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We introduce a level set method for the computation of multi-valued solutions
of a general class of nonlinear first-order equations in arbitrary space dimen-
sions. The idea is to realize the solution as well as its gradient as the com-
mon zero level set of several level set functions in the jet space. A very generic
level set equation for the underlying PDEs is thus derived. Specific forms of
the level set equation for both first-order transport equations and first-order
Hamilton-Jacobi equations are presented. Using a local level set approach, the
multi-valued solutions can be realized numerically as the projection of single-
valued solutions of a linear equation in the augmented phase space. The level
set approach we use automatically handles these solutions as they appear.

KEY WORDS: level set method; multi-valued solutions; nonlinear first-order
equations.
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1. INTRODUCTION

Numerical simulations of high-frequency wave propagation are important
in many applications. When the wave field is highly oscillatory in the
high-frequency regime, direct numerical simulation of the wave field can
be prohibitively costly. Examples include the semiclassical limit for the
Schrödinger equation and geometric optics for the wave equation. A nat-
ural way to remedy this problem is to use some approximate model which
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can resolve the small-scale in the wave field. The classical approach is the
Wentzel–Kramers–Brillonin (WKB) method or geometric optics, which are
asymptotic approximations obtained when the small scale becomes finer.
Instead of the oscillating wave field, the unknowns in the WKB system are
the phase and the amplitude, neither of which depends on the small scale,
and typically vary on a much coarser scale than the wave field. Hence they
are usually easier to compute numerically.

An obvious drawback of this method is that linear equations are
replaced by nonlinear ones, and thereby the superposition principle is lost.
In the WKB system the phase is often described by Hamilton-Jacobi (HJ)
equations; unfortunately, the classical viscosity solutions [10] are not ade-
quate in describing the superposition nature of waves in phase space. A
natural way to avoid such difficulties is to seek multi-valued solutions cor-
responding to crossing waves. In the last decade, various techniques have
been introduced for multi-phase computations found in several applica-
tions. Consult [14] for a recent survey on computational high-frequency
wave propagation. In [9] we introduced a level set framework to compute
the multi-valued solutions to HJ equations, with application to the semi-
classical limit of the linear Schrödinger equation.

The goal of our work here is to extend the ideas developed in [9]
and [22] for the computation of multi-valued solutions of a very general
class of nonlinear first-order equations including ∂tS +H(x,S,∇xS)= 0,
to which the previous studies conducted in [9, 22] do not apply. Recently
mathematical theory of multi-valued solutions has further been developed
in [23], where a notion of geometrical solutions is adopted based on level
set formulations introduced in this paper. The well-posedness of the geo-
metrical solutions of HJ equations is established and the relation with
entropy and viscosity solutions is clarified.

We begin by sketching the ideas explored in [9], where we focused on
the computation of multi-valued solutions of the HJ equation

∂tS+H(x,∇xS)=0, x ∈ IRn, (1.1)

which appears as the phase equation in the semiclassical limit of the lin-
ear Schrödinger equation. The level set functions φ(t, x,p), defined in the
phase space (x,p) ∈ IR2n, with p = ∇xS, each satisfies a linear Liouville
equation,

∂tφ+∇pH ·∇xφ−∇xH ·∇pφ=0 (1.2)

and the multi-valued phase gradient is captured as the intersection of the
zero level sets of n+ 1 level set functions (see also [22]). However in the
semiclassical regime of the Schrödinger equation, there is also a need to
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resolve the multi-valued phase value S(t, x) in the whole domain. In the
context of geometric optics, the phase remains constant along the ray [27]
(as it does for any Hamiltonian which is homogeneous of degree one in
∇S); the wavefront is therefore defined as the level curve of the phase and
the phase solution is completely determined by computing the wavefront
location. However in the Schrödinger setting the phase S does change its
shape along the ray in (x,p) space. In [9] we defined the wavefront to be
the n− 1 dimensional surface in (x,p) space, driven by the Hamiltonian
dynamics (1.2), and starting with a level surface of the initial phase S0.
For the computation of such a defined wavefront, we solve n+ 1 decou-
pled level set equations (1.2), n of these functions can be initialized as the
components of p−∇xS0, and the remaining one can be initialized as the
level set of the initial phase, e.g., S0(x)−C.

