Kd-Trees

Outline:

I. Construction of a kd-tree

II. Nodes and regions

III. Query using a Kd-tree

IV. Analysis of query time
I. 2D Range Search

Point set: P
I. 2D Range Search

Point set: \(P \)

Assumptions (removable);
- No two points have the same \(x \)-coordinate.
- No two points have the same \(y \)-coordinate.
I. 2D Range Search

Point set: P

Assumptions (removable);
- No two points have the same x-coordinate.
- No two points have the same y-coordinate.

Query rectangle: $[x, x'] \times [y, y']$
I. 2D Range Search

Point set: P

Assumptions (removable):

- No two points have the same x-coordinate.
- No two points have the same y-coordinate.

Query rectangle: $[x, x'] \times [y, y']$
I. 2D Range Search

Point set: P

Assumptions (removable);
- No two points have the same x-coordinate.
- No two points have the same y-coordinate.

Query rectangle: $[x, x'] \times [y, y']$

answer points may be $\ll |P|$.
I. 2D Range Search

Point set: P

Assumptions (removable):
- No two points have the same x-coordinate.
- No two points have the same y-coordinate.

Query rectangle: $[x, x'] \times [y, y']$

answer points may be $\ll |P|$.

Many queries.
Generation of a Kd-Tree

\(p_1 \)

\(l_2 \)

\(p_2 \)

\(l_5 \)

\(p_3 \)

\(l_1 \)

\(p_5 \)

\(p_7 \)

\(p_8 \)

\(p_9 \)

\(p_4 \)

\(l_4 \)

\(p_6 \)

\(p_{10} \)
Generation of a Kd-Tree
Generation of a Kd-Tree
Generation of a Kd-Tree
Generation of a Kd-Tree
Strategy

- Split the point set P equally with a vertical line l_1.

 Store the splitting line l_1 at the root.
Strategy

- Split the point set P equally with a **vertical** line l_1.

 Store the splitting line l_1 at the root.

- Split the left subset of points equally with a **horizontal** line l_2.
Strategy

- Split the point set P equally with a **vertical** line l_1.

 Store the splitting line l_1 at the root.

- Split the left subset of points equally with a **horizontal** line l_2.

 Split the right subset of points equally with a **horizontal** line l_3.
Strategy

- Split the point set P equally with a vertical line l_1.

 Store the splitting line l_1 at the root.

- Split the left subset of points equally with a horizontal line l_2.
 Split the right subset of points equally with a horizontal line l_3.

- Split the four subsets vertically again.

...
Kd-Tree

l_1

l_2

l_3

l_4

l_5

l_6

l_7

l_8

p_1

p_2

p_3

p_4

p_5

p_6

p_7

p_8

p_9

p_10
Kd-Tree

Diagram of a Kd-Tree with levels and points.
Splitting

At the *median*: $\left\lfloor n/2 \right\rfloor$th smallest number.
Splitting

At the median: \([n/2]\) th smallest number.

- Vertical split by \(l\)
 \[
 \{ p \mid p \text{ on or to the left of } l \} \cup \{ p \mid p \text{ to the right of } l \}
 \]
Splitting

At the median: \(\left\lfloor n/2 \right\rfloor \) th smallest number.

- Vertical split by \(l \)

 \[
 \{ p \mid p \text{ on or to the left of } l \}\]
 \[
 \cup \{ p \mid p \text{ to the right of } l \}\]

- Horizontal split by \(l \)

 \[
 \{ p \mid p \text{ on or below } l \}\]
 \[
 \cup \{ p \mid p \text{ above } l \}\]
Tree Construction

BuildKdTree\((P,d)\)

\[\begin{align*}
\text{if } |P| = 1 & \quad \text{then return a leaf} \\
\text{else if } d \text{ even} & \quad \text{then split } P \text{ with a vertical line } l \text{ through the median } x\text{-coordinate into } P_1 \text{ and } P_2 \\
\text{else } & \quad \text{split } P \text{ with a horizontal line } l \text{ through the median } y\text{-coordinate into } P_1 \text{ and } P_2 \\
\end{align*}\]

\[\begin{align*}
v_{\text{left}} & \leftarrow \text{BuildKdTree}(P_1, d + 1) \\
v_{\text{right}} & \leftarrow \text{BuildKdTree}(P_2, d + 1)
\end{align*}\]
Tree Construction

