through *p* is above *p*.

![Diagram showing levels of vertices in an arrangement of lines and points.]
Levels of Vertices in an Arrangement

level of a point = \# lines strictly above it.

A line \(l \) is *above* a point \(p \) if its intersection with the vertical line through \(p \) is above \(p \).
Levels of Vertices in an Arrangement

level of a point = # lines strictly above it.

A line l is above a point p if its intersection with the vertical line through p is above p.
Levels of Vertices in an Arrangement

level of a point = # lines strictly above it.

A line \(l \) is *above* a point \(p \) if its intersection with the vertical line through \(p \) is above \(p \).
Levels of Vertices in an Arrangement

level of a point = # lines strictly above it.

A line l is *above* a point p if its intersection with the vertical line through p is above p.
Levels of Vertices in an Arrangement

level of a point = # lines strictly above it.

A line l is _above_ a point p if its intersection with the vertical line through p is above p.
Counting Levels of Vertices
Counting Levels of Vertices

For each line l, compute the levels of vertices on it.
For each line \(l \), compute the levels of vertices on it.

\[v_1, v_2, \ldots, v_{n-1} \]

intersections with \(n - 1 \) other lines
For each line l, compute the levels of vertices on it.

$v_1, v_2, \ldots, v_{n-1}$

intersections with $n - 1$ other lines

Strategy: walk along l from left to right.
Counting Levels of Vertices

v_i^+: a point in the interior of $v_i v_{i+1}$
Counting Levels of Vertices

v_i^+: a point in the interior of $v_i v_{i+1}$
Counting Levels of Vertices

Point v_1 with level(v_1) determined in $O(n)$ time by checking how many of the $n - 1$ remaining lines are above v_1.

v_i^+: a point in the interior of $v_i v_{i+1}$
Counting Levels of Vertices

level(v_1) determined in $O(n)$ time by checking how many of the $n-1$ remaining lines are above v_1.

v_i^+: a point in the interior of $v_i v_{i+1}$
Counting Levels of Vertices

Level(v_1) determined in $O(n)$ time by checking how many of the $n - 1$ remaining lines are above v_1.

level(v_1^+) = \begin{cases}
 \text{level}(v_1) & \text{if the line crossing } v_1 \text{ comes from above} \\
 \text{level}(v_1) + 1 & \text{if the crossing line comes from below}
\end{cases}

v_i^+: a point in the interior of $v_i v_{i+1}$
Counting Levels of Vertices

Point v_1 level(v_1) determined in $O(n)$ time by checking how many of the $n-1$ remaining lines are above v_1.

\star level(v_1) = \begin{cases}
\text{level}(v_1) & \text{if the line crossing } v_1 \\
\text{level}(v_1) + 1 & \text{if the crossing line comes from below}
\end{cases}$

v_i^+: a point in the interior of $v_i v_{i+1}$
Counting Levels of Vertices

Point v_1

Level (v_1) determined in $O(n)$ time by checking how many of the $n - 1$ remaining lines are above v_1.

\star level(v_1) if the line crossing v_1 comes from above
level(v_1) + 1 if the crossing line comes from below

v_i^+: A point in the interior of $v_i v_{i+1}$

level(v_1^+) =
Counting Levels of Vertices

Point \(v_1 \)

\(l_1(\v_1) \) determined in \(O(n) \) time by checking how many of the \(n-1 \) remaining lines are above \(v_1 \).

no change of level between vertices

\(v_i^+ \): a point in the interior of \(v_i v_{i+1} \)

\(\text{level}(v_1^+)= \begin{cases}
\text{level}(v_1) & \text{if the line crossing } v_1 \\
\text{level}(v_1) + 1 & \text{if the crossing line comes from below}
\end{cases} \)
Counting Levels of Vertices

Point \(v_1 \) determined in \(O(n) \) time by checking how many of the \(n - 1 \) remaining lines are above \(v_1 \).

A line crossing \(v_i \), \(i > 1 \), is coming from above.

\[
\text{level}(v_1^+) = \begin{cases}
\text{level}(v_1) & \text{if the line crossing } v_1 \text{ comes from above} \\
\text{level}(v_1) + 1 & \text{if the crossing line comes from below}
\end{cases}
\]

\(v_i^+ \): a point in the interior of \(v_i v_{i+1} \)

no change of level between vertices
Counting Levels of Vertices

Point v_1 determined in $O(n)$ time by checking how many of the $n - 1$ remaining lines are above v_1.

