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I. Closest Café on Campus

Voronoi diagram

Delaunay triangulation



Input: Point Set

𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑛}

𝑝1

𝑝7

𝑝4

𝑝5

𝑝6

𝑝3

𝑝2

𝑝8



Input: Point Set

𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑛}

𝑝1

𝑝7

𝑝4

𝑝5

𝑝6

𝑝3

𝑝2

𝑝8

Sites



Output: Voronoi Diagram

𝑝1

𝑝7

𝑝4

𝑝5

𝑝6

𝑝3

𝑝2

𝑝8

Vor(𝑃): subdivision 



Output: Voronoi Diagram

𝑝1

𝑝7

𝑝4

𝑝5

𝑝6

𝑝3

𝑝2

𝑝8

Vor(𝑃): subdivision 

𝑛 cells (1 ≤ 𝑖 ≤ 𝑛)

𝑉 𝑝𝑖 =  𝑞 𝑞 closer to 𝑝𝑖 

                    than to any 𝑝𝑗 

                    with 𝑗 ≠ 𝑖}



Output: Voronoi Diagram

𝑝1

𝑝7

𝑝4

𝑝5

𝑝6

𝑝3

𝑝2

𝑝8

Vor(𝑃): subdivision 

𝑛 cells (1 ≤ 𝑖 ≤ 𝑛)

𝑉 𝑝𝑖 =  𝑞 𝑞 closer to 𝑝𝑖 

                    than to any 𝑝𝑗 

                    with 𝑗 ≠ 𝑖}

𝑉 𝑝1

𝑉 𝑝6

Voronoi cell



Output: Voronoi Diagram

𝑝1

𝑝7

𝑝4

𝑝5

𝑝6

𝑝3

𝑝2

𝑝8

Vor(𝑃): subdivision 

𝑛 cells (1 ≤ 𝑖 ≤ 𝑛)

𝑉 𝑝𝑖 =  𝑞 𝑞 closer to 𝑝𝑖 

                    than to any 𝑝𝑗 

                    with 𝑗 ≠ 𝑖}

𝑉 𝑝1

𝑉 𝑝6

Voronoi cell



Two Sites

Perpendicular

     bisector

𝑝𝑖 𝑝𝑗

ℎ(𝑝𝑖, 𝑝𝑗)

Half-plane

ℎ(𝑝𝑗, 𝑝𝑖) =  𝑞 𝑞 closer to 𝑝𝑗  
                                than to 𝑝𝑖}



II. Voronoi Cells

𝑝1

𝑝7

𝑝4

𝑝5

𝑝6

𝑝3

𝑝2

𝑝8

𝑉 𝑝6

𝑉 𝑝𝑖 = ሩ
1≤𝑗≤𝑛

𝑗≠𝑖

ℎ(𝑝𝑖 , 𝑝𝑗)

𝑉 𝑝4



II. Voronoi Cells

𝑝1

𝑝7

𝑝4

𝑝5

𝑝6

𝑝3

𝑝2

𝑝8

𝑉 𝑝6

𝑉 𝑝𝑖 = ሩ
1≤𝑗≤𝑛

𝑗≠𝑖

ℎ(𝑝𝑖 , 𝑝𝑗)
𝑉 𝑝6  is determined by 𝑝2, 𝑝5, 𝑝7, 𝑝8 only.

𝑉 𝑝4



II. Voronoi Cells

𝑝1

𝑝7

𝑝4

𝑝5

𝑝6

𝑝3

𝑝2

𝑝8

𝑉 𝑝6

𝑉 𝑝𝑖 = ሩ
1≤𝑗≤𝑛

𝑗≠𝑖

ℎ(𝑝𝑖 , 𝑝𝑗)
𝑉 𝑝6  is determined by 𝑝2, 𝑝5, 𝑝7, 𝑝8 only.

𝑉 𝑝6  ⊂ ℎ 𝑝6, 𝑝𝑗 , 𝑗 = 1, 3, 4.