BuildKdTree(P,d)

if |P| = 1
 then return a leaf
else if d even
 then split P with a vertical line l through the median x-coordinate into P₁ and P₂
else split P with a horizontal line l through the median y-coordinate into P₁ and P₂

v_left ← BuildKdTree(P₁, d + 1)
v_right ← BuildKdTree(P₂, d + 1)
Presorting

For efficiency of splitting, maintain n points in two lists:

- sorted on x-coordinate
- sorted also on y-coordinate

\[(2, 10) \rightarrow (4, 3) \rightarrow (7, 5)\]
Building Time

\[T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
? & \text{if } n > 1 \\
O(n) + 2T\left(\frac{n}{2}\right) & \text{if } n > 1
\end{cases} \]
Building Time

\[T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
? & \\
O(n) + 2T\left(\frac{n}{2}\right) & \text{if } n > 1
\end{cases} \]

\[T(n) = O(n \log n) \]
Building Time

\[T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
? & \\
O(n) + 2T\left(\frac{n}{2}\right) & \text{if } n > 1
\end{cases} \]

\[T(n) = O(n \log n) \]

Subsumes sorting time!
II. Root of the Kd-Tree
Internal Node

Plane l_1

Left half-plane l_2
(cont’d)
Node as a Rectangular Region

l_1, l_2, l_3

plane, left half-plane, lower left quarter

$T(v)$

region(v)
Each node v represents a rectangular region bounded by splitting lines stored at ancestors of v.

This region is split by the line storing at v.
How to Locate the Region?

Path: root $\rightarrow v$
- Left of l_1
- Below l_2
- Right of l_3
III. Range Searching

Strategy: Search the subtree rooted at v only if the query rectangle R intersects region(v).
III. Range Searching

Strategy: Search the subtree rooted at ν only if the query rectangle R intersects region(ν).

- region(ν) \subseteq R

 Report all leaves (points) of $T(\nu)$.

![Diagram showing region(ν) and R intersecting]
III. Range Searching

Strategy: Search the subtree rooted at v only if the query rectangle R intersects $\text{region}(v)$.

- $\text{region}(v) \subseteq R$
 - Report all leaves (points) of $T(v)$.

- $\text{region}(v) \not\subseteq R$ and $\text{region}(v) \cap R \neq \emptyset$
 - Recursively check $\text{region}(\text{lchild}(v))$ and $\text{region}(\text{rchild}(v))$.
(cont’d)
(cont’d)
Search Algorithm

SearchKdTree(\(v, R\))

1. if \(v\) is a leaf
2. then if \(v \in R\)
3. then report \(v\)
4. else if region(lchild(\(v\))) \(\subseteq R\)
5. then ReportSubtree(lchild(\(v\))) \(// O(\# \text{ leaves})\)
6. else if region(lchild(\(v\))) \(\cap R \neq \emptyset\)
7. then SearchKdTree(lchild(\(v\)), \(R\))
8. if region(rchild(\(v\))) \(\subseteq R\)
9. then ReportSubtree(rchild(\(v\))) \(// O(\# \text{ leaves})\)
10. else if region(rchild(\(v\))) \(\cap R \neq \emptyset\)
11. then SearchKdTree(rchild(\(v\)), \(R\))
Search Algorithm

SearchKdTree(v, R)

1. if v is a leaf
2. then if $v \in R$
3. then report v
4. else if region(lchild(v)) $\subseteq R$
5. then ReportSubtree(lchild(v)) // O(# leaves)
6. else if region(lchild(v)) $\cap R \neq \emptyset$
7. then SearchKdTree(lchild(v), R)
8. if region(rchild(v)) $\subseteq R$
9. then ReportSubtree(rchild(v)) // O(# leaves)
10. else if region(rchild(v)) $\cap R \neq \emptyset$
11. then SearchKdTree(rchild(v), R)

Current region is maintained through recursive calls:
Search Algorithm

SearchKdTree(\(v, R\))

