Convex Hulls in 3D

Outline:

I. Algebraic definition

II. Complexity of a convex hull

III. Visible facets

IV. Conflict sets

V. Algorithm
I. Convex Sets

A set $S \subseteq \mathbb{R}^n$ is *convex* if the line segment $\overline{pq} \subset S$ for any pair of points $p, q \in S$.
I. Convex Sets

A set $S \subseteq \mathbb{R}^n$ is *convex* if the line segment $\overline{pq} \subset S$ for any pair of points $p, q \in S$.
A set $S \subseteq \mathbb{R}^n$ is *convex* if the line segment $\overline{pq} \subset S$ for any pair of points $p, q \in S$.
I. Convex Sets

A set $S \subseteq \mathbb{R}^n$ is *convex* if the line segment $\overline{pq} \subseteq S$ for any pair of points $p, q \in S$.
A set $S \subseteq \mathbb{R}^n$ is *convex* if the line segment $\overline{pq} \subset S$ for any pair of points $p, q \in S$.
A set $S \subseteq \mathbb{R}^n$ is **convex** if the line segment $\overline{pq} \subset S$ for any pair of points $p, q \in S$.

It is **concave** if the set does not contain all the line segments.
I. Convex Sets

A set $S \subseteq \mathbb{R}^n$ is *convex* if the line segment $\overline{pq} \subset S$ for any pair of points $p, q \in S$.

It is *concave* if the set does not contain all the line segments.
I. Convex Sets

A set $S \subseteq \mathbb{R}^n$ is **convex** if the line segment $\overline{pq} \subset S$ for any pair of points $p, q \in S$.

It is **concave** if the set does not contain all the line segments.
I. Convex Sets

A set $S \subseteq \mathbb{R}^n$ is \textit{convex} if the line segment $pq \subset S$ for any pair of points $p, q \in S$.

It is \textit{concave} if the set does not contain all the line segments.
Convex Hulls

The *convex hull* of a set of points $S \subseteq \mathbb{R}^n$ is the *intersection* of all convex sets containing S.
The *convex hull* of a set of points $S \subseteq \mathbb{R}^n$ is the *intersection* of all convex sets containing S.

$S = \{x_1, x_2\}$
Convex Hulls

The *convex hull* of a set of points $S \subseteq \mathbb{R}^n$ is the *intersection* of all convex sets containing S.

$S = \{x_1, x_2\}$

Every $x \in [x_1, x_2]$ satisfies

$$x = \lambda_1 x_1 + \lambda_2 x_2$$

where $\lambda_1, \lambda_2 \geq 0$

$$\lambda_1 + \lambda_2 = 1$$
The **convex hull** of a set of points \(S \subseteq \mathbb{R}^n \) is the *intersection* of all convex sets containing \(S \).

\[
S = \{x_1, x_2\}
\]

Every \(x \in [x_1, x_2] \) satisfies

\[
x = \lambda_1 x_1 + \lambda_2 x_2
\]

where \(\lambda_1, \lambda_2 \geq 0 \)

\[
\lambda_1 + \lambda_2 = 1
\]

\(\lambda_1, \lambda_2 \): **barycentric coordinates**

\[
\lambda_1 = \frac{x_2 - x}{x_2 - x_1} \quad \lambda_2 = \frac{x - x_1}{x_2 - x_1}
\]
Line Segment

\[S = \{p_1, p_2\} \]

A point \(p \) on the segment \(\overline{p_1p_2} \)
A point p on the segment p_1p_2

$p = \lambda_1 p_1 + \lambda_2 p_2$

where $\lambda_1, \lambda_2 \geq 0$

$\lambda_1 + \lambda_2 = 1$

$S = \{p_1, p_2\}$
A point \(p \) on the segment \(p_1p_2 \)

\[
p = \lambda_1 p_1 + \lambda_2 p_2
\]

where \(\lambda_1, \lambda_2 \geq 0 \)

\[
\lambda_1 + \lambda_2 = 1
\]

\[
\lambda_1 = \frac{||p - p_2||}{||p_2 - p_1||}
\]

\[
\lambda_2 = \frac{||p - p_1||}{||p_2 - p_1||}
\]