𝑉 𝑝4



II. Voronoi Cells

𝑝1

𝑝7

𝑝4

𝑝5

𝑝6

𝑝3

𝑝2

𝑝8

𝑉 𝑝6

𝑉 𝑝𝑖 = ሩ
1≤𝑗≤𝑛

𝑗≠𝑖

ℎ(𝑝𝑖 , 𝑝𝑗)
𝑉 𝑝6  is determined by 𝑝2, 𝑝5, 𝑝7, 𝑝8 only.

𝑉 𝑝6  ⊂ ℎ 𝑝6, 𝑝𝑗 , 𝑗 = 1, 3, 4.

𝑉 𝑝4

𝑉 𝑝4  is determined by 𝑝3, 𝑝5,𝑝7 only.



II. Voronoi Cells

𝑝1

𝑝7

𝑝4

𝑝5

𝑝6

𝑝3

𝑝2

𝑝8

𝑉 𝑝6

𝑉 𝑝𝑖 = ሩ
1≤𝑗≤𝑛

𝑗≠𝑖

ℎ(𝑝𝑖 , 𝑝𝑗)

 Open convex region

 Possibly unbounded

 ≤ 𝑛 − 1 vertices

 ≤ 𝑛 − 1 edges

𝑉 𝑝6  is determined by 𝑝2, 𝑝5, 𝑝7, 𝑝8 only.

𝑉 𝑝6  ⊂ ℎ 𝑝6, 𝑝𝑗 , 𝑗 = 1, 3, 4.

𝑉 𝑝4

𝑉 𝑝4  is determined by 𝑝3, 𝑝5,𝑝7 only.

(open set not necessarily unbounded)



Unbounded Voronoi Cells

𝑝1

𝑝7

𝑝4

𝑝5

𝑝6

𝑝3

𝑝2

𝑝8

𝑉 𝑝𝑖  is unbounded

iff 𝑝𝑖 lies on the 

boundary of the 

convex hull of 𝑃. 



Only Case of Disconnected VD

All the sites are collinear. 

𝑝𝑛𝑝𝑛−1𝑝3𝑝2𝑝1

𝑉 𝑝1 𝑉 𝑝2 𝑉 𝑝3 𝑉 𝑝𝑛−1 𝑉 𝑝𝑛

⋯



Only 𝑛 –  1 Sites Collinear

𝑝𝑛

𝑝𝑛−1
𝑝𝑛−2𝑝2𝑝1



Only One Vertex 

𝑝𝑛

𝑝𝑛−1

𝑣

𝑝2

𝑝1

All the sites are on the same circle. 



Not All Sites Collinear

𝑝1

𝑝7

𝑝4

𝑝5

𝑝6

𝑝3

𝑝2

𝑝8

𝑉 𝑝𝑖  connected

with two types of edges:

 Line segments

 Half-lines



III. Delaunay Triangulation

𝑝1

𝑝7

𝑝4

𝑝5

𝑝6

𝑝3

𝑝2

𝑝8

Dual graph obtained by adding

a line segment between every

two sites sharing a Voronoi edge. 



III. Delaunay Triangulation

𝑝1

𝑝7

𝑝4

𝑝5

𝑝6

𝑝3

𝑝2

𝑝8

Dual graph obtained by adding

a line segment between every

two sites sharing a Voronoi edge. 

 An edge and its dual may

    not even intersect. 



III. Delaunay Triangulation

𝑝1

𝑝7

𝑝4

𝑝5

𝑝6

𝑝3

𝑝2

𝑝8

Dual graph obtained by adding

a line segment between every

two sites sharing a Voronoi edge. 

 An edge and its dual may

    not even intersect. 

E.g., 𝑝2𝑝8, 𝑝1𝑝3, 𝑝7𝑝8, 𝑝6𝑝7. 



III. Delaunay Triangulation

𝑝1

𝑝7

𝑝4

𝑝5

𝑝6

𝑝3

𝑝2

𝑝8

Dual graph obtained by adding

a line segment between every

two sites sharing a Voronoi edge. 

