Outline:

I. Query for the face containing a point

II. Trapezoidal map

III. Geometric complexity of the map

IV. Data structure for search
I. Query for Containing Face

S: planar subdivision with n edges

Query: Given a point q, report face f such that $q \in f$.
Simple Data Structure

Draw vertical lines through all the vertices.
Simple Data Structure

Draw vertical lines through all the vertices.
Simple Data Structure

Draw vertical lines through all the vertices.

- Sort them by x-coordinate.
Simple Data Structure

Draw vertical lines through all the vertices.

- Sort them by x-coordinate.
- Determine the slab containing q.
Simple Data Structure

Draw vertical lines through all the vertices.

- Sort them by x-coordinate.
- Determine the slab containing q.

$O(\log n)$ time
No vertices inside a slab
Slab

No vertices inside a slab

- Bounded by the vertical lines through two adjacent vertices in the sorted list.
Slab

No vertices inside a slab

- Bounded by the vertical lines through two adjacent vertices in the sorted list.
- Edges don't cross each other.
No vertices inside a slab

- Bounded by the vertical lines through two adjacent vertices in the sorted list.

- Edges don’t cross each other.

- Order them from top to bottom.
 - Store edges intersecting a slab in sorted order (e.g., in an array).
 - Label each edge with the face immediately above.
Query Algorithm

1. Determine the slab containing q.
Query Algorithm

1. Determine the slab containing q.
 - Binary search with x-coordinate of q.
Query Algorithm

1. Determine the slab containing q.
 - Binary search with x-coordinate of q.

$O(\log n)$
Query Algorithm

1. Determine the slab containing q.
 - Binary search with x-coordinate of q.

 $O(\log n)$

2. Binary search within the slab.
Query Algorithm

1. Determine the slab containing q.
 - Binary search with x-coordinate of q.

\[O(\log n) \]

2. Binary search within the slab.
 - Given a segment s crossing the slab, determine whether q is above, below, or on s.

Query Algorithm

1. Determine the slab containing \(q \).
 - Binary search with \(x \)-coordinate of \(q \).

\[O(\log n) \]

2. Binary search within the slab.
 - Given a segment \(s \) crossing the slab, determine whether \(q \) is above, below, or on \(s \).

\[\leq n \text{ segments } \Rightarrow O(\log n) \text{ time.} \]
Query Algorithm

1. Determine the slab containing q.
 - Binary search with x-coordinate of q.

 \[O(\log n) \]

2. Binary search within the slab.
 - Given a segment s crossing the slab, determine whether q is above, below, or on s.

 \[\leq n \text{ segments } \Rightarrow O(\log n) \text{ time.} \]

Query time is $O(\log n)$.
Storage

- An array on x-coordinate of vertices. $O(n)$
Storage

• An array on x-coordinate of vertices. $O(n)$

• An array for every slab. $O(n)$
Storage

- An array on x-coordinate of vertices. $O(n)$
- An array for every slab. $O(n)$

 $O(n)$ slabs
Storage

- An array on x-coordinate of vertices. $O(n)$
- An array for every slab. $O(n)$

\[
\begin{align*}
O(n) \text{ slabs} & \quad \implies \quad O(n^2)
\end{align*}
\]
Storage

- An array on x-coordinate of vertices. $O(n)$
- An array for every slab. $O(n)$

$O(n)$ slabs $\Rightarrow O(n^2)$
Storage

- An array on x-coordinate of vertices. $O(n)$
- An array for every slab. $O(n)$

$O(n)$ slabs

$\Theta(n^2)$ storage!
Storage

- An array on x-coordinate of vertices. $O(n)$
- An array for every slab. $O(n)$

\[
\begin{align*}
O(n) \text{ slabs} & \quad \Rightarrow \quad O(n^2) \\
\text{n/2 slabs} & \\
\end{align*}
\]

Over-refinement of S for query purpose!
II. Trapezoidal Map

- Makes point location query easier.
- Needs $O(n)$ storage.
II. Trapezoidal Map

- Makes point location query easier.
- Needs $O(n)$ storage.

General position assumption (removable)
No two vertices have the same x-coordinate.
II. Trapezoidal Map

- Makes point location query easier.
- Needs $O(n)$ storage.

General position assumption (removable)
No two vertices have the same x-coordinate.

- Draw a rectangle bounding all segments in its interior.

axis-parallel rectangle R
II. Trapezoidal Map

- Makes point location query easier.
- Needs $O(n)$ storage.