\(S = \{p_1, p_2\} \)
Three Non-Collinear Points in 2D

A point \(p \) in the convex hull (bounded by triangle \(\Delta p_1p_2p_3 \)):

\[
p = \lambda_1 p_1 + \lambda_2 p_2 + \lambda_3 p_3
\]

where \(\lambda_1, \lambda_2, \lambda_3 \geq 0 \)

\[
\lambda_1 + \lambda_2 + \lambda_3 = 1
\]

\(p_1 = (x_1, y_1) \)
Three Non-Collinear Points in 2D

A point p in the convex hull (bounded by triangle $\Delta p_1p_2p_3$):

$$p = \lambda_1 p_1 + \lambda_2 p_2 + \lambda_3 p_3$$

where $\lambda_1, \lambda_2, \lambda_3 \geq 0$

$$\lambda_1 + \lambda_2 + \lambda_3 = 1$$

In fact, let $A = area(\Delta p_1p_2p_3)$
Three Non-Collinear Points in 2D

A point \(p \) in the convex hull (bounded by triangle \(\Delta p_1p_2p_3 \)):

\[
p = \lambda_1 p_1 + \lambda_2 p_2 + \lambda_3 p_3
\]

where \(\lambda_1, \lambda_2, \lambda_3 \geq 0 \)

\[
\lambda_1 + \lambda_2 + \lambda_3 = 1
\]

In fact, let \(A = area(\Delta p_1p_2p_3) \)

\[
\lambda_1 = \frac{area(\Delta p_2p_3q)}{A}
\]
Three Non-Collinear Points in 2D

A point p in the convex hull (bounded by triangle $\Delta p_1p_2p_3$):

$$p = \lambda_1 p_1 + \lambda_2 p_2 + \lambda_3 p_3$$

where $\lambda_1, \lambda_2, \lambda_3 \geq 0$

$$\lambda_1 + \lambda_2 + \lambda_3 = 1$$

In fact, let $A = area(\Delta p_1p_2p_3)$

$$\lambda_1 = \frac{area(\Delta p_2p_3q)}{A} \quad \lambda_2 = \frac{area(\Delta p_3p_1q)}{A}$$
Three Non-Collinear Points in 2D

A point p in the convex hull (bounded by triangle $\Delta p_1 p_2 p_3$):

$$p = \lambda_1 p_1 + \lambda_2 p_2 + \lambda_3 p_3$$

where $\lambda_1, \lambda_2, \lambda_3 \geq 0$

$$\lambda_1 + \lambda_2 + \lambda_3 = 1$$

In fact, let $A = \text{area}(\Delta p_1 p_2 p_3)$

$$\lambda_1 = \frac{\text{area}(\Delta p_2 p_3 q)}{A} \quad \lambda_2 = \frac{\text{area}(\Delta p_3 p_1 q)}{A} \quad \lambda_3 = \frac{\text{area}(\Delta p_1 p_2 q)}{A}$$
n Points in the Plane

n points p_1, p_2, \ldots, p_n
n Points in the Plane

n points p_1, p_2, \ldots, p_n

A point p in the convex hull has
n Points in the Plane

n points p_1, p_2, \ldots, p_n

A point p in the convex hull has

$$p = \sum_{i=1}^{n} \lambda_i p_i$$

where $\lambda_1, \lambda_2, \ldots, \lambda_n \geq 0$

$$\lambda_1 + \lambda_2 + \ldots + \lambda_n = 1$$
A point p in the convex hull has

$$p = \sum_{i=1}^{n} \lambda_i p_i$$

where $\lambda_1, \lambda_2, ..., \lambda_n \geq 0$ and

$$\lambda_1 + \lambda_2 + \cdots + \lambda_n = 1$$

$\lambda_1, \lambda_2, ..., \lambda_n$ are not uniquely determined when $n > 3$.

n points $p_1, p_2, ..., p_n$
Vertices of the Convex Hull

k vertices: $p_{i1}, p_{i2}, ..., p_{ik}$

\[p = \sum_{j=1}^{k} \mu_j p_{ij} \]

where \(\mu_1, \mu_2, ..., \mu_k \geq 0 \)

\[\mu_1 + \mu_2 + \cdots + \mu_n = 1 \]

\(\mu_1, \mu_2, ..., \mu_k \) are not uniquely determined when \(k > 3 \).
Non-Coplanar Points in 3D