 An edge and its dual may

    not even intersect. 

E.g., 𝑝2𝑝8, 𝑝1𝑝3, 𝑝7𝑝8, 𝑝6𝑝7. 

The dual graph is a triangulation

of 𝑃 (Delaunay 1934). 



One More Example

50 points 
(generated using

the Mathematica 

command 

VoronoiMesh)



IV. Complexity of Vor 𝑃  

≤ 2𝑛 − 5 vertices 

≤ 3𝑛 − 6 edges 



IV. Complexity of Vor 𝑃  

≤ 2𝑛 − 5 vertices 

≤ 3𝑛 − 6 edges 

Proof Let 𝑛𝑣 = #vertices and 𝑛𝑒 = #edges. 



IV. Complexity of Vor 𝑃  

≤ 2𝑛 − 5 vertices 

≤ 3𝑛 − 6 edges 

Proof

𝑣∞

Let 𝑛𝑣 = #vertices and 𝑛𝑒 = #edges. 

 Add vertex 𝑣∞ far enough.



IV. Complexity of Vor 𝑃  

≤ 2𝑛 − 5 vertices 

≤ 3𝑛 − 6 edges 

Proof

𝑣∞

Let 𝑛𝑣 = #vertices and 𝑛𝑒 = #edges. 

 Add vertex 𝑣∞ far enough.

 Extend (and bend) all half-lines

     in Vor 𝑃  to reach 𝑣∞ .
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Let 𝑛𝑣 = #vertices and 𝑛𝑒 = #edges. 

 Add vertex 𝑣∞ far enough.

 Extend (and bend) all half-lines
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IV. Complexity of Vor 𝑃  

≤ 2𝑛 − 5 vertices 

≤ 3𝑛 − 6 edges 

Proof

𝑣∞

Let 𝑛𝑣 = #vertices and 𝑛𝑒 = #edges. 

 Add vertex 𝑣∞ far enough.

 Extend (and bend) all half-lines

     in Vor 𝑃  to reach 𝑣∞ .

a planar graph

(𝑛𝑣 + 1) − 𝑛𝑒 + 𝑛 = 2 (Euler’s formula)

𝑛𝑒 = 𝑛𝑣 + 𝑛 − 1
𝑛𝑣 = 𝑛𝑒 − 𝑛 + 1



Cont’d

𝑣∞

 Every vertex has degree ≥ 3.



Cont’d

𝑣∞
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Total degree 2𝑛𝑒 = σ deg(𝑣) ≥ 3(𝑛𝑣 + 1).



Cont’d

𝑣∞

 Every vertex has degree ≥ 3.

Total degree 2𝑛𝑒 = σ deg(𝑣) ≥ 3(𝑛𝑣 + 1).

𝑛𝑒 ≥
3

2
(𝑛𝑣 + 1)



Cont’d

𝑣∞

 Every vertex has degree ≥ 3.

Total degree 2𝑛𝑒 = σ deg(𝑣) ≥ 3(𝑛𝑣 + 1).

𝑛𝑒 ≥
3

2
(𝑛𝑣 + 1)

𝑛𝑒 = 𝑛𝑣 + 𝑛 − 1

𝑛𝑣 ≤ 2𝑛 − 5



Cont’d

𝑣∞

 Every vertex has degree ≥ 3.

Total degree 2𝑛𝑒 = σ deg(𝑣) ≥ 3(𝑛𝑣 + 1).

𝑛𝑒 ≥
3

2
(𝑛𝑣 + 1) 𝑛𝑣 ≤

2

3
(𝑛𝑒 − 1)

𝑛𝑒 = 𝑛𝑣 + 𝑛 − 1

𝑛𝑣 ≤ 2𝑛 − 5



Cont’d

𝑣∞

 Every vertex has degree ≥ 3.

Total degree 2𝑛𝑒 = σ deg(𝑣) ≥ 3(𝑛𝑣 + 1).

