Outline:

I. Construction of a kd-tree

II. Nodes and regions

III. Query using a kd-tree

IV. Analysis of query time
I. 2D Range Search

Point set: P
I. 2D Range Search

Point set: P

Assumptions (removable);

 - No two points have the same x-coordinate.
 - No two points have the same y-coordinate.
I. 2D Range Search

Point set: \(P \)

Assumptions (removable);
- No two points have the same \(x \)-coordinate.
- No two points have the same \(y \)-coordinate.

Query rectangle: \([x, x'] \times [y, y']\)
I. 2D Range Search

Point set: P

Assumptions (removable);

- No two points have the same x-coordinate.
- No two points have the same y-coordinate.

Query rectangle: $[x, x'] \times [y, y']$
I. 2D Range Search

Point set: \(P \)

Assumptions (removable);
- No two points have the same \(x \)-coordinate.
- No two points have the same \(y \)-coordinate.

Query rectangle: \([x, x'] \times [y, y']\)

\# answer points may be \(\ll |P| \).
I. 2D Range Search

Point set: P

Assumptions (removable);
- No two points have the same x-coordinate.
- No two points have the same y-coordinate.

Query rectangle: $[x, x'] \times [y, y']$

answer points may be $\ll |P|$.

Many queries.
Generation of a Kd-Tree
Generation of a Kd-Tree
Generation of a Kd-Tree

To the left or on l_1 To the right

p_1 p_2 p_3 p_4 p_5 p_6 p_7 p_8 p_9 p_{10}
Generation of a Kd-Tree

To the left or on l_1

To the right

p_1, p_2, p_3, p_4, p_5, p_6

p_7, p_8, p_9, p_{10}
Generation of a Kd-Tree

To the left or on

Above

Below or on

To the right

l_2

p_1

p_2

p_3

p_4

p_5

l_1

p_6

p_7

p_8

p_9

p_10
Generation of a Kd-Tree

To the left or on

Above

Below or on

To the right

\[p_1 \]

\[p_2 \]

\[p_3 \]

\[p_4 \]

\[p_5 \]

\[p_6 \]

\[p_7 \]

\[p_8 \]

\[p_9 \]

\[p_{10} \]
Generation of a Kd-Tree

To the left or on

To the right

Above

Below or on

l_2

p_1

l_3

p_2

p_3

p_4

p_5

p_6

p_7

p_8

p_9

p_{10}
Generation of a Kd-Tree

To the left or on

To the right

Above

Below or on
Generation of a Kd-Tree

To the left or on

To the right

Above

Below or on

p_1

l_2

l_3

p_2

l_5

p_3

p_4

l_4

p_5

l_1

p_6

l_6

p_7

p_8

p_9

p_{10}
Generation of a Kd-Tree

To the left or on

To the right

Above

Below or on
Generation of a Kd-Tree

To the left or on

To the right

Above

Below or on

To the left or on

To the right

Above

Below or on
Generation of a Kd-Tree
Strategy

- Split the point set P equally with a vertical line l_1.

 Store the splitting line l_1 at the root.
Strategy

- Split the point set P equally with a vertical line l_1.

 Store the splitting line l_1 at the root.

- Split the left subset of points equally with a horizontal line l_2.
Strategy

- Split the point set P equally with a vertical line l_1.
 Store the splitting line l_1 at the root.

- Split the left subset of points equally with a horizontal line l_2.
 Split the right subset of points equally with a horizontal line l_3.
Strategy

• Split the point set P equally with a vertical line l_1.

 Store the splitting line l_1 at the root.

• Split the left subset of points equally with a horizontal line l_2.

 Split the right subset of points equally with a horizontal line l_3.

• Split the four subsets vertically again.

 ...

Kd-Tree
Kd-Tree

left or on \(l_1 \) right

\[
\begin{align*}
\text{left or on} & \quad \text{right} \\
\text{left} & \quad \text{right} \\
\text{left} & \quad \text{right} \\
\text{left} & \quad \text{right}
\end{align*}
\]
Splitting

At the median: \[\left\lfloor \frac{n}{2} \right\rfloor \text{th smallest number.} \]
Splitting

At the median: $\left\lfloor n/2 \right\rfloor$ th smallest number.

- Vertical split by l

 $\{ p \mid p \text{ on or to the left of } l \}$

 $\cup \{ p \mid p \text{ to the right of } l \}$
Splitting

At the **median**: $\lfloor n/2 \rfloor$ th smallest number.