As pointed out in [9], solving the Liouville equation (1.2) alone is not
enough to compute the multi-valued phase S(t, x), even on the wavefront
described above. Note that in the phase space (x,p), the corresponding
phase function S̃(t, x,p) satisfies a forced hyperbolic transport equation

∂t S̃+∇pH ·∇xS̃−∇xH ·∇pS̃=p ·∇pH −H. (1.3)

The strategy in [9] was to look at the graph of the phase function
z= S̃(t, x,p) in the whole domain, or equivalently to evolve a level set
function φ=φ(t, x,p, z) in the extended phase space (x,p, z)∈ IR2n+1

∂tφ+∇pH ·∇xφ−∇xH ·∇pφ+ (p ·∇pH −H)∂zφ=0. (1.4)

In this way, wavefronts with possible multi-phases are tracked and the
phase value is numerically resolved via the intersection of n+1 zero level
sets in the extended space (x, z,p) ∈ IR2n+1 (see e.g. [6, 9]). In particu-
lar, the augmented phase space enables us to track the phase S in the
entire domain and then project onto the wavefront surface when desired.
Note that the Hamiltonian H in (1.1) does not explicitly depend on S, and
therefore Eq. (1.3) is linear in S. Thus, the singularities of S are already
‘unfolded’ in the phase space (x,p)∈ IR2n. For this reason, in [9] we chose
to either solve the forced Liouville PDE (1.3) in the whole domain or
evolve the whole phase as a zero level set in (x, z,p)∈ IR2n+1, whichever
was more convenient. We note that the ‘phase space’ idea used in [9] is
not new and has already been extensively explored in various contexts
(see, e.g., [7, 15, 26, 33]). However, the level set equation in the jet space
(x,p, z) was formulated for the first time in [9] for HJ equation (1.1). Our
aim in this work is to generalize the method in [9] to any first-order PDEs
and present some new numerical examples beyond those given in [9].
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To put our study in the proper perspective, we recall that there has
been a considerable amount of literature available on the computation of
multi-valued solutions, ranging from geometric optics [1, 11–13, 27] to the
semiclassical regime of Schrödinger equations [9, 17, 21]. In the literature,
Lagrangian methods (called ray tracing) and Eulerian methods are the
two main approaches used to compute multi-valued solutions. An obvi-
ous drawback of the former lies in numerically obtaining adequate spatial
resolution of the wavefront in regions with diverging rays. This problem
is avoided in Eulerian methods through the use of uniform fixed grids in
their computations (see, e.g., [2, 3]). With Eulerian methods, however, diffi-
culties arise in handling the multi-valued solutions that appear beyond sin-
gularity formation.

A widely acceptable approach for physical space-based Eulerian meth-
ods is the use of a kinetic formulation in the phase space, in terms of
a density function that satisfies Liouville’s equation, where the technique
used to capture multi-valued solutions is based on a closure assumption
of a system of equations for the moments of the density (see [4, 5, 12,
16, 17, 21]). In geometric optics and the topic of wavefront construction,
geometry-based methods in phase space such as the segment projection
method [13], and the level set method [8, 27, 30] have been recently intro-
duced. For the computation of multi-valued solutions to the semiclassical
limit of the Schrödinger equation, a new level set method for HJ equa-
tions was introduced in [9], to realize the phase S on the whole domain
with the level set evolution in an extended space (x, z,p). Furthermore,
wavefronts are constructed via the linear Liouville equation in the (x,p)
space. As remarked earlier our key idea is to build both the ‘graph’ and
the ‘gradient’ into the zero level set, allowing for computation of multi-
valued solutions in the whole domain of physical interest.

Related to our work in [9], on the computation of multi-valued solu-
tions of HJ equation (1.1), is the recent work of [22]. In this paper, the
authors used the level set formulation given in [7] to obtain the same
result as in this paper for the case of a scalar quasilinear hyperbolic equa-
tion. For HJ equations of the type (1.1), where the Hamiltonian does
not depend on the solution but only on its gradient, the authors in [22]
derived the same level set Liouville equations for the gradient of the phase
through an independent approach involving techniques found in [7] and
[33]. They presented numerical results in one and two-dimensions that
realized the phase gradient for the HJ equation, plotted using the visuali-
zation package devised in [24].

In computing the level set equation in phase space, since the area of
interest is close to the zero level set, it is possible to use fast local level set
techniques in the same manner as in, e.g., [8, 9, 27, 30], which will reduce
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the computational cost and (recently) also reduce the storage requirements
[25].

