Farthest-Point Voronoi Diagrams

Outline:

I. Farthest site

II. Voronoi cell

III. Structure of FPVD

IV. Construction

V. Smallest-Width Annulus
I. Farthest Point

\[P = \{p_1, p_2, \ldots, p_n\} \]
I. Farthest Point

Let $P = \{p_1, p_2, \ldots, p_n\}$ be the set of sites. Given a point q, $p_i \in P$ is its farthest point if for all $1 \leq j \leq n$:

$$|q - p_i| \geq |q - p_j|$$
I. Farthest Point

\[P = \{ p_1, p_2, \ldots, p_n \} \]

Sites

Given a point \(q \), \(p_i \in P \) is its \textit{farthest point} if for all \(1 \leq j \leq n \)
\[|q - p_i| \geq |q - p_j| \]

The farthest point of \(q_1 \) is \(p_1 \).
I. Farthest Point

Given a point q, $p_i \in P$ is its farthest point if for all $1 \leq j \leq n$

$$|q - p_i| \geq |q - p_j|$$

$P = \{p_1, p_2, \ldots, p_n\}$

Sites

The farthest point of q_1 is p_1.
The farthest point of q_2 is p_8.
Not Every Site Can be the Farthest

Claim A point $p_i \in P$ is the farthest site of some point q in the plane if and only if p_i is a vertex of the convex hull $\text{CH}(P)$ of P.
(⇒) Suppose there exists some q such that p_i is its farthest site.
Claim: A point \(p_i \in P \) is the farthest site of some point \(q \) in the plane if and only if \(p_i \) is a vertex of the convex hull \(\text{CH}(P) \) of \(P \).

(\(\Rightarrow \)) Suppose there exists some \(q \) such that \(p_i \) is its farthest site. Assume that \(p_i \) is not a vertex of \(\text{CH}(P) \).
Proof of Necessity

Claim A point $p_i \in P$ is the farthest site of some point q in the plane if and only if p_i is a vertex of the convex hull $\text{CH}(P)$ of P.

(\Rightarrow) Suppose there exists some q such that p_i is its farthest site. Assume that p_i is not a vertex of $\text{CH}(P)$.

Then p_i is either in the interior $\text{CH}(P)$ or on one of its edge.
Proof of Necessity

Claim A point $p_i \in P$ is the farthest site of some point q in the plane if and only if p_i is a vertex of the convex hull $\text{CH}(P)$ of P.

(\Rightarrow) Suppose there exists some q such that p_i is its farthest site. Assume that p_i is not a vertex of $\text{CH}(P)$.

\[\downarrow\]

Then p_i is either in the interior $\text{CH}(P)$ or on one of its edge.

Consider the line l through p_i and q (clearly $p_i \neq q$).
Proof of Necessity

Claim A point \(p_i \in P \) is the farthest site of some point \(q \) in the plane if and only if \(p_i \) is a vertex of the convex hull \(CH(P) \) of \(P \).

\[(\Rightarrow)\] Suppose there exists some \(q \) such that \(p_i \) is its farthest site.

Assume that \(p_i \) is not a vertex of \(CH(P) \).

Then \(p_i \) is either in the interior \(CH(P) \) or on one of its edge.

Consider the line \(l \) through \(p_i \) and \(q \) (clearly \(p_i \neq q \)).

\(l \) intersects \(CH(P) \) with two of its edges \(e_1 \) and \(e_2 \).
Proof of Necessity

Claim A point \(p_i \in P \) is the farthest site of some point \(q \) in the plane if and only if \(p_i \) is a vertex of the convex hull \(\text{CH}(P) \) of \(P \).

\((\Rightarrow)\) Suppose there exists some \(q \) such that \(p_i \) is its farthest site. Assume that \(p_i \) is not a vertex of \(\text{CH}(P) \).

Then \(p_i \) is either in the interior \(\text{CH}(P) \) or on one of its edge.

Consider the line \(l \) through \(p_i \) and \(q \) (clearly \(p_i \neq q \)).

\(l \) intersects \(\text{CH}(P) \) with two of its edges \(e_1 \) and \(e_2 \).

One of the four endpoints of \(e_1 \) and \(e_2 \) must be farther from \(q \) than \(p_i \).
Proof of Necessity

Claim A point $p_i \in P$ is the farthest site of some point q in the plane if and only if p_i is a vertex of the convex hull $CH(P)$ of P.