- **Vertical split by** l

 $$\{ p \mid p \text{ on or to the left of } l\} \cup \{ p \mid p \text{ to the right of } l\}$$

- **Horizontal split by** l

 $$\{ p \mid p \text{ on or below } l\} \cup \{ p \mid p \text{ above } l\}$$
Tree Construction

BuildKdTree\((P, d)\)

\[
\begin{align*}
\text{if } |P| &= 1 \\
\text{then return a leaf} \\
\text{else if } d \text{ even} \\
\text{then split } P \text{ with a vertical line } l \text{ through the median } x\text{-coordinate into } P_1 \text{ and } P_2 \\
\text{else split } P \text{ with a horizontal line } l \text{ through the median } y\text{-coordinate into } P_1 \text{ and } P_2 \\
v_{\text{left}} &\leftarrow \text{BuildKdTree}(P_1, d + 1) \\
v_{\text{right}} &\leftarrow \text{BuildKdTree}(P_2, d + 1)
\end{align*}
\]
Tree Construction

BuildKdTree(P, d)

if |P| = 1 then return a leaf
else if d even then split P with a vertical line l through the median x-coordinate into P₁ and P₂
else split P with a horizontal line l through the median y-coordinate into P₁ and P₂

vₗeft ← BuildKdTree(P₁, d + 1)
vₕright ← BuildKdTree(P₂, d + 1)
For efficiency of splitting, maintain n points in two lists:

- one sorted on the x-coordinate
- the other sorted on the y-coordinate

Every point is stored only once.
Building Time

\[T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
? & \\
O(n) + 2T\left(\frac{n}{2}\right) & \text{if } n > 1
\end{cases} \]
Building Time

\[T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
O(n) + 2T\left(\frac{n}{2}\right) & \text{if } n > 1
\end{cases} \]

\[T(n) = O(n \log n) \]
Building Time

$$T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
O(n) + 2T\left(\frac{n}{2} \right) & \text{if } n > 1
\end{cases}$$

$$T(n) = O(n \log n)$$

Subsumes sorting time!
II. Root of the Kd-Tree
Internal Node

plane l_1

left half-plane l_2
(cont’d)
Node as a Rectangular Region

\[\text{region}(\nu) \]

\[l_1 \]

\[l_2 \]

\[l_3 \]

\[T(\nu) \]

plane

left half-plane

lower left quarter
Each node v represents a rectangular region bounded by splitting lines stored at ancestors of v.

This region is split by the line storing at v.
How to Locate the Region?

Path: root $\rightsquigarrow v$
- Left of l_1
- Below l_2
- Right of l_3
III. Range Searching

Strategy: Search the subtree rooted at v only if the query rectangle R intersects region(v).
III. Range Searching

Strategy: Search the subtree rooted at v only if the query rectangle R intersects region (v).

- $\text{region}(v) \subseteq R$

Report all leaves (points) of $T(v)$.

\[\text{region}(v) \subseteq R \]
III. Range Searching

Strategy: Search the subtree rooted at \(v \) only if the query rectangle \(R \) intersects region \(\text{region}(v) \).

- \(\text{region}(v) \subseteq R \)

 Report all leaves (points) of \(T(v) \).

- \(\text{region}(v) \not\subseteq R \) and \(\text{region}(v) \cap R \neq \emptyset \)

 Recursively check \(\text{region}(\text{lchild}(v)) \) and \(\text{region}(\text{rchild}(v)) \).
Example
(cont’d)
Search Algorithm

SearchKdTree(v,R)

1. if \(v \) is a leaf
2. then if \(v \in R \)
3. then report \(v \)
4. else if region(lchild(v)) \(\subseteq \) R
5. then ReportSubtree(lchild(v)) \(// O(\# \text{ leaves}) \)
6. else if region(lchild(v)) \(\cap R \neq \emptyset \)
7. then SearchKdTree(lchild(v),R)
8. if region(rchild(v)) \(\subseteq \) R
9. then ReportSubtree(rchild(v)) \(// O(\# \text{ leaves}) \)
10. else if region(rchild(v)) \(\cap R \neq \emptyset \)
11. then SearchKdTree(rchild(v),R)
Search Algorithm

SearchKdTree(v,R)

1. if v is a leaf
2. then if $v \in R$
3. then report v
4. else if region(lchild(v)) ⊆ R
5. then ReportSubtree(lchild(v)) // O(# leaves)
6. else if region(lchild(v)) ∩ R ≠ ∅
7. then SearchKdTree(lchild(v),R)
8. if region(rchild(v)) ⊆ R
9. then ReportSubtree(rchild(v)) // O(# leaves)
10. else if region(rchild(v)) ∩ R ≠ ∅
11. then SearchKdTree(rchild(v),R)