𝑛𝑒 ≥
3

2
(𝑛𝑣 + 1) 𝑛𝑣 ≤

2

3
(𝑛𝑒 − 1)

𝑛𝑒 = 𝑛𝑣 + 𝑛 − 1

𝑛𝑣 ≤ 2𝑛 − 5

𝑛𝑣 = 𝑛𝑒 − 𝑛 + 1

𝑛𝑒 ≤ 3𝑛 − 6



Vertex 

𝑞

𝐶𝑃(𝑞): largest circle centered at 𝑞
           and not containing any site

           from 𝑃 in its interior. 

𝑏

𝑝𝑖 𝑝𝑗

𝑟



Vertex 

𝑞

𝐶𝑃(𝑞): largest circle centered at 𝑞
           and not containing any site

           from 𝑃 in its interior. 

Theorem 

(i)  𝑞 is a vertex of Vor 𝑃  iff 𝐶𝑃 𝑞  

     passes through ≥ 3 sites.

(ii) Bisector 𝑏 of 𝑝𝑖 and 𝑝𝑗 is an 

     edge of Vor 𝑃  iff for some point

     𝑟 on 𝑏, 𝐶𝑃 𝑟  passes through 

     𝑝𝑖 and 𝑝𝑗 but no other sites. 

𝑏

𝑝𝑖 𝑝𝑗

𝑟



Proof of (i) Only 

𝑞

𝐶𝑃(𝑞)

(⇐)
(i)  𝑞 is a vertex of Vor 𝑃  iff 𝐶𝑃 𝑞  

     passes through ≥ 3 sites.
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     passes through ≥ 3 sites.
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Proof of (i) Only 

𝑞

𝐶𝑃(𝑞)
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Proof of (i) Only 

𝑞

𝐶𝑃(𝑞)

(⇐) Suppose 𝑞 exists such that 𝐶𝑃 𝑞  passes

through ≥ 3 sites 𝑝𝑖 , 𝑝𝑗 , 𝑝𝑘.  

𝐶𝑃(𝑞) has no site in its interior.

𝑞 must be on the boundary of 𝑉 𝑝𝑖 , 

𝑉 𝑝𝑗 , and 𝑉 𝑝𝑘 . 

𝑞 is a vertex of Vor 𝑃 .

(i)  𝑞 is a vertex of Vor 𝑃  iff 𝐶𝑃 𝑞  

     passes through ≥ 3 sites.



Proof of (i) Only 

𝑞

𝐶𝑃(𝑞)

(⇐) Suppose 𝑞 exists such that 𝐶𝑃 𝑞  passes

through ≥ 3 sites 𝑝𝑖 , 𝑝𝑗 , 𝑝𝑘.  

𝐶𝑃(𝑞) has no site in its interior.

𝑞 must be on the boundary of 𝑉 𝑝𝑖 , 

𝑉 𝑝𝑗 , and 𝑉 𝑝𝑘 . 

𝑞 is a vertex of Vor 𝑃 .

(⇒) Vertex 𝑞 is adjacent to 3 edge.

(i)  𝑞 is a vertex of Vor 𝑃  iff 𝐶𝑃 𝑞  

     passes through ≥ 3 sites.



Proof of (i) Only 

𝑞

𝐶𝑃(𝑞)

(⇐) Suppose 𝑞 exists such that 𝐶𝑃 𝑞  passes

through ≥ 3 sites 𝑝𝑖 , 𝑝𝑗 , 𝑝𝑘.  

𝐶𝑃(𝑞) has no site in its interior.

𝑞 must be on the boundary of 𝑉 𝑝𝑖 , 

𝑉 𝑝𝑗 , and 𝑉 𝑝𝑘 . 

𝑞 is a vertex of Vor 𝑃 .

(⇒) Vertex 𝑞 is adjacent to 3 edge. It is adjacent to three cells: 

𝑉 𝑝𝑖 , 𝑉 𝑝𝑗 , and 𝑉 𝑝𝑘 . 

(i)  𝑞 is a vertex of Vor 𝑃  iff 𝐶𝑃 𝑞  

     passes through ≥ 3 sites.