(\Rightarrow) Suppose there exists some q such that p_i is its farthest site.

Assume that p_i is not a vertex of $CH(P)$.

Then p_i is either in the interior $CH(P)$ or on one of its edge.

Consider the line l through p_i and q (clearly $p_i \neq q$).

l intersects $CH(P)$ with two of its edges e_1 and e_2.

One of the four endpoints of e_1 and e_2 must be farther from q than p_i.

Contradiction.
Proof of Sufficiency

Claim A point $p_i \in P$ is the farthest site of some point q in the plane if and only if p_i is a vertex of the convex hull $CH(P)$ of P.

(\Rightarrow) Suppose p_i is a vertex of $CH(P)$.
Proof of Sufficiency

Claim A point $p_i \in P$ is the farthest site of some point q in the plane if and only if p_i is a vertex of the convex hull $\text{CH}(P)$ of P.

(\Rightarrow) Suppose p_i is a vertex of $\text{CH}(P)$.

p_i must be extreme in some direction \vec{d}.
Proof of Sufficiency

Claim A point \(p_i \in P \) is the farthest site of some point \(q \) in the plane if and only if \(p_i \) is a vertex of the convex hull \(CH(P) \) of \(P \).

(\(\Rightarrow \)) Suppose \(p_i \) is a vertex of \(CH(P) \).

\[p_i \] must be extreme in some direction \(\vec{d} \).

Let \(l \) be the line through \(p_i \) in \(\vec{d} \).
Proof of Sufficiency

Claim A point $p_i \in P$ is the farthest site of some point q in the plane if and only if p_i is a vertex of the convex hull $\text{CH}(P)$ of P.

(\Rightarrow) Suppose p_i is a vertex of $\text{CH}(P)$.

\[\downarrow \]

p_i must be extreme in some direction \vec{d}.

Let l be the line through p_i in \vec{d}.

- Start at p_i.
- Move on l in the direction $-\vec{d}$.
Proof of Sufficiency

Claim A point \(p_i \in P \) is the farthest site of some point \(q \) in the plane if and only if \(p_i \) is a vertex of the convex hull \(CH(P) \) of \(P \).

(\(\Rightarrow \)) Suppose \(p_i \) is a vertex of \(CH(P) \).

\[p_i \rightarrow p_i - t \hat{d} \]

\(p_i \) must be extreme in some direction \(\hat{d} \).

Let \(l \) be the line through \(p_i \) in \(\hat{d} \).

- Start at \(p_i \).
- Move on \(l \) in the direction \(-\hat{d} \).
Proof of Sufficiency

Claim A point \(p_i \in P \) is the farthest site of some point \(q \) in the plane if and only if \(p_i \) is a vertex of the convex hull \(\text{CH}(P) \) of \(P \).

\((\Rightarrow)\) Suppose \(p_i \) is a vertex of \(\text{CH}(P) \).

\[p_i \text{ must be extreme in some direction } \vec{d}. \]

Let \(l \) be the line through \(p_i \) in \(\vec{d} \).

- Start at \(p_i \).
- Move on \(l \) in the direction \(-\vec{d}\).

\[\text{The point } p_i - t\vec{d}, \text{ for large enough } t, \text{ is farther from } p_i \text{ than any other site.} \]
II. Two Sites

Half-plane

\[h(p_j, p_i) = \{ q \mid q \text{ closer to } p_j \text{ than to } p_i \} \]
Voronoi Cell

\[V'(p_i) = \bigcap_{1 \leq j \leq n, \ j \neq i} h(p_j, p_i) \]
Voronoi Cell

\[V'(p_i) = \bigcap_{1 \leq j \leq n \atop j \neq i} h(p_j, p_i) \]
Voronoi Cell

\[V'(p_i) = \bigcap_{1 \leq j \leq n, \ j \neq i} h(p_j, p_i) \]
Voronoi Cell

\[V'(p_i) = \bigcap_{1 \leq j \leq n, j \neq i} h(p_j, p_i) \]
Voronoi Cell

\[V'(p_i) = \bigcap_{1 \leq j \leq n} h(p_j, p_i) \forall j \neq i \]
Voronoi Cell

\[V'(p_i) = \bigcap_{1 \leq j \leq n, j \neq i} h(p_j, p_i) \]
Voronoi Cell

\[V'(p_i) = \bigcap_{1 \leq j \leq n \atop j \neq i} h(p_j, p_i) \]
Voronoi Cell

\[V'(p_i) = \bigcap_{1 \leq j \leq n} h(p_j, p_i) \]

- Open convex region
- \(\leq n - 1 \) vertices
- \(\leq n - 1 \) edges
Unboundedness

The cell contains a ray r collinear with p_i.
Unboundedness

The cell contains a ray r collinear with p_i.
Unboundedness

The cell contains a ray r collinear with p_i.