Tetrahedron (for 4 points)

\[p = \lambda_1 p_1 + \lambda_2 p_2 + \lambda_3 p_3 + \lambda_4 p_4 \]

where \(\lambda_1, \lambda_2, \lambda_3, \lambda_4 \geq 0 \)

\[\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 = 1 \]
Non-Coplanar Points in 3D

Tetrahedron (for 4 points)

\[p = \lambda_1 p_1 + \lambda_2 p_2 + \lambda_3 p_3 + \lambda_4 p_4 \]

where \(\lambda_1, \lambda_2, \lambda_3, \lambda_4 \geq 0 \)

\[\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 = 1 \]

Convex polyhedron (for \(n \) points)

\[p = \sum_{i=1}^{n} \lambda_i p_i \]

where \(\lambda_1, \lambda_2, \ldots, \lambda_n \geq 0 \)

\[\sum_{i=1}^{n} \lambda_i = 1 \]
Non-Coplanar Points in 3D

Tetrahedron (for 4 points)

\[p = \lambda_1 p_1 + \lambda_2 p_2 + \lambda_3 p_3 + \lambda_4 p_4 \]

where \(\lambda_1, \lambda_2, \lambda_3, \lambda_4 \geq 0 \)

\[\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 = 1 \]

Convex polyhedron (for \(n \) points)

\[p = \sum_{i=1}^{n} \lambda_i p_i \]

where \(\lambda_1, \lambda_2, \ldots, \lambda_n \geq 0 \)

\[\sum_{i=1}^{n} \lambda_i = 1 \]
II. Faces vs Facets

Faces are features of all dimensions on a polyhedron.

- **0-faces**: vertices
- **1-faces**: edges
- **2-faces** (*facets*): polygonal faces

A dodecahedron has

- 20 vertices
- 30 edges
- 12 facets
II. Faces vs Facets

Faces are features of all dimensions on a polyhedron.

- 0-faces: vertices
- 1-faces: edges
- 2-faces (*facets*): polygonal faces

A dodecahedron has

- 20 vertices
- 30 edges
- 12 facets

- The generalization of a polyhedron in the d-dimensional (d-D) space is called a *polytope*.

II. Faces vs Facets

Faces are features of all dimensions on a polyhedron.

- 0-faces: vertices
- 1-faces: edges
- 2-faces (*facets*): polygonal faces

A dodecahedron has

- 20 vertices
- 30 edges
- 12 facets

- The generalization of a polyhedron in the d-dimensional (d-D) space is called a *polytope*.

II. Faces vs Facets

Faces are features of all dimensions on a polyhedron.

0-faces: vertices
1-faces: edges
2-faces (*facets*): polygonal faces

The generalization of a polyhedron in the \(d\)-dimensional \((d-D)\) space is called a *polytope*.

- A \(d\)-D polytope \(P\) has 0-faces, 1-faces, ..., \((d - 1)\)-faces.

A dodecahedron has
- 20 vertices
- 30 edges
- 12 facets
II. Faces vs Facets

Faces are features of all dimensions on a polyhedron.

- 0-faces: vertices
- 1-faces: edges
- 2-faces (facets): polygonal faces

A dodecahedron has
- 20 vertices
- 30 edges
- 12 facets

- The generalization of a polyhedron in the d-dimensional (d-D) space is called a polytope.
- A d-D polytope P has 0-faces, 1-faces, ..., $(d - 1)$-faces.
- The facets of P are its $(d - 1)$-faces.
Complexity of a Convex Hull in 3D

S: a set of n points
P: convex hull of S (a convex polyhedron)

Theorem
$\#\text{edges} \leq 3n - 6$ and $\#\text{facets} \leq 2n - 4$
Complexity of a Convex Hull in 3D

S: a set of n points \hspace{1cm} P$: convex hull of S (a convex polyhedron)

Theorem \hspace{0.5cm} \#edges $\leq 3n - 6$ and \#facets $\leq 2n - 4$

Proof The surface of a convex polyhedron can be seen as a planar graph.
Complexity of a Convex Hull in 3D

S: a set of n points
P: convex hull of S (a convex polyhedron)

Theorem
$\#\text{edges} \leq 3n - 6$ and $\#\text{facets} \leq 2n - 4$

Proof
The surface of a convex polyhedron can be seen as a planar graph.
Complexity of a Convex Hull in 3D

S: a set of n points
P: convex hull of S (a convex polyhedron)

Theorem
$\#\text{edges} \leq 3n - 6$ and $\#\text{facets} \leq 2n - 4$

Proof
The surface of a convex polyhedron can be seen as a planar graph.
Complexity of a Convex Hull in 3D

\[S: \text{a set of } n \text{ points} \quad P: \text{convex hull of } S \text{ (a convex polyhedron)} \]

Theorem \ ['#edges \leq 3n - 6 \text{ and } #facets \leq 2n - 4']

Proof The surface of a convex polyhedron can be seen as a planar graph.