1. if \(v\) is a leaf
2. then if \(v \in R\)
3. then report \(v\)
4. else if region(lchild(\(v\))) \(\subseteq R\)
5. then ReportSubtree(lchild(\(v\))) // \(O(\# \text{ leaves})\)
6. else if region(lchild(\(v\))) \(\cap R \neq \emptyset\)
7. then SearchKdTree(lchild(\(v\)), \(R\))
8. if region(rchild(\(v\))) \(\subseteq R\)
9. then ReportSubtree(rchild(\(v\))) // \(O(\# \text{ leaves})\)
10. else if region(rchild(\(v\))) \(\cap R \neq \emptyset\)
11. then SearchKdTree(rchild(\(v\)), \(R\))

Current region is maintained through recursive calls:
- \(l\): line stored at node \(v\)
Search Algorithm

SearchKdTree(v, R)

1. if v is a leaf
2. then if v ∈ R
3. then report v
4. else if region(lchild(v)) ⊆ R
5. then ReportSubtree(lchild(v)) // O(# leaves)
6. else if region(lchild(v)) ∩ R ≠ ∅
7. then SearchKdTree(lchild(v), R)
8. if region(rchild(v)) ⊆ R
9. then ReportSubtree(rchild(v)) // O(# leaves)
10. else if region(rchild(v)) ∩ R ≠ ∅
11. then SearchKdTree(rchild(v), R)

Current region is maintained through recursive calls:

- l: line stored at node v
- region(lchild(v)) = region(v) ∩ half-plane left of or below l
IV. Time Analysis – Count Node Visits

Determine the *number* of visited nodes.

Type 1

- **Nodes reported as a traversal of some subtree** (lines 3, 5 & 9)

1. if v is a leaf
2. then if $v \in R$
3. then report v
4. else if region(lchild(v)) $\subseteq R$
5. then ReportSubtree(lchild(v))
6. else if region(lchild(v)) $\cap R \neq \emptyset$
7. then SearchKdTree(lchild(v), R)
8. if region(rchild(v)) $\subseteq R$
9. then ReportSubtree(rchild(v))
10. else if region(rchild(v)) $\cap R \neq \emptyset$
11. then SearchKdTree(rchild(v), R)
IV. Time Analysis – Count Node Visits

Determine the *number* of visited nodes.

Type 1

- Nodes reported as a *traversal of some subtree* (lines 3, 5 & 9)

1. if \(v \) is a leaf
2. then if \(v \in R \)
3. then report \(v \)
4. else if region(lchild(\(v \))) \(\subseteq R \)
5. then ReportSubtree(lchild(\(v \)))
6. else if region(lchild(\(v \))) \(\cap R \neq \emptyset \)
7. then SearchKdTree(lchild(\(v \)), \(R \))
8. if region(rchild(\(v \))) \(\subseteq R \)
9. then ReportSubtree(rchild(\(v \)))
10. else if region(rchild(\(v \))) \(\cap R \neq \emptyset \)
11. then SearchKdTree(rchild(\(v \)), \(R \))

Linear in the number of reported points.
Type 2 Nodes

Type 2

Nodes visited but not in a traversed subtree
(lines 1, 6-7, 10-11)

1. if v is a leaf
2. then if $v \in R$
3. then report v
4. else if region(lchild(v)) $\subseteq R$
5. then ReportSubtree(lchild(v))
6. else if region(lchild(v)) $\cap R \neq \emptyset$
7. then SearchKdTree(lchild(v), R)
8. if region(rchild(v)) $\subseteq R$
9. then ReportSubtree(rchild(v))
10. else if region(rchild(v)) $\cap R \neq \emptyset$
11. then SearchKdTree(rchild(v), R)
Type 2 Nodes

Type 2

- Nodes visited but not in a traversed subtree
 (lines 1, 6-7, 10-11)
Type 2 Nodes

Type 2

- Nodes visited but not in a traversed subtree (lines 1, 6-7, 10-11)

- Each such node ν satisfies
Type 2 Nodes

Type 2

- Nodes visited but not in a traversed subtree (lines 1, 6-7, 10-11)

- Each such node v satisfies

\[
\text{region}(v) \cap R \neq \emptyset \\
\text{region}(v) \not\subseteq R
\]
Type 2 Nodes

Type 2

- Nodes visited but not in a traversed subtree (lines 1, 6-7, 10-11)