- p_i: farthest point from q.

$V'(p_1)$
The cell contains a ray r collinear with p_i.

- p_i: farthest point from q.
- l: the line through p_i and q.
The cell contains a ray r collinear with p_i.

- p_i: farthest point from q.
- l: the line through p_i and q.
- r: half-line starting at q and away from p_i.
Unboundedness

The cell contains a ray r collinear with p_i.

- p_i: farthest point from q.
- l: the line through p_i and q.
- r: half-line starting at q and away from p_i.

All the points on r have p_i as the farthest point!
III. Farthest-Point Voronoi Diagram

Tree-like structure

- Edges include segments and half-infinite lines.

\[p_1, p_2, p_3, V'(p_4), V'(p_5), p_6, p_5, V'(p_3) \]
III. Farthest-Point Voronoi Diagram

Tree-like structure

- Edges include segments and half-infinite lines.
- No cycles
III. Farthest-Point Voronoi Diagram

Tree-like structure

- Edges include segments and half-infinite lines.
- No cycles

A cycle would imply a bounded cell.
III. Farthest-Point Voronoi Diagram

Tree-like structure

- Edges include segments and half-infinite lines.
- No cycles
 A cycle would imply a bounded cell.
- A vertex has \(\geq 3 \) farthest sites.
More Properties

- Any site that is not a vertex of the convex hull has no Voronoi cell.
Any site that is not a vertex of the convex hull has \textit{no Voronoi cell}.

It contributes no Voronoi edge.
More Properties

- Any site that is not a vertex of the convex hull has no Voronoi cell.
 - It contributes no Voronoi edge.
- Every Voronoi edge is part of a bisector of two convex hull vertices.
More Properties

- Any site that is not a vertex of the convex hull has \textit{no Voronoi cell}.

- It contributes no Voronoi edge.

- Every Voronoi edge is part of a bisector of two convex hull vertices.

- \(O(n) \) vertices, edges and cells
Center of Smallest Enclosing Disk

Two possibilities:

- Vertex ⇒ ≥ 3 equidistant farthest sites
Center of Smallest Enclosing Disk

Two possibilities:

- Vertex $\Rightarrow \geq 3$ equidistant farthest sites
- Midpoint of two sites defining an edge \Rightarrow two equidistant farthest sites
Doubly-connected edge list (DCEL) with modifications

Half-infinite edge $\vec{d} = (-1, 0)$

- If no origin, stores the direction of the edge (\vec{d}) instead of coordinates.

- Either $\text{next}(e)$ or $\text{prev}(e)$ is undefined.
IV. Preprocessing for Construction

1. Compute the convex hull $\text{CH}(P)$ with h vertices.
IV. Preprocessing for Construction

1. Compute the convex hull $\text{CH}(P)$ with h vertices.

2. Order vertices of the hull randomly.
IV. Preprocessing for Construction

1. Compute the convex hull $\text{CH}(P)$ with h vertices.

2. Order vertices of the hull randomly.

p_1, p_2, \ldots, p_h (new indices)
IV. Preprocessing for Construction

1. Compute the convex hull $\text{CH}(P)$ with h vertices.

2. Order vertices of the hull randomly.

\[p_1, p_2, \ldots, p_h \text{ (new indices)} \]

3. Remove $p_h, p_{h-1}, \ldots, p_4$ one by one in the order.
IV. Preprocessing for Construction

1. Compute the convex hull $\text{CH}(P)$ with h vertices.

2. Order vertices of the hull randomly.

 p_1, p_2, \ldots, p_h (new indices)

3. Remove $p_h, p_{h-1}, \ldots, p_4$ one by one in the order.

 • For each p_i, store its clockwise neighbor $\text{cw}(p_i)$ and counterclockwise neighbor $\text{ccw}(p_i)$ at the time of removal.
IV. Preprocessing for Construction

1. Compute the convex hull $\text{CH}(P)$ with h vertices.

2. Order vertices of the hull randomly.

 p_1, p_2, \ldots, p_h (new indices)