- facet \mapsto face
- top facet \mapsto unbounded face
Complexity of a Convex Hull in 3D

\[S: \text{a set of } n \text{ points} \quad P: \text{convex hull of } S \text{ (a convex polyhedron)} \]

Theorem \#edges \(\leq 3n - 6 \) and \#facets \(\leq 2n - 4 \)

Proof The surface of a convex polyhedron can be seen as a planar graph.

- facet \(\mapsto \) face
- top facet \(\mapsto \) unbounded face

Apply Euler’s formula:

\[n_v - n_e + n_f = 2 \]
Proof (cont’d)

Every facet of the polyhedron has ≥ 3 edges.
Proof (cont’d)

Every facet of the polyhedron has ≥ 3 edges.

\[\downarrow\]

Every face of the planar graph has ≥ 3 edges.
Proof (cont’d)

Every facet of the polyhedron has ≥ 3 edges.

Every face of the planar graph has ≥ 3 edges.

Every edge is adjacent to two faces.
Proof (cont’d)

Every facet of the polyhedron has ≥ 3 edges.

\Downarrow

Every face of the planar graph has ≥ 3 edges.

\Rightarrow

Every edge is adjacent to two faces.

$2n_e \geq 3n_f$
Proof (cont’d)

Every facet of the polyhedron has \(\geq 3 \) edges.

\[\Downarrow \]

Every face of the planar graph has \(\geq 3 \) edges.

Every edge is adjacent to two faces.

\[
\begin{align*}
2e & \geq 3f \\
n_v - n_e + n_f & = 2 \\
n_v + n_f - 2 & = n_e \geq \frac{3}{2} n_f
\end{align*}
\]
Proof (cont’d)

Every facet of the polyhedron has \(\geq 3 \) edges.

\[\Rightarrow \]

Every face of the planar graph has \(\geq 3 \) edges.

Every edge is adjacent to two faces.

\[n_v - n_e + n_f = 2 \]
\[n_v + n_f - 2 = n_e \geq \frac{3}{2} n_f \]
\[n \geq n_v \]
\[n + n_f - 2 \geq \frac{3}{2} n_f \]
Proof (cont’d)

Every facet of the polyhedron has ≥ 3 edges.

Every face of the planar graph has ≥ 3 edges.

Every edge is adjacent to two faces.

\[
2n_e \geq 3n_f
\]

\[
n_v - n_e + n_f = 2
\]

\[
n_v + n_f - 2 = n_e \geq \frac{3}{2} n_f
\]

\[
n \geq n_v
\]

\[
n + n_f - 2 \geq \frac{3}{2} n_f
\]

\[
n_f \leq 2n - 4
\]
Proof (cont’d)

Every facet of the polyhedron has ≥ 3 edges.

Every face of the planar graph has ≥ 3 edges.

Every edge is adjacent to two faces.

\[
\begin{align*}
2n_e & \geq 3n_f \\
_n_v - n_e + n_f &= 2 \\
n_v + n_f - 2 &= n_e \geq \frac{3}{2} n_f \\
n \geq n_v \\
n + n_f - 2 &\geq \frac{3}{2} n_f \\
n_f &\leq 2n - 4 \\
n_e &\leq n + n_f - 2 \\
n_e &\leq 3n - 6
\end{align*}
\]
Simplicial Polytope

Corollary The complexity of the convex hull of n points in 3D is $O(n)$.
Simplicial Polytope

Corollary The complexity of the convex hull of n points in 3D is $O(n)$.

A simplicial polytope has every facet as a triangle.
Simplicial Polytope

Corollary The complexity of the convex hull of \(n \) points in 3D is \(O(n) \).