This paper is organized as follows. In Sec. 2 we list some nonlinear
HJ equations which arise in the high-frequency asymptotic approximation.
Section 3 is devoted to a derivation of the generic level set equation for
fully nonlinear first-order equations of the form G(ξ,u,∇ξ u)= 0. Specific
forms of the level set equations for hyperbolic transport equations and HJ
equations are presented. Also in this section the computation of multi-val-
ued solutions for several equations are discussed and the required num-
ber of level set functions for realizing the solution as well as the choice of
corresponding initial data are specified. Finally in Sec. 4 we describe the
numerical strategy used and present some numerical results.

2. THE WKB METHOD AND HAMILTON-JACOBI EQUATIONS

Before introducing our general level set framework for the compu-
tation of multi-valued solutions of first-order PDEs, we pause to con-
sider some applications in high-frequency wave propagations for which
we have special HJ equations for the phase function of the wave field.
In these cases, the multi-valuedness will reflect the interference of waves.
We illustrate as well how nonlinear HJ equations are obtained via the
WKB method. Typical applications include the semiclassical limit for
Schrödinger equations and geometric optics for the wave equation. The
common feature among these problems is the involvement of a small
dimensionless parameter ε serving as the microscopic–macroscopic ratio.
We look at the O(ε)-wave length solutions, which can be tracked in one
wave packet with a spatial spreading of the order of 1/ε if the initial wave
field is highly oscillating and takes the form

ψ(x,0)=A0(x) exp(iS0(x)/ε). (2.1)

The usual way to tackle this problem is to use the WKB Ansatz, which
consists of representing the wave field function ψε in the form

ψ(t, x)=Aε(t, x) exp(iS(t, x)/ε). (2.2)

With this decomposition, the most singular part of the wave field is
characterized by two quantities: the phase function S, which satisfies the
nonlinear HJ equation, and the amplitude function A, which satisfies a
transport equation.

The derivation of the WKB system in the linear case is classical (see,
e.g., Whitham’s book [34]). For linear wave equations subject to highly
oscillatory initial data, insertion of (2.2) into the underlying equations
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leads to corresponding relations between the wave’s phase S and its ampli-
tude. Splitting the relation into real and imaginary parts and taking the
lowest-order (in terms of ε) terms, one often obtains weakly coupled
WKB systems of the form

∂tS+H(x,∇xS)=0,

∂tρ+∇x · (ρ∇pH(x,∇xS))=0,

where ρ is related to the amplitude A. We list here two examples, see [32]
for more WKB-systems derived from generalized dispersive equations.

(1) Linear Schrödinger equation:

iε∂tψ
ε =−ε

2

2
∆ψε +V (x)ψε, x ∈ IRd (2.3)

where V is the corresponding potential, and ε the scaled Planck
constant. In this case H(x,p)= |p|2

2 +V (x) and ρ=A2.
(2) The wave equation in an inhomogeneous medium with a variable

local speed c(x) of wave propagation in the medium:

∂2
t ψ

ε = c2(x)∆ψε, x ∈ IRd (2.4)

for which we have H(x,p)= c(x)|p| and ρ=A2/c(x).

We note that for the wave equation (2.4), if we look for a planar wave
solution ψ = u(x) exp(it/ε), we are led to a steady state function solving
the scalar Helmholtz equation

−(∆+k2)u=0, k := (εc(x))−1. (2.5)

Searching for solutions oscillating with frequency 1/ε, we could use the
ansatz u(x)=A(x) exp(iS(x)/ε), leading to a weakly coupled system,

c(x)|∇xS|=1, ∇x · (A2∇xS)=0. (2.6)

In the paraxial application, one spatial variable is regarded as the
evolution direction and the above steady eikonal equation may be written
as

∂x2S−
√
c−2 − (∂x1S)

2 =0

or a variant of this (see e.g. [18]). This is again a ‘time-dependent’ HJ
equation. From the above weakly coupled systems we see that the multi-
valued phase S can be computed from the nonlinear HJ equations, inde-
pendent of amplitude, and the amplitude is forced to become multi-valued
at points where the phase is multi-valued.
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3. LEVEL SET EVOLUTION