3. Remove $p_h, p_{h-1}, \ldots, p_4$ one by one in the order.

 - For each p_i, store its clockwise neighbor $\text{cw}(p_i)$ and counterclockwise neighbor $\text{ccw}(p_i)$ at the time of removal.

 p_i cannot be a neighbor of any point removed later.
1. Initialize with the FPVD of p_1, p_2, p_3.

\[V'(p_1), V'(p_2), V'(p_3) \]
Construction (cont’d)

2. Insert $p_4, p_5, ..., p_n$ one by one in the order.

$FPVD_{i-1}$ for $\{p_1, ..., p_{i-1}\}$:
2. Insert $p_4, p_5, ..., p_h$ one by one in the order.

$FPVD_{i-1}$ for $\{p_1, ..., p_{i-1}\}$:

most counterclockwise half-edge in a traversal of the boundary of $V'(p_j)$
How to Add p_i?
How to Add p_i?
How to Add p_i?

The cell $V'(p_i)$ of p_i will come in between the adjacent cells $V'(cw(p_i))$ and $V'(ccw(p_i))$.

$V'(cw(p_i))$

$ccw(p_i)$

$V'(ccw(p_i))$

$V'(p_i)$

$cw(p_i)$
How to Add p_i?

The cell $V'(p_i)$ of p_i will come in between the adjacent cells $V'(cw(p_i))$ and $V'(ccw(p_i))$.

- $ccw(p_i)$ has a pointer to bisector b
 (most counterclockwise edge in its cell.)
How to Add p_i?

The cell $V'(p_i)$ of p_i will come in between the adjacent cells $V'(cw(p_i))$ and $V'(ccw(p_i))$.

- $ccw(p_i)$ has a pointer to bisector b (most counterclockwise edge in its cell).
- Bisector of $ccw(p_i)$ and p_i will contribute a half-edge \vec{d} to $V'(p_i)$.
How to Add p_i?

The cell $V'(p_i)$ of p_i will come in between the adjacent cells $V'(cw(p_i))$ and $V'(ccw(p_i))$.

- $ccw(p_i)$ has a pointer to bisector b (most counterclockwise edge in its cell).
- Bisector of $ccw(p_i)$ and p_i will contribute a half-edge \vec{d} to $V'(p_i)$.
- Traverse the boundary of $V'(ccw(p_i))$, starting at b, in a clockwise way to find the intersection q of \vec{d} with a boundary edge b' between $V'(ccw(p_i))$ and, say, $V'(p_j)$ of another site p_j.

\[V'(ccw(p_i)) \]
\[V'(cw(p_i)) \]
How to Add p_i?

The cell $V'(p_i)$ of p_i will come in between the adjacent cells $V'(cw(p_i))$ and $V'(ccw(p_i))$.

- $ccw(p_i)$ has a pointer to bisector b (most counterclockwise edge in its cell).
- Bisector of $ccw(p_i)$ and p_i will contribute a half-edge \vec{d} to $V'(p_i)$.
- Traverse the boundary of $V'(ccw(p_i))$, starting at b, in a clockwise way to find the intersection q of \vec{d} with a boundary edge b' between $V'(ccw(p_i))$ and, say, $V'(p_j)$ of another site p_j.
How to Add p_i?

The cell $V'(p_i)$ of p_i will come in between the adjacent cells $V'(cw(p_i))$ and $V'(ccw(p_i))$.

- $ccw(p_i)$ has a pointer to bisector b (most counterclockwise edge in its cell).
- Bisector of $ccw(p_i)$ and p_i will contribute a half-edge \vec{d} to $V'(p_i)$.
- Traverse the boundary of $V'(ccw(p_i))$, starting at b, in a clockwise way to find the intersection q of \vec{d} with a boundary edge b' between $V'(ccw(p_i))$ and, say, $V'(p_j)$ of another site p_j.

\[V'(ccw(p_i)) \quad \text{and} \quad V'(p_j) \]
How to Add \(p_i \)?

The cell \(V'(p_i) \) of \(p_i \) will come in between the adjacent cells \(V'(\text{cw}(p_i)) \) and \(V'(\text{ccw}(p_i)) \).