A *simplicial polytope* has every facet as a triangle.

\[
2n_e = 3n_f \\
\quad n_v = n
\]
Simplicial Polytope

Corollary The complexity of the convex hull of n points in 3D is $O(n)$.

A *simplicial polytope* has every facet as a triangle.

\[
\begin{align*}
2n_e &= 3n_f \\
n_v &= n
\end{align*}
\]

Proof of the theorem

\[
\begin{align*}
n_e &= 3n - 6 \\
n_f &= 2n - 4
\end{align*}
\]
III. Computing a Convex Hull

Randomized incremental construction
III. Computing a Convex Hull

Randomized incremental construction

- Choose four points $p_1, p_2, p_3, p_4 \in S$ that are not co-planar.

 Their convex hull is a tetrahedron.
III. Computing a Convex Hull

Randomized incremental construction

- Choose four points $p_1, p_2, p_3, p_4 \in S$ that are not co-planar. $O(n)$

 Their convex hull is a tetrahedron.
III. Computing a Convex Hull

Randomized incremental construction

- Choose four points $p_1, p_2, p_3, p_4 \in S$ that are not co-planar. $O(n)$

 Their convex hull is a tetrahedron.

- Compute a random permutation p_5, p_6, \ldots, p_n.

 $$P_r = \{p_1, p_2, \ldots, p_r\} \quad r \geq 1$$
III. Computing a Convex Hull

Randomized incremental construction

- Choose four points $p_1, p_2, p_3, p_4 \in S$ that are not co-planar. $O(n)$
 Their convex hull is a tetrahedron.

- Compute a random permutation p_5, p_6, \ldots, p_n.

 $P_r = \{p_1, p_2, \ldots, p_r\}$ \quad $r \geq 1$

- For $r \geq 5$, add p_r to the convex hull $CH(P_{r-1})$.
III. Computing a Convex Hull

Randomized incremental construction

- Choose four points $p_1, p_2, p_3, p_4 \in S$ that are not co-planar. $O(n)$

 Their convex hull is a tetrahedron.

- Compute a random permutation p_5, p_6, \ldots, p_n.

 $$P_r = \{p_1, p_2, \ldots, p_r\} \quad r \geq 1$$

- For $r \geq 5$, add p_r to the convex hull $CH(P_{r-1})$.

 p_r inside $CH(P_{r-1})$ or on its boundary.
III. Computing a Convex Hull

Randomized incremental construction

♦ Choose four points \(p_1, p_2, p_3, p_4 \in S \) that are not co-planar. \(O(n) \)

Their convex hull is a tetrahedron.

♦ Compute a random permutation \(p_5, p_6, ..., p_n \).

\[
P_r = \{p_1, p_2, ..., p_r\} \quad r \geq 1
\]

♦ For \(r \geq 5 \), add \(p_r \) to the convex hull \(CH(P_{r-1}) \).

• \(p_r \) inside \(CH(P_{r-1}) \) or on its boundary.

\[
CH(P_r) = CH(P_{r-1})
\]
• p_r outside $CH(P_{r-1})$.

\[
p_r
\]
Visible Facets

- p_r outside $CH(P_{r-1})$.
Visible Facets

- p_r outside $CH(P_{r-1})$.

- Visible facets form a connected region on the surface of $CH(P_{r-1})$.

p_r
Visible Facets

- p_r outside $CH(P_{r-1})$.

- Visible facets form a connected region on the surface of $CH(P_{r-1})$.

- Boundary of this visible region is called the *horizon* of $CH(P_{r-1})$.
Visible Facets

- p_r outside $CH(P_{r-1})$.

- Visible facets form a connected region on the surface of $CH(P_{r-1})$.

- Boundary of this visible region is called the **horizon** of $CH(P_{r-1})$.

![Diagram showing visible facets and horizon](image-url)
Visible Facets

• \(p_r \) outside \(CH(P_{r-1}) \).

Visible facets form a connected region on the surface of \(CH(P_{r-1}) \).

• Boundary of this visible region is called the \textit{horizon} of \(CH(P_{r-1}) \).