Consider a general first-order nonlinear equation

G(ξ,u,∇ξ u)=0, (3.1)

where u∈ IR1 is a scalar unknown and ξ ∈ IRm is the independent variable.
Furthermore, G=G(ξ, z, q), (ξ, z, q)∈ IR2m+1 is a given function satisfying
the nondegeneracy assumption

|∇qG(ξ, z, q)|2 �=0,

which ensures that (3.1) is, in fact, a first-order equation.
In order to visualize the solution profile (single-valued or multi-valued),

following [9], we introduce a generic level set function φ(ξ, z, q) in an
extended space (ξ, z, q)∈ IR2m+1 so that the solution z=u(ξ), and also its
gradient ∇ξ u, stay on the zero level set

φ(ξ, z, q)=0, z=u(ξ), q=∇ξ u(ξ).
Since Eq. (3.1) is a first-order equation, its characteristics exist at least
locally. Let such characteristics be parameterized as (ξ, z, q)= (ξ, z, q)(τ ).
The level set function should be independent of the parameter τ . There-
fore,

d

dτ
φ(ξ(τ ), z(τ ), q(τ ))≡0,

which gives the level set equation

�A ·∇{ξ,z,q}φ=0,

where �A := (
dξ
dτ
, dz
dτ
,
dq
dτ
) denotes the direction field of the characteristics.

According to the classical theory of characteristics for general differen-
tial equations of the first order, see [7, pp. 142–144], the vector field is
obtained as

A1 =∇qG, A2 =q ·∇qG, A3 =−∇ξG−q · ∂zG.
Thus our level set equation is

∇qG ·∇ξφ+q ·∇qG∂zφ− (∇ξG+q∂zG) ·∇qφ=0, (3.2)

which as a linear equation serves to ‘unfold’ multi-valued quantities wher-
ever they occur in the physical space. The level set equation in such gener-
ality can be used to capture wavefronts, and to recover the solution value
u and the gradient of the solution when desired.
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Based on the general level set equation (3.2), we can write down the
corresponding form of the level set equation once the target PDE is given.
To implement the level set method for a given problem we still need to
further check (i) whether reducing to a lower dimension is possible (to
reduce computational cost); (ii) how many level set functions are needed;
and (iii) how the initial data is chosen. Here are some guiding principles:

• When implementing the level set method, reducing to a lower
dimension is preferred for lowering the computational cost. In gen-
eral such reduction is indeed possible if the variables in the lower
dimension give us the quantities we want to compute and these
variables evolve along the characteristic field independent of other
variables in the full space (ξ, z, q).

• If the reduced space dimension is m and the object of interest is k
dimensional, then use m−k level set functions;

• The initial data should be chosen in such a way that the intersec-
tion of zero level sets of these chosen initial data uniquely embeds
the given initial data in the original PDE problem.

The level set method has proven to be a powerful tool for capturing the
dynamic evolution of surfaces (see [28, 29]). We now demonstrate the level
set method by looking at hyperbolic transport equations and HJ equa-
tions, which are two prototypical examples of first-order PDEs. We will
study how many level set functions are needed to determine the desired
quantities, and how to choose initial data to generate these level set func-
tions.

3.1. Hyperbolic Transport Equations

Consider the first-order time-dependent transport equation:

∂tu+F(u, x, t) ·∇xu=B(u, x, t), x ∈ IRn, u∈ IR1 (3.3)

subject to smooth initial data u(0, x)=u0(x).
Take ξ= (t, x) and q= (p0, p) with p0 =∂tu, p :=∇xu, and Eq. (3.3)

can be rewritten as G=0 where

G :=p0 +F(z, x, t) ·p−B(z, x, t), z=u.

A simple calculation gives

∇qG ·∇ξφ= ∂tφ+F(z, x, t) ·∇xφ



Multi-Valued Solutions of Nonlinear First-Order Equations 361

and

q ·∇qGφz= (1,F ) · (p0, p)=p0 +F ·p=B(z, x, t)φz,
where we have used the fact G=p0 +F ·p−B=0. The level set equation
(3.2) in this setting reduces to

∂tφ+F ·∇xφ+B∂zφ+A3 ·∇qφ=0.

Note that the transport speeds in the x and z-directions do not explicitly
depend on (p0, p). Therefore, the level set function will not depend on q=
(p0, p) if it does not do so initially. Thus, the effective level set equation
in the phase space (t, x, z) reads as

∂tφ+F ·∇xφ+B∂zφ=0. (3.4)

The solution u to (3.3) with initial data u(0, x)=u0(x) can be determined
as the zero level set,

φ(t, x, z)=0, z=u(x, t).
In this case, we only need one level set function φ. The initial data can
simply be chosen as

φ(0, x, z)= z−u0(x)

or alternatively the signed distance to the surface z=u0(x) in the case of
nonsmooth data. Here the zero level set φ(t, x, u)= 0 can be regarded as
a complete integral to (3.4), which implicitly determines u (see [7, p. 140]).