- \(\text{ccw}(p_i) \) has a pointer to bisector \(b \) (most counterclockwise edge in its cell).
- Bisector of \(\text{ccw}(p_i) \) and \(p_i \) will contribute a half-edge \(\vec{d} \) to \(V'(p_i) \).
- Traverse the boundary of \(V'(\text{cw}(p_i)) \), starting at \(b \), in a clockwise way to find the intersection \(q \) of \(\vec{d} \) with a boundary edge \(b' \) between \(V'(\text{ccw}(p_i)) \) and, say, \(V'(p_j) \) of another site \(p_j \).
- Move along \(\vec{d} \) to \(q \) and cross into the cell of \(p_j \).
How to Add p_i?

The cell $V'(p_i)$ of p_i will come in between the adjacent cells $V'(cw(p_i))$ and $V'(ccw(p_i))$.

- $ccw(p_i)$ has a pointer to bisector b (most counterclockwise edge in its cell).
- Bisector of $ccw(p_i)$ and p_i will contribute a half-edge \vec{d} to $V'(p_i)$.
- Traverse the boundary of $V'(ccw(p_i))$, starting at b, in a clockwise way to find the intersection q of \vec{d} with a boundary edge b' between $V'(ccw(p_i))$ and, say, $V'(p_j)$ of another site p_j.
- Move along \vec{d} to q and cross into the cell of p_j.
Moving on …

At q start a clockwise traversal of the boundary of the cell $V'(p_j)$.

\mathbf{p}_i

$V'(p_j)$

$V'(\text{ccw}(p_i))$

$V'(\text{cw}(p_i))$

q

b'

b

d
Moving on …

- At q start a clockwise traversal of the boundary of the cell $V'(p_j)$.
- Traversal stops at an edge b'' that intersects the bisector of p_i and p_j.
At q start a clockwise traversal of the boundary of the cell $V'(p_j)$.

Traversal stops at an edge b'' that intersects the bisector of p_i and p_j.

Exit the cell $V'(p_j)$, and so on.
Moving on …

- At \(q \) start a clockwise traversal of the boundary of the cell \(V'(p_j) \).
- Traversal stops at an edge \(b'' \) that intersects the bisector of \(p_i \) and \(p_j \).
- Exit the cell \(V'(p_j) \), and so on.
Moving on …

- At \(q \) start a clockwise traversal of the boundary of the cell \(V'(p_j) \).

- Traversal stops at an edge \(b'' \) that intersects the bisector of \(p_i \) and \(p_j \).

- Exit the cell \(V'(p_j) \), and so on.
Moving on …

- At q start a clockwise traversal of the boundary of the cell $V'(p_j)$.
- Traversal stops at an edge b'' that intersects the bisector of p_i and p_j.
- Exit the cell $V'(p_j)$, and so on.
Moving on …

- At \(q \) start a clockwise traversal of the boundary of the cell \(V'(p_j) \).

- Traversal stops at an edge \(b'' \) that intersects the bisector of \(p_i \) and \(p_j \).

- Exit the cell \(V'(p_j) \), and so on.

- Last bisector will be between \(p_i \) and \(\text{cw}(p_i) \).
Moving on …

- At q start a clockwise traversal of the boundary of the cell $V'(p_j)$.
- Traversal stops at an edge b'' that intersects the bisector of p_i and p_j.
- Exit the cell $V'(p_j)$, and so on.
- Last bisector will be between p_i and $\text{cw}(p_i)$.

Trace out the boundary of $V'(p_i)$ by traversing a sequence of cells, each in a clockwise way.
All new edges are added to DCEL.

Afterward, all the edges lying inside the cell of p_i are removed.
All new edges are added to DCEL.

Afterward, all the edges lying inside the cell of p_i are removed.

Theorem FPVD can be constructed in $O(n \log n)$ expected time using $O(n)$ storage.
Summary

All new edges are added to DCEL.

Afterward, all the edges lying inside the cell of p_i are removed.

Theorem

FPVD can be constructed in $O(n \log n)$ expected time using $O(n)$ storage.

- $O(n \log n)$ time to compute the convex hull.
Summary

All new edges are added to DCEL.

Afterward, all the edges lying inside the cell of \(p_i \) are removed.

Theorem

FPVD can be constructed in \(O(n \log n) \) expected time using \(O(n) \) storage.

- \(O(n \log n) \) time to compute the convex hull.
- \(O(n) \) time to construct FPVD (backward analysis).
V. Roundness of a Point Set

The *roundness* of a set of points is measured by the *minimum width* of any annulus that contains the points.
V. Roundness of a Point Set

The *roundness* of a set of points is measured by the *minimum width* of any annulus that contains the points.