Observation

A facet \(f \) is visible from \(p_r \) if \(p_r \) and \(CH(P_{r-1}) \) lie on opposite sides of the half-plane containing \(f \).
Hull Update

Strategy:

- Keep all invisible facets.
Hull Update

Strategy:

- Keep all invisible facets.
- Replace visible facets with facets connecting p_r to its horizon.
Hull Update

Strategy:

- Keep all invisible facets.
- Replace visible facets with facets connecting p_r to its horizon.
Degeneracy Handling

- Check if \(p_r \) lies in the plane of a facet of \(CH(P_{r-1}) \).

\[p_r \text{ coplanar with } \Delta p_i p_j p_k \]
Degeneracy Handling

- Check if p_r lies in the plane of a facet of $CH(P_{r-1})$.

![Diagram showing coplanar points and merge process]
Degeneracy Handling

✦ Check if p_r lies in the plane of a facet of $CH(P_{r-1})$.

p_r coplanar with $\Delta p_ip_jp_k$
Degeneracy Handling

- Check if p_r lies in the plane of a facet of $CH(P_{r-1})$.

p_r coplanar with $\Delta p_i p_j p_k$
Doubly-connected edge list (DCEL)

because convex hull can be interpreted as a planar graph.

- Every vertex represents a point in space.
- Every edge represents an edge on the convex hull.
- Transforming DCEL_{r-1} for CH(P_{r-1}) to DCEL_r for CH(P_r) takes time \textit{linear} in the total complexity of the visible facets.
IV. Finding Visible Facets

Which faces of $CH(P_{r-1})$ are visible to p_r?
IV. Finding Visible Facets

Which faces of \(CH(P_{r-1}) \) are visible to \(p_r \)?

Slow strategy

Test every facet \(f \) whether \(p_r \) and \(CH(P_{r-1}) \) are on the opposite sides of the plane \(\Pi \) containing \(f \).
IV. Finding Visible Facets

Which faces of $CH(P_{r-1})$ are visible to p_r?

Slow strategy

Test every facet f whether p_r and $CH(P_{r-1})$ are on the opposite sides of the plane Π containing f.

- $O(1)$ for each facet.
- $O(n)$ for all facets.
IV. Finding Visible Facets

Which faces of $CH(P_{r-1})$ are visible to p_r?

Slow strategy

Test every facet f whether p_r and $CH(P_{r-1})$ are on the opposite sides of the plane Π containing f.

- $O(1)$ for each facet.
- $O(n)$ for all facets.

Algorithm runs in $O(n^2)$ time.
Faster Testing

Heuristic Maintain additional information related to $CH(P_{r-1})$.

Faster Testing

Heuristic Maintain additional information related to $CH(P_{r-1})$.

- for every facet f of $CH(P_{r-1})$

 $$P_{conflict}(f) = \{ p_t \mid r \leq t \leq n \text{ and } f \text{ visible from } p_t \}$$
Faster Testing

Heuristic Maintain additional information related to $CH(P_{r-1})$.

- for every facet f of $CH(P_{r-1})$
 \[P_{\text{conflict}}(f) = \{p_t \mid r \leq t \leq n \text{ and } f \text{ visible from } p_t \} \]

- for every point p_t, $t \geq r$
 \[F_{\text{conflict}}(p_t) = \{ \text{ facets of } CH(P_{r-1}) \text{ visible from } p_t \} \]
Faster Testing

Heuristic Maintain additional information related to $CH(P_{r-1})$.

- For every facet f of $CH(P_{r-1})$
 \[P_{\text{conflict}}(f) = \{ p_t \mid r \leq t \leq n \text{ and } f \text{ visible from } p_t \} \]

- For every point p_t, $t \geq r$
 \[F_{\text{conflict}}(p_t) = \{ \text{facets of } CH(P_{r-1}) \text{ visible from } p_t \} \]

visibility \iff conflict
Heuristic Maintain additional information related to $CH(P_{r-1})$.

- for every facet f of $CH(P_{r-1})$
 \[P_{\text{conflict}}(f) = \{ p_t \mid r \leq t \leq n \text{ and } f \text{ visible from } p_t \} \]

- for every point p_t, $t \geq r$
 \[F_{\text{conflict}}(p_t) = \{ \text{facets of } CH(P_{r-1}) \text{ visible from } p_t \} \]

Visibility \iff conflict

- $p_t \in P_{\text{conflict}}(f)$ is in conflict with f.
- $f \in F_{\text{conflict}}(p_t)$ is in conflict with p_t.
Faster Testing

Heuristic Maintain additional information related to $CH(P_{r-1})$.