3.2. Generalized Hamilton-Jacobi Equations

Consider a generalized HJ equation

∂tS+H(x,S,∇xS)=0 (3.5)

subject to the initial data

S(x,0)=S0(x), x ∈ IRn. (3.6)

Note, in previous literature, e.g. [10], this equation was simply referred to
as HJ equation. Here, we call it generalized HJ equation to distinguish it
from the case where the Hamiltonian does not depend on S explicitly. The
inclusion of S fundamentally changes the behavior of the solution. Thus,
the previous studies conducted in [9] do not apply in this situation.
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Taking ξ = (t, x) and q = (p0, p) with p0 = ∂tS, p= ∇xS, Eq. (3.5)
can be rewritten as G=0, where

G :=p0 +H(x, z,p), z=S.

A straightforward calculation gives

∂qG ·∇ξφ = ∂tφ+∇pH ·∇xφ,
q ·∇qG∂zφ = (p ·∇pH −H)∂zφ

and

∇ξG+q · ∂zG= (0,∇xH)+ (p0, p)Hz= (−HHz,∇xH +pHz),

where we have used p0 = −H(x, z,p). The level set equation in the full
phase space (x, z,p,p0) thus becomes

∂tφ+∇pH ·∇xφ+ (p ·∇pH −H)∂zφ− (∇xH +pHz)∇pφ+HHz∂p0φ=0.

The effective level set equation for (3.5), when capturing p0 =∂tS is not a
goal, yields

∂tφ+∇pH ·∇xφ+ (p ·∇pH −H)∂zφ− (∇xH +pHz)∇pφ=0, (3.7)

where φ := φ(t, x, z,p) is well defined in the space (x, z,p) ∈ IR2n+1 for
fixed t . The solution S is evolved as the zero level set of φ=φ(t, x, z,p)
with z=S, p=∇xS,

Since (p, z)∈ IRn+1, we need (n+1) level set functions φi(t, x, z,p)(i=
1, . . . , n+1) in this case. Their common zero level set captures the desired
solution z=S in the jet space (x,p, z). As a by-product, the multi-valued
p=∇xS will also be determined in this procedure.

For these level set functions, the corresponding initial data can be
simply chosen as

φ1(0, x, z,p) = z−S0(x), (3.8)

φi(0, x, z,p) = pi − ∂xi S0(x), i=2, . . . , n+1. (3.9)

Again for nonsmooth data, we need to use instead the signed distance
function to the surfaces z=S0(x) or p=∇xS0(x).

If the Hamiltonian H does not depend explicitly on S, i.e., Hz = 0,
(3.7) will lead to the level set equation

∂tφ+∇pH ·∇xφ+ (p ·∇pH −H)∂zφ−∇xH∇pφ=0. (3.10)
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Note that when H does not depend on z explicitly, the level set function
φ will be independent of z, if it is chosen so initially. Therefore, if one just
wants to capture the wavefront or resolve the gradient of S, the effective
level set equation reduces to

∂tφ+∇pH ·∇xφ−∇xH ·∇pφ=0.

This is the well-known Liouville equation (1.2). In this case, only n inde-
pendent level set functions are needed for capturing the phase gradient
∇xS (see [9, 22]).

4. NUMERICAL TESTS

The level set equation for first-order time-dependent PDEs takes the
form

∂tφ+ �A(X) ·∇Xφ=0 (4.1)

with X= (x, z,p) being the variable in the extended phase space and the
coefficient �A(X) depending on the phase variable X. We apply variants of
the numerical algorithm developed in [9] to (4.1) to capture possible multi-
valued solutions of the original nonlinear PDEs.

We conclude the paper with a number of numerical examples. We
present mainly 1D examples focusing on the computation of phase in the
whole domain; consult [9] for phase computations restricted on wavefronts
and [22] for the computation of phase gradient (velocity). The details of
the level set algorithms, including boundary conditions, grid sizes, and
time steps used, and the intricacies of reinitialization, following the numer-
ical studies of [9].

