Critical Threshold Phenomena in Nonlinear Balance Laws

H. Liu
Global orientation dynamics for liquid crystalline polymers, Physica D. 228 (2007), 122-129.

T. Li and H. Liu (2007)
Critical thresholds in a relaxation model for travel flows, to appear in J. Indiana Univ.

T. Li and H. Liu (2006)

Critical thresholds in relaxation systems with resonance of characteristic speeds, submitted.

M. D. Francesco, K. Fellner and H. Liu (2006)

A non-local conservation law with nonlinear `radiation inhomogeneity. Submitted JHDE

H. Liu
Wave Breaking in a class of nonlocal dispersive wave equations, Journal of Nonlinear Math Phys. 13 (3), (2006), 441-466.

H. Liu
Critical Thresholds in the Semiclassical Limit of 2-D Rotational Schr\"{o}dinger Equations, ZAMP. 57 (2006), 42-58.

H.L. Liu and E. Tadmor
Rotation Prevents Finite Time BreakdownPhysica D 188 (2004) 262-276.

H.L. Liu and E. Tadmor
Critical Thresholds in 2-D Restricted Euler-Poisson Equations,  SIAM J. Appl. Math. 63 (6) (2003), 1889--1910.

H.L. Liu and E. Tadmor
Semi classical Limit of the Nonlinear Schrodinger-Poisson Equation with Subcritical Initial Data
 Methods and Applications of Analysis, Vol 9, No. 4 (2002), 517--532.

H.L. Liu and E. Tadmor (2002)
Critical Thresholds and Conditional Stability for Euler Equations and Related Models, Proceedings
of the Ninth International Conference on ''Hyperbolic Problems: Theory, Numerics,  Applications",
 Editors: T.Y. Hou and E. Tadmor, Springer,  pp227--240.

H.L. Liu and E. Tadmor 
Spectral Dynamics of the Velocity Gradient Field in Restricted  Fluid Flows
 Commun. Math. Phys. 228 (2002), 435--466.  

H.L. Liu and E. Tadmor
 Critical Thresholds in a Convolution Model for Nonlinear Conservation Laws,
 SIAM J. Math. Anal. 33 (2002), 930--945.

S. Engelberg, H.L. Liu and E. Tadmor,
Critical Thresholds in Euler-Poisson equations
Indiana University Mathematics Journal,  50 (2001),  109--157.