A line crossing v_i, $i > 1$, is coming:

a) from above

b) from below

\star level(v_1) if the line crossing v_1 comes from above

\star level(v_1) + 1 if the crossing line comes from below

\star A point in the interior of $v_i v_{i+1}$

\star no change of level between vertices

\star v_i^+: a point in the interior of $v_i v_{i+1}$
Counting Levels of Vertices

- \(v_1\) (level determined in \(O(n)\) time by checking how many of the \(n - 1\) remaining lines are above \(v_1\).

- For a line crossing \(v_i\), \(i > 1\), is coming:
 - a) from above: \(\text{level}(v_i) = \text{level}(v_{i-1}) - 1\)
 - b) from below: \(\text{level}(v_i^+) = \text{level}(v_i)\)

- No change of level between vertices.

- \(v_i^+\): a point in the interior of \(v_i v_{i+1}\).
Counting Levels of Vertices

Point $v_1 \ l_1$ level(v_1) determined in $O(n)$ time by checking how many of the $n - 1$ remaining lines are above v_1.

- A line crossing $v_i, i > 1$, is coming
 - a) from above

 \star level(v_1) determined in $O(n)$ time by checking how many of the $n - 1$ remaining lines are above v_1.

 \star A line crossing $v_i, i > 1$, is coming

 level(v_i) = level(v_{i-1}) - 1

 level(v_i^+) = level(v_i)

 - b) from below

 no change of level between vertices

v_i^+: a point in the interior of $v_i v_{i+1}$

coming from above

\star if the line crossing v_1 comes from above

\star if the crossing line comes from below

level(v_1^+) =

- level(v_1) if the line crossing v_1 comes from above

- level(v_1) + 1 if the crossing line comes from below

v_i: a point in the interior of $v_i v_{i+1}$
Counting Levels of Vertices

Point v_1 level(v_1) determined in $O(n)$ time by checking how many of the $n - 1$ remaining lines are above v_1.

A line crossing v_i, $i > 1$, is coming

a) from above

level(v_i) = level(v_{i-1}) − 1
level(v_i^+) = level(v_i)

b) from below

\bigstar A line crossing v_1 comes from above

\bigstar A line crossing v_1 comes from below

\bigstar No change of level between vertices

\bigstar A point in the interior of $v_i v_{i+1}$

coming from above

no change of level between vertices
Counting Levels of Vertices

Point v_1 evaluated at level(v_1) determined in $O(n)$ time by checking how many of the $n-1$ remaining lines are above v_1.

- level(v_1) determined in $O(n)$ time
- Checking how many of the $n-1$ remaining lines are above v_1.

- v_1^+: a point in the interior of $v_i v_{i+1}$
- no change of level between vertices
- A line crossing v_i, $i > 1$, is coming
 - a) from above, $\text{level}(v_i) = \text{level}(v_{i-1}) - 1$
 - b) from below, $\text{level}(v_i^+) = \text{level}(v_i)$

- Level(v_1) determined by checking how many of the $n-1$ remaining lines are above v_1.
- Level(v_1^+) determined by:
 - level(v_1) if the line crossing v_1 comes from above
 - level(v_1) + 1 if the crossing line comes from below

- Diagram showing points v_1, v_2, v_3, v_4, v_5 and lines l_1, l_2, l_3, l_4, l_5.
Counting Levels of Vertices

level(v_1) determined in $O(n)$ time by checking how many of the $n - 1$ remaining lines are above v_1.

$\begin{align*}
\text{level(v_1^+)} &= \begin{cases}
\text{level(v_1)} & \text{if the line crossing v_1 comes from above} \\
\text{level(v_1)} + 1 & \text{if the crossing line comes from below}
\end{cases} \\
\end{align*}$

\star A line crossing v_i, $i > 1$, is coming

a) from above
$\text{level($v_i$) = level($v_{i-1}$) - 1}$
$\text{level($v_i^+$) = level($v_i$)}$

b) from below
Counting Levels of Vertices

Point v_1

Level(v_1) determined in $O(n)$ time by checking how many of the $n-1$ remaining lines are above v_1.