Current region is maintained through recursive calls:
Search Algorithm

SearchKdTree(v, R)

1. if v is a leaf
2. then if $v \in R$
3. then report v
4. else if region(lchild(v)) $\subseteq R$
5. then ReportSubtree(lchild(v)) // $O(\# \text{ leaves})$
6. else if region(lchild(v)) $\cap R \neq \emptyset$
7. then SearchKdTree(lchild(v), R)
8. if region(rchild(v)) $\subseteq R$
9. then ReportSubtree(rchild(v)) // $O(\# \text{ leaves})$
10. else if region(rchild(v)) $\cap R \neq \emptyset$
11. then SearchKdTree(rchild(v), R)

Current region is maintained through recursive calls:

- l: line stored at node v
Search Algorithm

\text{SearchKdTree}(v, R)

1. \textbf{if } v \text{ is a leaf}
2. \hspace{1em} \textbf{then if } v \in R
3. \hspace{2em} \textbf{then report } v
4. \hspace{1em} \textbf{else if } \text{region(lchild}(v)) \subseteq R
5. \hspace{2em} \textbf{then ReportSubtree(lchild}(v)) // \textbf{O(# leaves)}
6. \hspace{2em} \textbf{else if } \text{region(lchild}(v)) \cap R \neq \emptyset
7. \hspace{3em} \textbf{then SearchKdTree(lchild}(v), R)
8. \hspace{1em} \textbf{if } \text{region(rchild}(v)) \subseteq R
9. \hspace{2em} \textbf{then ReportSubtree(rchild}(v)) // \textbf{O(# leaves)}
10. \hspace{2em} \textbf{else if } \text{region(rchild}(v)) \cap R \neq \emptyset
11. \hspace{3em} \textbf{then SearchKdTree(rchild}(v), R)

Current region is maintained through recursive calls:

- \textit{l}: line stored at node \(v \)
- \text{region(lchild}(v)) = \text{region}(v) \cap \text{half-plane left of or below } l
IV. Time Analysis – Count Node Visits

Determine the *number* of visited nodes.

Type 1

- Nodes reported as a traversal of some subtree (lines 3, 5 & 9)

1. if v is a leaf
2. then if $v \in R$
3. then report v
4. else if region(lchild(v)) $\subseteq R$
5. then ReportSubtree(lchild(v))
6. else if region(lchild(v)) $\cap R \neq \emptyset$
7. then SearchKdTree(lchild(v), R)
8. if region(rchild(v)) $\subseteq R$
9. then ReportSubtree(rchild(v))
10. else if region(rchild(v)) $\cap R \neq \emptyset$
11. then SearchKdTree(rchild(v), R)
Determine the number of visited nodes.

Type 1

- Nodes reported as a traversal of some subtree (lines 3, 5 & 9)

1. if v is a leaf
2. then if $v \in R$
3. then report v
4. else if $\text{region}(l\text{child}(v)) \subseteq R$
5. then $\text{ReportSubtree}(l\text{child}(v))$
6. else if $\text{region}(l\text{child}(v)) \cap R \neq \emptyset$
7. then $\text{SearchKdTree}(l\text{child}(v), R)$
8. if $\text{region}(r\text{child}(v)) \subseteq R$
9. then $\text{ReportSubtree}(r\text{child}(v))$
10. else if $\text{region}(r\text{child}(v)) \cap R \neq \emptyset$
11. then $\text{SearchKdTree}(r\text{child}(v), R)$

Linear in the number of reported points.
Type 2 Nodes

Type 2

- Nodes visited but not in a traversed subtree
 (lines 1, 6-7, 10-11)

1. if v is a leaf
2. then if $v \in R$
3. then report v
4. else if region(lchild(v)) $\subseteq R$
5. then ReportSubtree(lchild(v))
6. else if region(lchild(v)) $\cap R \neq \emptyset$
7. then SearchKdTree(lchild(v), R)
8. if region(rchild(v)) $\subseteq R$
9. then ReportSubtree(rchild(v))
10. else if region(rchild(v)) $\cap R \neq \emptyset$
11. then SearchKdTree(rchild(v), R)
Type 2 Nodes

Type 2

- Nodes visited but not in a traversed subtree
 (lines 1, 6-7, 10-11)
Type 2 Nodes

Type 2

- Nodes visited but not in a traversed subtree
 (lines 1, 6-7, 10-11)

- Each such node v satisfies
Type 2 Nodes

Type 2

- Nodes visited but not in a traversed subtree (lines 1, 6-7, 10-11)