4.1. One-Dimensional Transport Equations

Consider the scalar transport equation

∂tu+ ∂xf (u)=−v′(x), x ∈ IR

subject to the initial data u(x,0)=u0(x). Usually of interest is the viscos-
ity solution of this PDE satisyfing the entropy condition. However, we are
interested here in the calculation of multi-valued solutions. Our level set
approach, in this case, realizes this type of solution as the zero level set

φ(t, x, z)=0, z=u(x, t)
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evolving with the level set function φ under the transport equation

∂tφ+f ′(z)∂xφ−v′(x)∂zφ=0.

Initial data for this equation is chosen to satisfy z=u0(x), and thus one
common choice is

φ0(x)= z−u0(x).

Example 1—Inviscid Burgers’ Equation
Consider the inviscid Burgers’ equation

∂tu+ ∂x
[
u2

2

]
=0

with smooth periodic initial data

u0(x)=0.5+ sin(x).

The solution of this PDE is well-analyzed, and we know that it develops
a singularity at the critical time Tc=1 and spatial location x= (2k+1)π+
0.5, for each k∈ZZ.

The PDE for evolution of φ takes the form

∂tφ+ z∂xφ=0,

with initial data

φ0(x)= z− (0.5+ sin(x)).

Figure 1 shows the behavior of the multi-valued solution computed using
our algorithm. The zero level sets of φ at different times are plotted in the
same graph. Notice we are able to capture the overturning of the func-
tion at the correct location x = −π + 0.5. This overturning is a shock in
the standard entropy solution.

Example 2—Nonconvex Flux
Consider the Riemann problem

∂tu+ ∂x
[
(u2 −1)(u2 −4)

4

]
=0

with discontinuous initial data

u0(x)=
{

2, x≤0,
−2, x >0.
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Fig. 1. Our approach capturing an initial sine function overturning to become multi-valued.
The plots are at 0.3921268 time intervals, with the final curve at time 1.96063.

Thus the initial data has a discontinuity at x=0 which overturns at later time.
In this case, the level set evolution equation takes the form

∂tφ+ z
(
z2 − 5

2

)
∂xφ=0

and we choose φ0(x) to be the signed distance function associated to the
graph of u0(x), due to the discontinuity. Figure 2 shows the multi-valued
solution associated to this problem. We plot in the same graph the time
evolution, in equal time intervals, of the initial function using our algo-
rithm. Overturning is clearly seen and there are up to five values of the
function at a given x. Our approach is able to capture all of the multi-
valued phenomena.

4.2. One-Dimensional Hamilton-Jacobi Equations

Consider the HJ equation

∂tS+ 1
2
|∂xS|2 +V (x)=0,

where V (x) is a function called the potential. Furthermore, let S0(x) be
the initial data for S. This specific set of equations arises as the semiclas-
sical limit of the linear Schrödinger equation, where S denotes the phase
(see, e.g., [9, 21, 32]).
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Fig. 2. Our approach applied to a Riemann problem, with initial step function, that pro-
duces multi-valued solutions. The plots are at 0.1160138 time intervals with the final curve at
time 0.928111.

Example 3—Free motion V ≡0
In the case of free motion, where V ≡0, the HJ equation reduces to

∂tS+ 1
2 |∂xS|2 =0.

In our level set approach, we introduce the two component vector valued
level set function φ=φ(t, x, z,p), which satisfies the equation for motion,

∂tφ+p∂xφ+ p2

2
∂zφ=0.

Furthermore, we can in many cases take as initial data for φ,

φ1(0)= z−S0(x), φ2(0)=p− ∂xS0(x),

where φ1 and φ2 denote the first and second components of φ, respectively.
The specific cases we consider are:

(1) Case—No caustic

S0(x)= x2

2
, x ∈ IR.
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In this case, the solution S remains smooth for all time, taking
the form

S(x, t)= x2

2(t+1)
.

Figure 3 shows the results of our algorithm in xz-space, project-
ing away p, on this problem. The initial parabola flattens out as
time increases but no multi-valuedness occurs.

(2) Case—Focusing at a Point

S0(x)=−x
2

2
, x ∈ IR.