A line crossing v_i, $i > 1$, is coming

a) from above

level(v_i) = level(v_{i-1}^+) - 1
level(v_i^+) = level(v_i)

b) from below

level(v_i) = level(v_{i-1}^+)
level(v_i^+) = level(v_i) + 1
Counting Levels of Vertices

The level of a vertex v_1 is determined in $O(n)$ time by checking how many of the $n-1$ remaining lines are above v_1.

A line crossing v_i, $i > 1$, is coming

- a) from above
 \[\text{level}(v_i) = \text{level}(v_{i-1}) - 1 \]
 \[\text{level}(v_i^+) = \text{level}(v_i) \]
- b) from below
 \[\text{level}(v_i) = \text{level}(v_{i-1}^+) \]
 \[\text{level}(v_i^+) = \text{level}(v_i) + 1 \]

- no change of level between vertices

- v_i^+: a point in the interior of $v_i v_{i+1}$
 - coming from above
 - coming from below
Counting Levels of Vertices

level(v_1) determined in $O(n)$ time by checking how many of the $n - 1$ remaining lines are above v_1.

\[
\text{level}(v_1) = \begin{cases}
\text{level}(v_1) & \text{if the line crossing } v_1 \\
\text{level}(v_1) + 1 & \text{if the crossing line comes from below}
\end{cases}
\]

\star A line crossing v_i, $i > 1$, is coming

a) from above

level(v_i) = level(v_{i-1}^+) - 1
level(v_i^+) = level(v_i)

b) from below

level(v_i) = level(v_{i-1}^+)
level(v_i^+) = level(v_i) + 1

v_i^+: a point in the interior of $v_i v_{i+1}$

no change of level between vertices

\[l_1 \]
\[l_2 \]
\[l_3 \]
\[l_4 \]
\[l_5 \]
Counting Levels of Vertices

A line crossing v_i, $i > 1$, is coming

a) from above

\[\text{level}(v_i) = \text{level}(v_{i-1}) - 1 \]
\[\text{level}(v_i^+) = \text{level}(v_i) \]

b) from below

\[\text{level}(v_i) = \text{level}(v_{i-1}) \]
\[\text{level}(v_i^+) = \text{level}(v_i) + 1 \]

no change of level between vertices

\[\text{level}(v_1) \text{ determined in } O(n) \text{ time by checking how many of the } n - 1 \text{ remaining lines are above } v_1. \]

\[\text{level}(v_1^+) = \begin{cases}
\text{level}(v_1) & \text{if the line crossing } v_1 \\
\text{level}(v_1) + 1 & \text{if the crossing line comes from below}
\end{cases} \]

A line crossing v_i, $i > 1$, is coming

\[v_i^+ : \text{a point in the interior of } v_i v_{i+1} \]

\[v_1^+ : \text{a point in the interior of } v_1 v_2 \]
Counting Levels of Vertices

Point v_1 level(v_1) determined in $O(n)$ time by checking how many of the $n - 1$ remaining lines are above v_1.

- Level(v_1^+) =
 - Level(v_1) if the line crossing v_1 comes from above
 - Level(v_1) + 1 if the crossing line comes from below

- Level(v_i) =
 - Level(v_{i-1}) - 1 if coming from above
 - Level(v_{i-1}) if coming from below

A line crossing v_i, $i > 1$, is coming:

- a) from above
 - Level(v_i) = Level(v_{i-1}) - 1
 - Level(v_i^+) = Level(v_i)

- b) from below
 - Level(v_i) = Level(v_{i-1})
 - Level(v_i^+) = Level($v_i) + 1
Counting Levels of Vertices

Level \(v_1 \) determined in \(O(n) \) time by checking how many of the \(n - 1 \) remaining lines are above \(v_1 \).

\[
\text{level}(v_1) = \begin{cases}
\text{level}(v_1) & \text{if the line crossing } v_1 \\
\text{level}(v_1) + 1 & \text{if the crossing line comes from below}
\end{cases}
\]

\(v_i^+ \): a point in the interior of \(v_i v_{i+1} \)