- for every facet f of $CH(P_{r-1})$
 \[P_{conflict}(f) = \{ p_t \mid r \leq t \leq n \text{ and } f \text{ visible from } p_t \} \]

- for every point p_t, $t \geq r$
 \[F_{conflict}(p_t) = \{ \text{ facets of } CH(P_{r-1}) \text{ visible from } p_t \} \]

visibility \iff conflict

- $p_t \in P_{conflict}(f)$ is in conflict with f.
 \[f \in F_{conflict}(p_t) \text{ is in conflict with } p_t. \]

- Once we add p_t, f must be deleted.
Conflict Graph

- Bipartite graph G
Conflict Graph

- **Bipartite graph** G

 - Vertices are decomposed into two sets:
 - $\{p_r, \ldots, p_n\}$ // those to be added
 - facets of $CH(P_{r-1})$
Conflict Graph

- Bipartite graph G

 - Vertices are decomposed into two sets:
 - $\{p_r, \ldots, p_n\}$ // those to be added
 - facets of $CH(P_{r-1})$

 - Every edge connects a point and a facet.

 An edge $\langle p_t, f \rangle$ exists if f is visible from p_t.
Conflict Graph Illustration

\[G: \]

\[p_r \]

\[p_{r+1} \]

\[p_t \]

\[p_n \]

\[F_{\text{conflict}}(p_t) \]

\[F_{\text{conflict}}(p_t) \]

\[P_{\text{conflict}}(f) \]

facets in \(CH(P_{r-1}) \)
When inserting p_r into $CH(P_{r-1})$, look up $F_{\text{conflict}}(p_r)$ to get the visible facets.
Graph Initialization & Updates

Initialize G:

- $P_4 = \{p_1, p_2, p_3, p_4\}$ is a tetrahedron.
- Check every point $p_i, 5 \leq i \leq n$, which of the four facets are visible.
Graph Initialization & Updates

Initialize G:

- $P_4 = \{p_1, p_2, p_3, p_4\}$ is a tetrahedron.
- Check every point p_i, $5 \leq i \leq n$, which of the four facets are visible.

$O(n)$
Graph Initialization & Updates

Initialize G:

- $P_4 = \{p_1, p_2, p_3, p_4\}$ is a tetrahedron.
- Check every point $p_i, 5 \leq i \leq n$, which of the four facets are visible.

$O(n)$

Update G after adding p_r:
Graph Initialization & Updates

Initialize G:

- $P_4 = \{p_1, p_2, p_3, p_4\}$ is a tetrahedron.
- Check every point $p_i, 5 \leq i \leq n$, which of the four facets are visible.

$O(n)$

Update G after adding p_r:

- Discard neighbors (all visible facets) of p_r in G.
- Delete the node representing p_r.
- Add nodes for the new facets (which connect p_r to the horizon).
Updating the Conflict Sets of New Faces

- Construct $P_{conflict}(f)$ for every new facet f.
 \[
 \{ p_t \mid r < t \leq n \text{ and } f \text{ visible from } p_t \}\]
Updating the Conflict Sets of New Faces

- Construct $P_{conflict}(f)$ for every new facet f.
- $\{p_t \mid r < t \leq n \text{ and } f \text{ visible from } p_t\}$

Suppose a point p_t can see f.

![Diagram showing new faces and points]
Updating the Conflict Sets of New Faces

- Construct $P_{conflict}(f)$ for every new facet f.

$$\{p_t \mid r < t \leq n \text{ and } f \text{ visible from } p_t\}$$

Suppose a point p_t can see f.

- p_t

e: edge of f on the horizon and opposite to p_r

f_1, f_2: facets in $CH(P_{r-1})$ that are incident on e.
Updating the Conflict Sets of New Faces

- Construct $P_{\text{conflict}}(f)$ for every new facet f.

$\{p_t \mid r < t \leq n \text{ and } f \text{ visible from } p_t\}$

Suppose a point p_t can see f.

Then it can see e.

- p_t

e: edge of f on the horizon and opposite to p_r

f_1, f_2: facets in $CH(P_{r-1})$ that are incident on e.
Updating the Conflict Sets of New Faces

• Construct $P_{conflict}(f)$ for every new facet f.

\[\{p_t \mid r < t \leq n \text{ and } f \text{ visible from } p_t\} \]

Suppose a point p_t can see f.