- Each such node v satisfies

 \[\text{region}(v) \cap R \neq \emptyset \]
 \[\text{region}(v) \not\subseteq R \]

\[\downarrow \]

\[\# \text{ type 2 nodes} \leq \# \text{ regions intersected by the four edges of } R \]
Type 2 Nodes

Type 2

- Nodes visited but not in a traversed subtree (lines 1, 6-7, 10-11)

- Each such node v satisfies

 \[\text{region}(v) \cap R \neq \emptyset \]
 \[\text{region}(v) \not\subset R \]

\[\downarrow \]

type 2 nodes \leq # regions intersected by the four edges of R

- How to bound #regions intersected by a vertical line?
Setting up a Recurrence

\[Q(n) \]: number of intersected regions in a kd-tree which
- stores \(n \) points, and
- has a vertical line \(l \) as the root.

Consider a vertical edge (as a line) of the query box.
Setting up a Recurrence

\(Q(n) \): number of intersected regions in a kd-tree which
- stores \(n \) points, and
- has a vertical line \(l \) as the root.

Consider a vertical edge (as a line) of the query box.

A vertical line \(m \) intersects one side of \(l \), say, its left side.
Setting up a Recurrence

\(Q(n)\): number of intersected regions in a kd-tree which
- stores \(n\) points, and
- has a vertical line \(l\) as the root.

Consider a vertical edge (as a line) of the query box.

A vertical line \(m\) intersects one side of \(l\), say, its left side.

The region corresponds to a horizontal splitting line \(l'\).
Setting up a Recurrence

\[Q(n) \]: number of intersected regions in a kd-tree which
- stores \(n \) points, and
- has a vertical line \(l \) as the root.

Consider a vertical edge (as a line) of the query box.

A vertical line \(m \) intersects one side of \(l \), say, its left side.

The region corresponds to a horizontal splitting line \(l' \).

\(m \) intersects both children of \(l' \), whereas it intersects only one of \(l \).
Setting up a Recurrence

\(Q(n) \): number of intersected regions in a kd-tree which
- stores \(n \) points, and
- has a vertical line \(l \) as the root.

Consider a vertical edge (as a line) of the query box.

A vertical line \(m \) intersects one side of \(l \), say, its left side.

The region corresponds to a horizontal splitting line \(l' \).

\(m \) intersects both children of \(l' \), whereas it intersects only one of \(l \).

Not a recurrence situation!
Recurrence (cont’d)

Go down two levels!

- Four nodes at depth 2
- Each corresponds to $n/4$ points.
- Only two represent intersected regions.

```
 m  l'''  l
 l'    n/4 points
 l''  n/4 points
 l    n/2 points
```

```
 Q(n)
 /
 Q(n/4) l' Q(n/4)
 /
 l'' l'''
 /
```

```
 v
 /
```
Running Time

\[Q(n) = \begin{cases}
Q(1) & \text{if } n = 1 \\
2 + 2Q(n/4) & \text{if } n > 1
\end{cases} \]

\[Q(n) = O(\sqrt{n}) \]
Running Time

\[Q(n) = \begin{cases}
Q(1) & \text{if } n = 1 \\
2 + 2Q(n/4) & \text{if } n > 1
\end{cases} \]

2 out of 4 regions represented by grandchild nodes

\[Q(n) = O(\sqrt{n}) \]
Running Time

\[Q(n) = \begin{cases}
Q(1) & \text{if } n = 1 \\
2 + 2 Q(n/4) & \text{if } n > 1
\end{cases} \]

2 out of 4 regions represented by grandchild nodes

\[Q(n) = O(\sqrt{n}) \]
Generalization to Higher Dimensions

- At the root, split into two subsets based on x_1 coordinate.
- At depth 1, partition based on x_2 coordinate.
 - :
- At depth $d - 1$, partition based on x_d coordinate.
- At depth d, partition based on x_1 coordinate.
 - :

Recursion stops when the subset has one point.
d-Dimensional Kd-Tree

Binary tree with n leaves (points)

- $O(n)$ storage
- $O(n \log n)$ construction time
- $O(n^{1-\frac{1}{d}} + k)$ query time
d-Dimensional Kd-Tree

Binary tree with n leaves (points)

- $O(n)$ storage
- $O(n \log n)$ construction time
- $O(n^{1 - \frac{1}{d}} + k)$ query time

reported points