Proof of (i) Only 

𝑞

𝐶𝑃(𝑞)

(⇐) Suppose 𝑞 exists such that 𝐶𝑃 𝑞  passes

through ≥ 3 sites 𝑝𝑖 , 𝑝𝑗 , 𝑝𝑘.  

𝐶𝑃(𝑞) has no site in its interior.

𝑞 must be on the boundary of 𝑉 𝑝𝑖 , 

𝑉 𝑝𝑗 , and 𝑉 𝑝𝑘 . 

𝑞 is a vertex of Vor 𝑃 .

(⇒) Vertex 𝑞 is adjacent to 3 edge. It is adjacent to three cells: 

𝑉 𝑝𝑖 , 𝑉 𝑝𝑗 , and 𝑉 𝑝𝑘 . 

𝑞 is equidistant to 𝑝𝑖, 𝑝𝑗, and 𝑝𝑘, and no other sites is closer to 𝑞. 

(i)  𝑞 is a vertex of Vor 𝑃  iff 𝐶𝑃 𝑞  

     passes through ≥ 3 sites.



Proof of (i) Only 

𝑞

𝐶𝑃(𝑞)

(⇐) Suppose 𝑞 exists such that 𝐶𝑃 𝑞  passes

through ≥ 3 sites 𝑝𝑖 , 𝑝𝑗 , 𝑝𝑘.  

𝐶𝑃(𝑞) has no site in its interior.

𝑞 must be on the boundary of 𝑉 𝑝𝑖 , 

𝑉 𝑝𝑗 , and 𝑉 𝑝𝑘 . 

𝑞 is a vertex of Vor 𝑃 .

(⇒) Vertex 𝑞 is adjacent to 3 edge. It is adjacent to three cells: 

𝑉 𝑝𝑖 , 𝑉 𝑝𝑗 , and 𝑉 𝑝𝑘 . 

𝑞 is equidistant to 𝑝𝑖, 𝑝𝑗, and 𝑝𝑘, and no other sites is closer to 𝑞. 

𝐶𝑃(𝑞) has no site in its interior.

(i)  𝑞 is a vertex of Vor 𝑃  iff 𝐶𝑃 𝑞  

     passes through ≥ 3 sites.



Proof of (i) Only 

𝑞

𝐶𝑃(𝑞)

(⇐) Suppose 𝑞 exists such that 𝐶𝑃 𝑞  passes

through ≥ 3 sites 𝑝𝑖 , 𝑝𝑗 , 𝑝𝑘.  

𝐶𝑃(𝑞) has no site in its interior.

𝑞 must be on the boundary of 𝑉 𝑝𝑖 , 

𝑉 𝑝𝑗 , and 𝑉 𝑝𝑘 . 

𝑞 is a vertex of Vor 𝑃 .

(⇒) Vertex 𝑞 is adjacent to 3 edge. It is adjacent to three cells: 

𝑉 𝑝𝑖 , 𝑉 𝑝𝑗 , and 𝑉 𝑝𝑘 . 

𝑞 is equidistant to 𝑝𝑖, 𝑝𝑗, and 𝑝𝑘, and no other sites is closer to 𝑞. 

𝐶𝑃(𝑞) has no site in its interior.

(i)  𝑞 is a vertex of Vor 𝑃  iff 𝐶𝑃 𝑞  

     passes through ≥ 3 sites.
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 Half-plane intersection. 

 𝑛 cells.
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V. Computing VD

Naive algorithm: 

Compute every Voronoi cell 𝑉(𝑝𝑖). 

 Half-plane intersection. 

𝑂(𝑛 log 𝑛)

 𝑛 cells.

𝑂(𝑛2 log 𝑛)



Line Sweep Algorithm

Top-down

𝑙
𝑣

𝑝𝑖

Steve Fortune (1987)
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Line Sweep Algorithm

Top-down

 Part of Vor 𝑃  above

    𝑙 also depends on sites 

    below 𝑙.  𝑙
𝑣

𝑝𝑖

Complications: 

 𝑙 may encounter the top 

    vertex 𝑣 of the cell 𝑉 𝑝𝑖

    before the site 𝑝𝑖. 