Observation:
There must be one point each on C_{outer} and C_{inner}.
V. Roundness of a Point Set

The **roundness** of a set of points is measured by the **minimum width** of any annulus that contains the points.

Observation:

There must be one point each on C_{outer} and C_{inner}.

Otherwise, we can always reduce the size of C_{outer}, or increase that of C_{inner}.
V. Roundness of a Point Set

The **roundness** of a set of points is measured by the **minimum width** of any annulus that contains the points.

Observation:

There must be one point each on C_{outer} and C_{inner}.

Otherwise, we can always reduce the size of C_{outer}, or increase that of C_{inner}.

But one point on each bounding circle does not yield the smallest-width annulus.
V. Roundness of a Point Set

The *roundness* of a set of points is measured by the *minimum width* of any annulus that contains the points.

Observation:

There must be one point each on C_{outer} and C_{inner}.

Otherwise, we can always reduce the size of C_{outer}, or increase that of C_{inner}.

But one point on each bounding circle does not yield the smallest-width annulus.

Four degrees of freedom:

- Center $q = (q_x, q_y)$
- Outer radius R
- Inner radius r
The roundness of a set of points is measured by the minimum width of any annulus that contains the points.

Observation:
There must be one point each on C_{outer} and C_{inner}.
Otherwise, we can always reduce the size of C_{outer}, or increase that of C_{inner}.
But one point on each bounding circle does not yield the smallest-width annulus.

Four degrees of freedom:
- Center $q = (q_x, q_y)$
- Outer radius R
- Inner radius r
Need 4 constraints!
Only Three Different Cases

(a)
≥ 3 points on C_{outer}
≥ 1 point on C_{inner}
Only Three Different Cases

(a) \[\geq 3 \text{ points on } C_{\text{outer}} \]
[150x94]≥ 1 point on \(C_{\text{inner}} \)

(b) \[\geq 1 \text{ point on } C_{\text{outer}} \]
[402x87]≥ 3 points on \(C_{\text{inner}} \)
Only Three Different Cases

(a) \(\geq 3 \) points on \(C_{outer} \)
\(\geq 1 \) point on \(C_{inner} \)

(b) \(\geq 1 \) point on \(C_{outer} \)
\(\geq 3 \) points on \(C_{inner} \)

(c) 2 points on \(C_{outer} \)
2 points on \(C_{inner} \)
Smallest-Width Annulus – Case (a)

The problem is equivalent to finding the center point q of the annulus.

In case (a)

(a)

≥ 3 points on C_{outer}

≥ 1 point on C_{inner}
Smallest-Width Annulus – Case (a)

The problem is equivalent to finding the center point q of the annulus.

In case (a)

≥ 3 points on C_{outer}

(a)

≥ 3 points on C_{outer}

≥ 1 point on C_{inner}
Smallest-Width Annulus – Case (a)

The problem is equivalent to finding the center point q of the annulus.

In case (a)

- ≥ 3 points on C_{outer}
- q must be a vertex of the farthest-point Voronoi diagram.

(a)

- ≥ 3 points on C_{outer}
- ≥ 1 point on C_{inner}
Case (b)

\[\geq 1 \text{ point on } C_{outer} \]
\[\geq 3 \text{ points on } C_{inner} \]

\[\geq 3 \text{ points on } C_{inner} \]
Case (b)

≥ 3 points on C_{inner}

q must be a vertex of the (nearest-point) Voronoi diagram.

(b)

≥ 1 point on C_{outer}

≥ 3 points on C_{inner}
Case (c)

(c)

2 points on C_{outer}
2 points on C_{inner}
Case (c)

2 points on C_{outer} \rightarrow q must be on an edge of the FPVD.
2 points on C_{inner}
Case (c)

2 points on C_{outer} \implies q must be on an edge of the FPVD.

2 points on C_{inner} \implies q must be on an edge of the VD.
Case (c)

2 points on C_{outer} \rightarrow q must be on an edge of the FPVD.
2 points on C_{inner} \rightarrow q must be on an edge of the VD.

q must be at the intersection of an VD edge with an FPVD edge.
Overlay of VD and FPVD

- Site
- Vertex of VD
- Vertex of FPVD
- Intersection of VD and FPVD
Overlay of VD and FPVD

- Site
- Vertex of VD
- Vertex of FPVD
- Intersection of VD and FPVD

Vertices of the overlay
Overlay of VD and FPVD

- Site
- Vertex of VD
- Vertex of FPVD
- Intersection of VD and FPVD

Exactly the candidate centers of the smallest-width annulus.
Overlay of VD and FPVD

Site

Vertex of VD

Vertex of FPVD

Intersection of VD and FPVD

Vertices of the overlay

Exactly the candidate centers of the smallest-width annulus.