General position assumption (removable)
No two vertices have the same x-coordinate.

axis-parallel rectangle R

- Draw a rectangle bounding all segments in its interior.
- From every point draw two vertical extensions (up and down).
- Stop when they meet another segment or the boundary of R.

From every point draw two vertical extensions (up and down).
II. Trapezoidal Map

- Makes point location query easier.
- Needs $O(n)$ storage.

General position assumption (removable)
No two vertices have the same x-coordinate.

axis-parallel rectangle R

- Draw a rectangle bounding all segments in its interior.
- From every point draw two vertical extensions (up and down).
- Stop when they meet another segment or the boundary of R.
II. Trapezoidal Map

- Makes point location query easier.
- Needs $O(n)$ storage.

General position assumption (removable)
No two vertices have the same x-coordinate.

axis-parallel rectangle R

- Draw a rectangle bounding all segments in its interior.
- From every point draw two vertical extensions (up and down).
- Stop when they meet another segment or the boundary of R.

$T(S)$
Face of a Trapezoidal Map

Trapezoid

f
Face of a Trapezoidal Map

Trapezoid

Triangle
Every face in $T(s)$ has ≤ 2 vertical sides and 2 non-vertical sides.
Every face in $T(s)$ has ≤ 2 vertical sides and 2 non-vertical sides.

A vertical side is one of two cases:
- a vertical extension, or
- a vertical edge of R.
Face of a Trapezoidal Map

Every face in $T(s)$ has ≤ 2 vertical sides and 2 non-vertical sides.

- A vertical side is one of two cases:
 - a vertical extension, or
 - a vertical edge of R.
Distinguish the two non-vertical sides.
Classification of the Left Side

(a) Degenerating into a point

(b) Lower vertical extension

(c) Upper vertical extension

(d) Upper & lower extension

(e) Left edge of R
Classification of the Left Side

(a) Degenerating into a point
(b) Lower vertical extension
(c) Upper vertical extension
Classification of the Left Side

(a) Degenerating into a point
(b) Lower vertical extension
(c) Upper vertical extension
(d) Upper & lower extension
Classification of the Left Side

(a) Degenerating into a point

(b) Lower vertical extension

(c) Upper vertical extension

(d) Upper & lower extension

(e) Left edge of R
Defining Endpoint

\[
\text{leftp}(\Delta) \overset{\text{def}}{=} \text{left endpoint of top}(\Delta) \quad \text{(b)} \\
\quad \text{or left endpoint of bottom}(\Delta) \quad \text{(c)} \\
\quad \text{or both} \quad \text{(a)} \\
\quad \text{or right endpoint of a 3rd segment} \quad \text{(d)} \\
\quad \text{or lower left corner of } R \quad \text{(e)}
\]

\[\text{rightp}(\Delta)\] can be similarly defined.
A trapezoid is uniquely determined.
III. Complexity of the Trapezoidal Map

Lemma 1 \(T(S) \) contains \(\leq 6n + 4 \) vertices.
III. Complexity of the Trapezoidal Map

Lemma 1 $T(S)$ contains $\leq 6n + 4$ vertices.

Proof A vertex is one of three types below:
Lemma 1 \(T(S) \) contains \(\leq 6n + 4 \) vertices.

Proof A vertex is one of three types below:

- a vertex of \(R \)
Lemma 1 \(T(S) \) contains \(\leq 6n + 4 \) vertices.

Proof A vertex is one of three types below:

- a vertex of \(R \)
III. Complexity of the Trapezoidal Map

Lemma 1 \(T(S) \) contains \(\leq 6n + 4 \) vertices.

Proof A vertex is one of three types below:

- a vertex of \(R \)
- an endpoint of a segment
III. Complexity of the Trapezoidal Map

Lemma 1 \(T(S) \) contains \(\leq 6n + 4 \) vertices.

Proof A vertex is one of three types below:

- a vertex of \(R \)
- an endpoint of a segment

\(\leq 2n \)

\(\geq 4 \)
III. Complexity of the Trapezoidal Map

Lemma 1 $T(S)$ contains $\leq 6n + 4$ vertices.

Proof A vertex is one of three types below:

- a vertex of R \[\leq 2n \]
- an endpoint of a segment \[\leq 2n \]
- (shared endpoints may exist)
III. Complexity of the Trapezoidal Map

Lemma 1 \(T(S) \) contains \(\leq 6n + 4 \) vertices.

Proof A vertex is one of three types below:

- a vertex of \(R \)
- an endpoint of a segment (\(\leq 2n \))
- the point where the vertical extension line starting in an endpoint reaches another segment or the boundary of \(R \).
Lemma 1 \(T(S) \) contains \(\leq 6n + 4 \) vertices.