A line crossing \(v_i, i > 1 \), is coming

a) from above

\[
\text{level}(v_i) = \text{level}(v_{i-1}) - 1
\]

b) from below

\[
\text{level}(v_i) = \text{level}(v_{i-1}) + 1
\]

no change of level between vertices

\(v_1 \)

\(v_2 \)

\(v_3 \)

\(v_4 \)

\(v_5 \)
Counting Levels of Vertices

- Level (v_1) determined in $O(n)$ time by checking how many of the $n-1$ remaining lines are above v_1.

$$\text{level}(v_1) = \begin{cases}
\text{level}(v_1) & \text{if the line crossing } v_1 \\
\text{level}(v_1) + 1 & \text{if the crossing line comes from below}
\end{cases}$$

- A line crossing v_i, $i > 1$, is coming
 a) from above
 $$\text{level}(v_i) = \text{level}(v_{i-1}) - 1$$
 $$\text{level}(v_i^+) = \text{level}(v_i)$$

 b) from below
 $$\text{level}(v_i) = \text{level}(v_{i-1}^+)$$
 $$\text{level}(v_i^+) = \text{level}(v_i) + 1$$
Counting Levels of Vertices

Point v_1

Level(v_1) determined in $O(n)$ time by checking how many of the $n - 1$ remaining lines are above v_1.

\star A line crossing v_i, $i > 1$, is coming

a) from above

 level(v_i) = level(v_{i-1}^+) - 1
 level(v_i^+) = level(v_i)

b) from below

 level(v_i) = level(v_{i-1}^+)
 level(v_i^+) = level(v_i) + 1

v_i^+: a point in the interior of $v_i v_{i+1}$

no change of level between vertices
Counting Levels of Vertices

\[\text{level}(v_1) \text{ determined in } O(n) \text{ time by checking how many of the } n - 1 \text{ remaining lines are above } v_1. \]

\[\text{level}(v_1^+) = \begin{cases}
\text{level}(v_1) & \text{if the line crossing } v_1 \\
\text{level}(v_1) + 1 & \text{if the crossing line comes from below}
\end{cases} \]

- A line crossing \(v_i, i > 1 \), is coming
 - a) from above: \(\text{level}(v_i) = \text{level}(v_{i-1}) - 1 \)
 - b) from below: \(\text{level}(v_i) = \text{level}(v_{i-1}) \)

\(v_i^+ \): a point in the interior of \(v_i v_{i+1} \)
Counting Levels of Vertices

level(v_1) determined in $O(n)$ time by checking how many of the $n-1$ remaining lines are above v_1.

level(v_1^+) =
\[
\begin{cases}
\text{level}(v_1) & \text{if the line crossing } v_1 \text{ comes from above} \\
\text{level}(v_1) + 1 & \text{if the crossing line comes from below}
\end{cases}
\]

A line crossing v_i, $i > 1$, is coming:

a) from above
level(v_i) = level(v_{i-1}^+) - 1
level(v_i^+) = level(v_i)

b) from below
level(v_i) = level(v_{i-1}^+)
level(v_i^+) = level(v_i) + 1

\star no change of level between vertices

v_i^+: a point in the interior of $\overline{v_i v_{i+1}}$

coming from above
coming from below

\star A line crossing v_i, $i > 1$, is coming
Counting Levels of Vertices

Level \((v_1) \) determined in \(O(n) \) time by checking how many of the \(n - 1 \) remaining lines are above \(v_1 \).

\[\text{level}(v_1^+) = \begin{cases}
\text{level}(v_1) & \text{if the line crossing } v_1 \\
\text{level}(v_1) + 1 & \text{if the crossing line comes from below}
\end{cases} \]

A line crossing \(v_i, i > 1 \), is coming

\(v_i^+ \): a point in the interior of \(v_i v_{i+1} \)

\(l_1, l_2, l_3, l_4, l_5 \)

\(v_1, v_2, v_3, v_4, v_5 \)

no change of level between vertices

coming from above

coming from below

a) from above

\[\text{level}(v_i) = \text{level}(v_{i-1}) - 1 \]
\[\text{level}(v_i^+) = \text{level}(v_i) \]

b) from below

\[\text{level}(v_i) = \text{level}(v_{i-1}) \]
\[\text{level}(v_i^+) = \text{level}(v_i) + 1 \]
Running Times

Levels of vertices along a line computable in $O(n)$ time.