No need to compute the overlay!
Smallest-Width Annulus Algorithm

1. Construct the Voronoi diagram and farthest-point Voronoi diagram.
Smallest-Width Annulus Algorithm

1. Construct the Voronoi diagram and farthest-point Voronoi diagram.

2. For every vertex v of the FPVD ($O(n)$ vertices)
Smallest-Width Annulus Algorithm

1. Construct the Voronoi diagram and farthest-point Voronoi diagram.

2. For every vertex v of the FPVD ($O(n)$ vertices)

 - Its farthest sites p_i, p_j, p_k (equidistant) are known (C_{outer}).
Smallest-Width Annulus Algorithm

1. Construct the Voronoi diagram and farthest-point Voronoi diagram.

2. For every vertex v of the FPVD ($O(n)$ vertices)
 - Its farthest sites p_i, p_j, p_k (equidistant) are known (C_{outer}).
 - Determine its closest site p_l using VD (C_{inner} in $O(\log n)$ time).
Smallest-Width Annulus Algorithm

1. Construct the Voronoi diagram and farthest-point Voronoi diagram.

2. For every vertex \(v \) of the FPVD \((O(n)\) vertices)\
 - Its farthest sites \(p_i, p_j, p_k \) (equidistant) are known \((C_{outer})\).
 - Determine its closest site \(p_l \) using VD \((C_{inner} \text{ in } O(\log n) \text{ time})\).
 - This yields a candidate annulus.
Smallest-Width Annulus Algorithm

1. Construct the Voronoi diagram and farthest-point Voronoi diagram.

2. For every vertex v of the FPVD ($O(n)$ vertices)
 - Its farthest sites p_i, p_j, p_k (equidistant) are known (C_{outer}).
 - Determine its closest site p_l using VD (C_{inner} in $O(\log n)$ time).
 - This yields a candidate annulus.

3. For every vertex v of the VD ($O(n)$ vertices)
Smallest-Width Annulus Algorithm

1. Construct the Voronoi diagram and farthest-point Voronoi diagram.

2. For every vertex v of the FPVD ($O(n)$ vertices)
 - Its farthest sites p_i, p_j, p_k (equidistant) are known (C_{outer}).
 - Determine its closest site p_l using VD (C_{inner} in $O(\log n)$ time).
 - This yields a candidate annulus.

3. For every vertex v of the VD ($O(n)$ vertices)
 - Its closest sites p_i, p_j, p_k (equidistant) are known (C_{inner}).
 - Determine its farthest site p_l using FPVD (C_{outer} in $O(\log n)$ time).
 - This yields a candidate annulus.
Algorithm (cont’d)

4. For every pair of edges, one from VD and the other form FPVD ($O(n^2)$ pairs)
Algorithm (cont’d)

4. For every pair of edges, one from VD and the other form FPVD ($O(n^2)$ pairs)
 - Test if they intersect.
Algorithm (cont’d)

4. For every pair of edges, one from VD and the other form FPVD $(O(n^2)$ pairs)
 - Test if they intersect.
 - If so, the two closest sites p_i, p_j and two farthest sites p_k, p_l are known. Construct the annulus in $O(1)$ time.
Algorithm (cont’d)

4. For every pair of edges, one from VD and the other form FPVD ($O(n^2)$ pairs)
 • Test if they intersect.
 • If so, the two closest sites p_i, p_j and two farthest sites p_k, p_l are known. Construct the annulus in $O(1)$ time.

5. Choose the smallest-width annulus of all constructed annuli.
Algorithm (cont’d)

4. For every pair of edges, one from VD and the other form FPVD ($O(n^2)$ pairs)
 - Test if they intersect.
 - If so, the two closest sites p_i, p_j and two farthest sites p_k, p_l are known. Construct the annulus in $O(1)$ time.

5. Choose the smallest-width annulus of all constructed annuli.

Theorem Given a set of n points in the plane, the smallest-width annulus can be determined in $O(n^2)$ time using $O(n)$ storage.