 We don’t have all the

    information to compute 𝑣. 

Steve Fortune (1987)
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 Maintain the part of Vor 𝑃  of sites above 𝑙 that will not change.  

𝑞: point above 𝑙𝑞

𝑝𝑗

𝑝𝑖

𝑙

𝑝𝑖: site above 𝑙

𝑝𝑗: site below 𝑙

If 𝑞 is closer to 𝑝𝑖 than to 𝑙, then 

it must be closer to 𝑝𝑖 than to 𝑝𝑗 .

𝑞 is closer to 𝑙 than to 𝑝𝑗 .
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𝑝𝑖 = 𝑎𝑖 , 𝑏𝑖

𝑙

Locus of points equidistant to 𝑝𝑖 = (𝑎𝑖 , 𝑏𝑖) 

and 𝑙: 𝑦 =  𝑙𝑦. 

(𝑥 − 𝑎𝑖)2+(𝑦 − 𝑏𝑖)2= (𝑦 − 𝑙𝑦)2

𝑥2 − 2𝑎𝑖𝑥 + 𝑎𝑖
2 + 𝑏𝑖

2 − 𝑙𝑦
2 = 2 𝑏𝑖 − 𝑙𝑦 𝑦

Parabola! 

All the points above the parabola are closer to 𝑝𝑖 than to 𝑙
(and all the sites below 𝑙). 
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Beach Line

𝑙

𝑝𝑖 𝑝𝑗

𝑝𝑘

𝑝𝑙

Break points

Beach line

 Lower envelope of all the 

    parabolas due to the sites 

    above 𝑙.    

Parabolic arcs bounding the locus of points closer to 

some site above 𝑙 than to 𝑙. 

 𝑥-monotone.

 One parabola can contribute

    more than once (e.g., by 𝑝𝑗).

 Breakpoints lie on the edges 

    of Vor(𝑃).

 They will trace out exactly Vor 𝑃
    as 𝑙 moves from top to bottom.

Maintain the beach line (not explicitly) during the sweep.

𝑝𝑚
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𝑙

𝑝𝑖 𝑝𝑗

𝑝𝑘

𝑝𝑙

Break points

Beach line

As the sweep line moves downward, the beach line’s  

topological structure changes when  

a) a new parabolic arc appears

       (a site event), or 

b)   a parabolic arc shrinks to a 

      point and then vanishes (a 

      circle event).

𝑝𝑚
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The sweep line 𝑙 reaches a new site. 
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Site Event

The sweep line 𝑙 reaches a new site. 
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𝑙

(b) At 𝑝𝑖 

(a) Before
(c) After

𝑞

(moving) break 

          point

(new) break 

      point

degenerate parabola (a line segment
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Tracing Out Voronoi Edges 
 Two new break points emerge right after a site event.    

 They trace out the same edge (𝑒2 below) in opposite directions. 

𝑞

𝑝𝑖

𝑙

𝑟1

𝑟2

𝑣

𝑣: Voronoi vertex

𝑒1, 𝑒2, 𝑒3: Voronoi edges

𝑒1

𝑒2

𝑒3

 The edge 𝑟1𝑟2 is not connected to the rest of the (constructed) Voronoi diagram.  

It will grow and meet another edge and become connected. 
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Site Event Summary

At a site event:

 A new arc appears on the beach line.    

 A new Voronoi edge starts to be traced out.    

Lemma  A new arc can only appear on the beach line via a site event.

Corollary  The beach line consists of ≤ 2𝑛 − 1 parabolic arcs. 

Proof

• splits at most one existing arc into two 

   (i.e., adding one arc to the total count).  

# increase in arcs ≤ 2.  

The first encountered site generates one arc. 

• yields one new arc, and 

Each newly encountered site

# arcs ≤ 1 + 2 𝑛 − 1 = 2𝑛 − 1.
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