Then it can see e, which is an edge in $CH(P_{r-1})$ that bounds f.

\[e: \text{ edge of } f \text{ on the horizon and opposite to } p_r \]

\[f_1, f_2: \text{ facets in } CH(P_{r-1}) \text{ that are incident on } e. \]
Updating the Conflict Sets of New Faces

- Construct $P_{conflict}(f)$ for every new facet f.

\[\{ p_t \mid r < t \leq n \text{ and } f \text{ visible from } p_t \} \]

Suppose a point p_t can see f.

Then it can see e, which is an edge in $CH(P_{r-1})$ that bounds f.

\[e \text{ must have been visible from } p_t \text{ in } CH(P_{r-1}) \subseteq CH(P_r) \]
Updating the Conflict Sets of New Faces

- Construct $P_{\text{conflict}}(f)$ for every new facet f.

\[\{p_t \mid r < t \leq n \text{ and } f \text{ visible from } p_t \} \]

Suppose a point p_t can see f.

Then it can see e, which is an edge in $CH(P_{r-1})$ that bounds f.

\[e \text{ must have been visible from } p_t \text{ in } CH(P_{r-1}) \subseteq CH(P_r) \]

f_1 or f_2 is visible from p_t.

- e: edge of f on the horizon and opposite to p_r.
- f_1, f_2: facets in $CH(P_{r-1})$ that are incident on e.
- p_t: $P_{\text{conflict}}(f)$
Updating the Conflict Sets of New Faces

- Construct $P_{\text{conflict}}(f)$ for every new facet f.

 \[\{ p_t \mid r < t \leq n \text{ and } f \text{ visible from } p_t \} \]

Suppose a point p_t can see f.

Then it can see e, which is an edge in $CH(P_{r-1})$ that bounds f.

\[e \text{ must have been visible from } p_t \text{ in } CH(P_{r-1}) \subseteq CH(P_r) \]

\[f_1 \text{ or } f_2 \text{ is visible from } p_t. \]

Test all points $p_t \in P_{\text{conflict}}(f_1) \cup P_{\text{conflict}}(f_2)$, where $r < t \leq n$, add $\langle p_t, f \rangle$ to G if f is visible from p_t.

\[e: \text{ edge of } f \text{ on the horizon and opposite to } p_r \]

\[f_1, f_2: \text{ facets in } CH(P_{r-1}) \text{ that are incident on } e. \]
V. Algorithm

ConvexHull(P)

1. find $p_1, p_2, p_3, p_4 \in P$ that form a tetrahedron
2. $C \leftarrow CH(\{p_1, p_2, p_3, p_4\})$
3. compute a random permutation $p_5, p_6, ..., p_n$
4. initialize the conflict graph G over all facets of C and $p_5, p_6, ..., p_n$
5. for $r \leftarrow 5$ to n
6. do // insert p_r to C
7. if $F_{\text{conflict}}(p_r) \neq \emptyset$ // p_r lies outside C
8. then
9. delete all facets in $F_{\text{conflict}}(p_r)$ from C
10. find the horizon by walking along the boundary of the visible region of p_r
10. for each edge e on the horizon
11. do connect e to p_r to form a triangle f
Algorithm (cont’d)

12. if \(f \) is coplanar with its neighbor facet \(f' \) along \(e \)
13. then merge \(f \) with \(f' \) and the merged facet inherits the latter’s conflict set
14. else // determine conflicts for \(f \)
15. create a node for \(f \) in \(G \)
16. \(f_1, f_2 \): facets incident to \(e \)
17. for all \(p \in P_{conflict}(f_1) \cup P_{conflict}(f_2) \)
18. do
19. if \(f \) is visible from \(p \)
20. add \(\langle p, f \rangle \) to \(G \) // update \(P_{conflict}(f) \) and \(F_{conflict}(p) \)
21. delete the node corresponding to \(p_r \) and
22. the nodes corresponding to the facets in \(F_{conflict}(p_r) \) from \(G \), along with incident arcs
23. return \(C \)
Analysis

Theorem The randomized incremental algorithm computes the convex hull of n points in 3D in $O(n \log n)$ expected time.

Proof (omitted)