Proof A vertex is one of three types below:

- a vertex of \(R \)
- an endpoint of a segment \(\leq 2n \)
- the point where the vertical extension line starting in an endpoint reaches another segment or the boundary of \(R \).

Every endpoint generates at most two such points.
III. Complexity of the Trapezoidal Map

Lemma 1 $T(S)$ contains $\leq 6n + 4$ vertices.

Proof A vertex is one of three types below:

- a vertex of R
- an endpoint of a segment $\leq 2n$ (shared endpoints may exist)
- the point where the vertical extension line starting in an endpoint reaches another segment or the boundary of R. $\leq 2 \times 2n$

Every endpoint generates at most two such points.
Lemma 1 $T(S)$ contains $\leq 6n + 4$ vertices.

Proof A vertex is one of three types below:

- a vertex of R

- an endpoint of a segment

- the point where the vertical extension line starting in an endpoint reaches another segment or the boundary of R.

Every endpoint generates at most two such points.

$\#\text{vertices} \leq 4 + 2n + 4n = 6n + 4$
Number of Trapezoids

Lemma 2 $T(S)$ contains $\leq 3n + 1$ trapezoids.
Number of Trapezoids

Lemma 2 $T(S)$ contains $\leq 3n + 1$ trapezoids.

Proof Every trapezoid Δ is represented by $\text{leftp}(\Delta)$. Need only count $\text{leftp}(\Delta)$, including multiplicities (#times for each endpoint).
Lemma 2 $T(S)$ contains $\leq 3n + 1$ trapezoids.

Proof Every trapezoid Δ is represented by leftp(Δ). Need only count leftp(Δ), including multiplicities (#times for each endpoint).

leftp(Δ) is one of three possible types:
Lemma 2 \(T(S) \) contains \(\leq 3n + 1 \) trapezoids.

Proof Every trapezoid \(\Delta \) is represented by \(\text{leftp}(\Delta) \). Need only count \(\text{leftp}(\Delta) \), including multiplicities (\#times for each endpoint).

\(\text{leftp}(\Delta) \) is one of three possible types:

- lower left corner of \(R \)
Lemma 2 \(T(S) \) contains \(\leq 3n + 1 \) trapezoids.

Proof Every trapezoid \(\Delta \) is represented by \(\text{leftp}(\Delta) \). Need only count \(\text{leftp}(\Delta) \), including multiplicities (\#times for each endpoint).

\(\text{leftp}(\Delta) \) is one of three possible types:

- lower left corner of \(R \)

\(\Rightarrow \) it is \(\text{leftp}(\Delta) \) for exactly 1 trapezoid.
Number of Trapezoids

Lemma 2 \(T(S) \) contains \(\leq 3n + 1 \) trapezoids.

Proof Every trapezoid \(\Delta \) is represented by \(\text{leftp}(\Delta) \). Need only count \(\text{leftp}(\Delta) \), including multiplicities (\#times for each endpoint).

\(\text{leftp}(\Delta) \) is one of three possible types:

- lower left corner of \(R \)
 \[\implies \text{it is leftp}(\Delta) \text{ for exactly 1 trapezoid.} \]

- right endpoint of a segment (\(n \) such points)
Lemma 2 \(T(S) \) contains \(\leq 3n + 1 \) trapezoids.

Proof Every trapezoid \(\Delta \) is represented by \(\text{leftp}(\Delta) \). Need only count \(\text{leftp}(\Delta) \), including multiplicities (#times for each endpoint).

\(\text{leftp}(\Delta) \) is one of three possible types:

- lower left corner of \(R \)
 \[\Rightarrow \text{it is leftp}(\Delta) \text{ for exactly } 1 \text{ trapezoid}. \]

- right endpoint of a segment \((n \text{ such points}) \)
 \[\Rightarrow \text{it is leftp}(\Delta) \text{ for } \leq 1 \text{ trapezoid}. \]
Lemma 2 \(T(S) \) contains \(\leq 3n + 1 \) trapezoids.

Proof Every trapezoid \(\Delta \) is represented by \(\text{leftp}(\Delta) \). Need only count \(\text{leftp}(\Delta) \), including multiplicities (#times for each endpoint).

\(\text{leftp}(\Delta) \) is one of three possible types:

- lower left corner of \(R \)

 \(\Rightarrow \) it is \(\text{leftp}(\Delta) \) for exactly 1 trapezoid.