- Each such node v satisfies

$$\text{region}(v) \cap R \neq \emptyset$$
$$\text{region}(v) \nsubseteq R$$
Type 2 Nodes

Type 2

- Nodes visited but not in a traversed subtree (lines 1, 6-7, 10-11)

- Each such node v satisfies

 \[
 \text{region}(v) \cap R \neq \emptyset \\
 \text{region}(v) \not\subseteq R
 \]

\[\downarrow\]

\# type 2 nodes \leq \# regions intersected by the four edges of R
Type 2 Nodes

Type 2

- Nodes visited but not in a traversed subtree (lines 1, 6-7, 10-11)

- Each such node \(v \) satisfies

\[
\text{region}(v) \cap R \neq \emptyset \\
\text{region}(v) \not\subset R
\]

\[
\downarrow
\]

- \# type 2 nodes \(\leq \) \# regions intersected by the four edges of \(R \)

- How to bound \#regions intersected by a vertical line?
Setting up a Recurrence

\[Q(n) \]: number of intersected regions in a kd-tree which
- stores \(n \) points, and
- has a vertical line \(l \) as the root.

Consider a vertical edge (as a line) of the query box.

\[l'
\]

\[n/2 \text{ points} \]

\[l \]

\[n/2 \text{ points} \]
Setting up a Recurrence

\(Q(n) \): number of intersected regions in a kd-tree which
- stores \(n \) points, and
- has a vertical line \(l \) as the root.

Consider a vertical edge (as a line) of the query box.

A vertical line \(m \) intersects one side of \(l \), say, its left side.
Setting up a Recurrence

\(Q(n) \): number of intersected regions in a kd-tree which
- stores \(n \) points, and
- has a vertical line \(l \) as the root.

Consider a vertical edge (as a line) of the query box.

A vertical line \(m \) intersects one side of \(l \), say, its left side.

The region corresponds to (i.e., is partitioned by) a horizontal splitting line \(l' \).
Setting up a Recurrence

\(Q(n) \): number of intersected regions in a kd-tree which

- stores \(n \) points, and
- has a vertical line \(l \) as the root.

Consider a vertical edge (as a line) of the query box.

A vertical line \(m \) intersects one side of \(l \), say, its left side.

The region corresponds to (i.e., is partitioned by) a horizontal splitting line \(l' \).

\(m \) intersects both children of \(l' \), whereas it intersects only one of \(l \).
Setting up a Recurrence

\(Q(n) \): number of intersected regions in a kd-tree which
- stores \(n \) points, and
- has a vertical line \(l \) as the root.

Consider a vertical edge (as a line) of the query box.

A vertical line \(m \) intersects one side of \(l \), say, its left side.

The region corresponds to (i.e., is partitioned by) a horizontal splitting line \(l' \).

\(m \) intersects both children of \(l' \), whereas it intersects only one of \(l \).

Not a recurrence situation!
Recurrence (cont’d)

Go down two levels!

- Four nodes at depth 2
- Each corresponds to $n/4$ points.
- Only two represent intersected regions.
Running Time

\[Q(n) = \begin{cases}
Q(1) & \text{if } n = 1 \\
2 + 2 Q(n/4) & \text{if } n > 1
\end{cases} \]
Running Time

\[Q(n) = \begin{cases}
Q(1) & \text{if } n = 1 \\
2 + 2Q(n/4) & \text{if } n > 1
\end{cases} \]

2 out of 4 regions represented by grandchild nodes
Running Time

\[Q(n) = \begin{cases}
Q(1) & \text{if } n = 1 \\
2 + 2 \, Q(n/4) & \text{if } n > 1
\end{cases} \]

2 out of 4 regions represented by grandchild nodes

\[Q(n) = O(\sqrt{n}) \]
Generalization to Higher Dimensions

- At the root, split into two subsets based on \(x_1 \) coordinate.
- At depth 1, partition based on \(x_2 \) coordinate.

 \[\vdots \]

- At depth \(d - 1 \), partition based on \(x_d \) coordinate.
- At depth \(d \), partition based on \(x_1 \) coordinate.

 \[\vdots \]

Recursion stops when the subset has one point.
d-Dimensional Kd-Tree

Binary tree with n leaves (points)

- $O(n)$ storage
- $O(n \log n)$ construction time
- $O(n^{1 - \frac{1}{d}} + k)$ query time
d-Dimensional Kd-Tree

Binary tree with \(n \) leaves (points)

- \(O(n) \) storage
- \(O(n \log n) \) construction time
- \(O(n^{1-\frac{1}{d}} + k) \) query time

\# reported points