In this case, all rays intersect at the focus point (x, Tc)= (0,1),
and then spread out afterwards. Thus almost everywhere in
space, there is a single-valued phase, taking the form

S(x, t)= x2

2(t−1)
.
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Fig. 3. Our approach for free motion on an initial parabola, the one above the rest. No sin-
gularities appear in this example. The plots are at time intervals of 0.167318 with the final
curve at time 2.00781.
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Figure 4 shows our projected results in xz-space for this exam-
ple. The initially inverted parabola becomes thinner and thinner,
eventually flipping over to parabolas lying above the x-axis and
expanding. Some of the parabolas are “cut off” in the graph due
to the finite z-direction of the domain used in our computations.

(3) Case—Caustic

S0(x)=− ln(cosh(x)), x ∈ IR.

In this case, a singularity appears at time 1 and located at x=
0. After this time and from this location, a multi-valued phase
appears. Figure 5 shows the behavior of the solution obtained
from our algorithm plotted at equal time intervals up to time
1.5. The shrinking solutions develop a swallow-tail singularity
after the critical time Tc=1 at x=0. A zoom of specifically this
multi-valuedness between time 1 and 1.5 are also shown in the
figure. These results fit with the analysis of the PDE.
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Fig. 4. Our approach showing focusing on an initial inverted parabola, the uppermost con-
cave down one. The parabola remains concave down and adds curvature before the singu-
larity, afterwhich it switches to concave up and relaxing in curvature. The plots are at time
intervals of 0.1669248 with the final curve at time 2.0031.



Multi-Valued Solutions of Nonlinear First-Order Equations 369

–1.5 –1 –0.5 0 0.5 1 1.5
–1.5

–1

–0.5

0

0.5

1

1.5

–0.2 0 0.2

–0.2

0

0.2

Fig. 5. Our approach capturing caustics, with a swallow-tail multi-valuedness developing at
the critical time with initial curve the uppermost concave down parabola. The plots are at
time intervals of 0.1673176 with the final curve at time 1.50586. The figure on the right is a
zoomed picture around the singularity of the solutions at and after the critical time.

Example 4—Harmonic oscillator V (x)=x2/2
For general V (x), the level set evolution equation takes the form

∂tφ+p∂xφ+
(
p2

2
−V (x)

)
∂zφ− ∂xV (x)∂pφ=0

and the initial data can in many cases be taken as

φ1(0)= z−S0(x), φ2(0)=p− ∂xS0(x).

For V (x)=x2/2 and S0(x)=x (see [32]), rays will intersect at the focal
points

(x, Tc)=
(
(−1)m+1,

(2m+1)π
2

)
, m∈ZZ.

The solution in fact is explicitly given as

S(x, t)=−1
2
(x2 +1) tan(t)+ x

cos(t)
, t �= (2m+1)π

2
.

Figure 6 shows our results, plotted in xz-space, for this problem. The ini-
tial line z=x first focuses at x=1 and then subsequently at x=−1, at each
time developing multi-valuedness after the focusing. This oscillation con-
tinues since the singularties form periodic in time. Although there are once
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Fig. 6. Our approach for the harmonic oscillator showing oscillating focusing effects occur-
ing between two points. The inital curve is the line through the origin of slope 1. This sub-
sequently bends into concave down parabolas, then concave up ones about the singularity on
the right. In later time these straighten out to a line of slope −1 and reproduce the behav-
ior about the singularity on the left. The plots are at time intervals of 0.333484 with the final
curve at time 10.0045.

again “cut offs” due to the computational domain used, we are still able
to capture the multi-valued solution throughout the focusing effects.

Example 6—Other multi-valued phenomena
In the semiclassical limit for plasma, there appears the equation

St + |Sx |2
2

=−αS

with S0(x)= −|x| and some physical parameter α > 0. With x ∈ IR1 and
α=1, we plot the results in Fig. 7 along with branches of the exact solu-
tion at the final time. These branches satisfy −(|x| + t)e−t + 0.5(1 − e−t )
for |x|> t , and (±|x| − t)e−t + 0.5(1 − e−t ) or 0.5x2(1 − e−t )/t2 for |x| ≤
t . The multi-valued characteristics match and the positions are in good
agreement except for the small, thin loops at the ends of the swallow-tails,
whose lengths are cut by half in the computed solution. This may be due
to numerical diffusion and resolution with the nonsmooth initial data.
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Fig. 7. Our approach applied in the semiclassical limit for plasma is shown. The initial
curve, the inverted V-shape, develops a swallow-tail with small, thin loops at the ends. The
plots are at time intervals of 0.888888 with the final curve at time 0.444444. The figure on
the right shows branches of the exact solution with the same characteristics as in the com-
puted solution.
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