- right endpoint of a segment (\(n \) such points)

 \(\Rightarrow \) it is \(\text{leftp}(\Delta) \) for \(\leq 1 \) trapezoid.

 \(\uparrow \) shared endpoint
• left endpoint of a segment (n such points)

$\iff \text{leftp} (\Delta)$ for ≤ 2 trapezoids.

↑

shared endpoint
(cont’d)

- left endpoint of a segment (n such points)

 \iff \text{leftp}(\Delta)$ for ≤ 2 trapezoids.

 \uparrow

 shared endpoint

\[
\# \text{ trapezoids} \leq 1 + 1 \times n + 2 \times n
\]

$= 3n + 1$
Adjacency

Trapezoids Δ and Δ' are *adjacent* if they share a *vertical* edge.
Adjacency

Trapezoids Δ and Δ' are *adjacent* if they share a *vertical* edge.

Δ is adjacent to Δ_1, Δ_2, Δ_3, and Δ_4 but not to Δ_5.
Adjacency

Trapezoids Δ and Δ' are *adjacent* if they share a *vertical* edge.

Δ is adjacent to Δ_1, Δ_2, Δ_3, and Δ_4 but not to Δ_5.

Δ_1: upper left neighbor
Δ_2: lower left neighbor
Δ_3: lower right neighbor
Δ_4: upper right neighbor
A trapezoid has ≤ 4 neighbors under the general position assumptions.
A trapezoid has ≤ 4 neighbors under the general position assumptions.

Δ' adjacent to Δ along the left vertical edge of Δ.
A trapezoid has ≤ 4 neighbors under the general position assumptions.

Δ' adjacent to Δ along the left vertical edge of Δ.

$\text{top}(\Delta) = \text{top}(\Delta')$ or $\text{bottom}(\Delta) = \text{bottom}(\Delta')$
A trapezoid has ≤ 4 neighbors under the general position assumptions.

Δ' adjacent to Δ along the left vertical edge of Δ.

$\text{top}(\Delta) = \text{top}(\Delta')$ or $\text{bottom}(\Delta) = \text{bottom}(\Delta')$

$\text{top}(\Delta) = \text{top}(\Delta_1) = \text{top}(\Delta_4)$
A trapezoid has \(\leq 4 \) neighbors under the general position assumptions.

\[\Delta \] adjacent to \(\Delta \) along the left vertical edge of \(\Delta \).

\[
\begin{align*}
\text{top}(\Delta) &= \text{top}(\Delta') \\
\text{bottom}(\Delta) &= \text{bottom}(\Delta')
\end{align*}
\]

\[
\begin{align*}
\text{top}(\Delta) &= \text{top}(\Delta_1) = \text{top}(\Delta_4) \\
\text{bottom}(\Delta) &= \text{bottom}(\Delta_2) = \text{bottom}(\Delta_3)
\end{align*}
\]
IV. Point Location Data Structure

\(D\) is a directed acyclic graph (DAG)

- one root
- one leaf for every trapezoid
- two types of internal nodes
 - \(x\)-nodes labeled with an endpoint of some segment
 - \(y\)-nodes labeled with a segment

\(A\) \(E\)
\(p_1\) \(s_1\) \(q_1\)
\(B\) \(D\)
\(s_2\)
\(p_2\) \(C\) \(q_2\)
\(G\)
IV. Point Location Data Structure

\(D \) is a directed acyclic graph (DAG)

- one root
- one leaf for every trapezoid
- two types of internal nodes
 - \(x \)-nodes labeled with an endpoint of some segment
 - \(y \)-nodes labeled with a segment
$T(S)$ and D cross-referenced

trapezoid $\Delta \iff$ leaf of D
$T(S)$ and D cross-referenced

trapezoid $\Delta \Rightarrow$ leaf of D

pointer
Query

\[p_1 \rightarrow s_1 \rightarrow E \rightarrow q_1 \]

\[p_2 \rightarrow q_2 \rightarrow s_2 \rightarrow C \rightarrow p_1 \rightarrow B \rightarrow E \rightarrow D \rightarrow s_1 \rightarrow F \rightarrow q_1 \rightarrow G \]
Query

\[
\begin{align*}
&p_1 \quad s_1 \quad E \\
&B \quad D \quad q_2 \\
&s_2 \quad C \\
&p_2 \quad q_1 \\
&A \\
&s_1 \quad C \\
&B \\
&E \\
&D \\
&s_1 \quad F \\
&D \\
&E \\
&D \\
&D \\
&G
\end{align*}
\]
Query
Query
Query