Levels of all vertices in a line arrangement can be computed in $O(n^2)$ time.
Discrete Measures & Degeneracy

Discrete measures of all type ii) half-planes are computable in $O(n^2)$ time if no two points are on the same vertical line.
Discrete Measures & Degeneracy

Discrete measures of all type ii) half-planes are computable in $O(n^2)$ time if no two points are on the same vertical line.

What if two or more points are on the same vertical line l?
Discrete Measures & Degeneracy

Discrete measures of all type ii) half-planes are computable in $O(n^2)$ time if no two points are on the same vertical line.

What if two or more points are on the same vertical line l?

- l^* undefined and thus does not show up as an intersection in the dual plane.
Discrete Measures & Degeneracy

Discrete measures of all type ii) half-planes are computable in $O(n^2)$ time if no two points are on the same vertical line.

What if two or more points are on the same vertical line l?

- $l^*\text{ undefined}$ and thus does not show up as an intersection in the dual plane.

- For every vertical line through ≥ 2 points, determine the discrete measure of the corresponding half-plane.
Discrete Measures & Degeneracy

Discrete measures of all type ii) half-planes are computable in $O(n^2)$ time if no two points are on the same vertical line.

What if two or more points are on the same vertical line l?

- l^* *undefined* and thus does *not* show up as an intersection in the dual plane.

- For every vertical line through ≥ 2 points, determine the discrete measure of the corresponding half-plane.

- Only $O(n)$ such vertical lines.
Discrete Measures & Degeneracy

Discrete measures of all type ii) half-planes are computable in $O(n^2)$ time if no two points are on the same vertical line.

What if two or more points are on the same vertical line l?

- l^* undefined and thus does not show up as an intersection in the dual plane.
- For every vertical line through ≥ 2 points, determine the discrete measure of the corresponding half-plane.
- Only $O(n)$ such vertical lines.

Their discrete measures can be computed in $O(n^2)$ time.
Summary

Maximum discrepancy due to half-planes:

$$\max_h \Delta_S(h) = |\mu(h) - \mu_S(h)|$$

The boundary line of the maximizing h must pass either i) one point or ii) ≥ 2 points.
Summary

Maximum discrepancy due to half-planes:

$$\max_h \Delta_S(h) = |\mu(h) - \mu_S(h)|$$

The boundary line of the maximizing h must pass either i) one point or ii) ≥ 2 points.

* Discrepancies of the n type i) candidates for h can be computed in $O(n^2)$ time by using calculus to find extrema of the continuous measure $\mu(h)$. (Discrete measure each takes time $O(n)$.)
Maximum discrepancy due to half-planes:

$$\max_h \Delta_S(h) = |\mu(h) - \mu_S(h)|$$

The boundary line of the maximizing h must pass either i) one point or ii) ≥ 2 points.

- Discrepancies of the n type i) candidates for h can be computed in $O(n^2)$ time by using calculus to find extrema of the continuous measure $\mu(h)$. (Discrete measure each takes time $O(n)$.)

- For $O(n^2)$ type ii) candidates, effort is on the discrete measure $\mu_S(h)$.
 - Deal with all vertical lines passing through ≥ 2 points ($O(n^2)$).
 - Use duality to compute $\mu_S(h)$ for all the non-vertical lines through ≥ 2 points ($O(n^2)$).
Summary

Maximum discrepancy due to half-planes:

\[\max_h \Delta_S(h) = |\mu(h) - \mu_S(h)| \]

The boundary line of the maximizing \(h \) must pass either i) one point or ii) \(\geq 2 \) points.

- Discrepancies of the \(n \) type i) candidates for \(h \) can be computed in \(O(n^2) \) time by using calculus to find extrema of the continuous measure \(\mu(h) \). (Discrete measure each takes time \(O(n) \).)

- For \(O(n^2) \) type ii) candidates, effort is on the discrete measure \(\mu_S(h) \).
 - Deal with all vertical lines passing through \(\geq 2 \) points \(O(n^2) \).
 - Use duality to compute \(\mu_S(h) \) for all the non-vertical lines through \(\geq 2 \) points \(O(n^2) \).

Total time: \(O(n^2) \)