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Abstract. The weakly coupled WKB system captures high frequency wave dynam-
ics in many applications. For such a system a level set method framework has been
recently developed to compute multi-valued solutions to the Hamilton-Jacobi equation
and evaluate position density accordingly. In this paper we propose two approaches for
computing multi-valued quantities related to density, momentum as well as the energy.
Within this level set framework we show that physical observables evaluated in [15, 14]
are simply the superposition of their multi-valued correspondents. A series of numeri-
cal tests is performed to compute multi-valued quantities and validate the established
superposition properties.
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1. Introduction

We consider the WKB system of the form

∂tS + H(x,∇xS) = 0, t ∈ IR+, x ∈ IRn,(1.1)

∂tρ +∇x · (ρ∇pH(x,∇xS)) = 0, p = ∇xS ∈ IRn,(1.2)

subject to the initial data

S(0, x) = S0(x),(1.3)

ρ(0, x) = ρ0(x).(1.4)

Here H(x, p) is called Hamiltonian, S denotes phase and ρ is position density. This
nonlinear system arises in many contexts such as semi-classical approximations of the
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Schrödinger equation

(1.5) iε∂tψ +
ε2

2
4xψ = V (x)ψ,

and high frequency approximations of wave dynamics for hyperbolic equations such as

(1.6) ∂ttu− c2(x)4xu = 0.

The main computational challenge for high frequency wave propagation problems is that
the wave field is highly oscillatory, making direct simulation unrealistic. The WKB ap-
proximation is a classical way to approximate the wave field through an effective phase
and a position density. The WKB system (1.1), (1.2) is formally derived from applying
the following ansatz

(1.7) A(t, x) exp

(
iS(t, x)

ε

)
,

to the original wave equation, see e.g. [29]. The system (1.1) and (1.2) is weakly coupled,
thus the effective phase S can be solved from the Hamilton-Jacobi equation, independent
of the density. However, the nonlinearity of the Hamiltonian often leads to kinks in phase
at finite time, which forces unbounded density to appear. The classical viscosity solutions
[4, 17] are not adequate in describing the wave behavior beyond singularity, where multi-
valued solutions in physical space should be considered.

Computation of multi-valued solutions is challenging, there have appeared a bulk of nu-
merical methods to address the difficulty, including Lagrangian methods, Hamilton-Jacobi
equation based methods to kinetic formulation based methods, about which we refer to
[6] for a seminal survey on computational high-frequency wave propagation. Recently, a
new level set method framework has been developed for computing multi-valued phases
and other physical observables in the entire physical domain in [3, 16, 18, 15, 14]; main
development has been summarized in the review article [19]. A key idea is to represent
the n-dimensional bi-characteristic manifold of the Hamilton-Jacobi equation in phase
space by an implicit vector level set function Φ(t, x, p), whose components solve the same
Liouville equation

∂tΦ +∇pH · ∇xΦ−∇xH · ∇pΦ = 0, Φ0 = p−∇xS0.

The multi-valued velocity is realized by the zero level set

Φ(t, x, p) = 0.

The amplitude is hence evaluated by

ρ̄ =

∫
fδ(Φ)dp,

where the quantity f also solves the same Liouville equation with ρ0 as initial data. Such
a level set method is simple to implement, as accurate as the Lagrangian method and in
high dimensions more robust than the moment methods [2, 5, 8, 13]. Also the computation
cost in the phase space can be reduced by using the local level set method [22, 23, 25].
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Recently a field space based level set method is developed in [20, 21] for computing
multi-valued velocity and electric fields governed by 1D Euler-Poisson equations

∂tρ + ∂x(ρu) = 0,

∂t + u∂xu = E,

kEx = ρ− c.

In particular, multi-valued density is computed from

ρi ∈




f∣∣∣det
(

∂(φ1,φ2)
∂(p,q)

)∣∣∣

∣∣∣φ1 = 0, φ2 = 0



 ,

where φ1, φ2 are two level set functions needed to determine both multi-valued velocity
u and electric field E, and f solves the same level set equation in field space (x, p, q),
subject to the given initial density ρ0. A superposition of these multi-valued density gives
the averaged density over the level set manifold.

The aim of this paper is to compute multi-valued quantities related to density, momen-
tum and energy, and make numerical comparison with the averaged physical observables
evaluated in [15, 14]. Following [21], we shall compute multi-valued density of the WKB
system either by

ρi ∈
{

f

| det(∇pΦ)|
∣∣∣ Φ(t, x, p) = 0

}
,

or

(1.8) ρi ∈
{

ρ0(α)

| det(∂x(t,α)
∂α

)|
∣∣∣ x = x(t, α)

}
,

where x(t, α) denotes the deformation map satisfying dx
dt

= ∇pH(x, p)|p=∇xS with x(t, 0) =
α.

Within the level set framework we prove that the averaged density ρ̄ is simply a linear
superposition of multi-valued density, i.e.

ρ̄(t, x) =
N∑

i=1

ρi(t, x),

where ρi is the ith branch of multi-valued density (1 ≤ i ≤ N). Similar superposition
properties are shown to also hold for other quantities such as momentum and energy.
These properties are confirmed by a series of numerical examples.

We now conclude this section by outlining the rest of this paper. In Section 2 we
review the level set framework introduced in [3, 16, 15], to compute multi-valued velocity,
phase and averaged density of the system (1.1) and (1.2), since our results are based on
the formulation derived therein. In Section 3 we discuss two techniques for computing
the multi-valued density, one by the level set method, and another by the Lagrangian
method. Superposition properties for multi-valued density, momentum as well as energy
are established in Section 4. Numerical procedures are detailed in Section 5. Finally, in
Section 6 a series of numerical examples is presented to compute multi-valued observables
and validate the superposition properties. Justification of the formula (1.8) is given in
the Appendix.
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2. Review of Level Set Formulation and Computation of Averaged
Density

2.1. Level set formulation for velocity. The classical way to compute the multi-
valued solution is to use Lagrangian method, i.e., following the characteristics of the
Hamilton-Jacobi equation (1.1),

(2.1)
dx

dt
= ∇pH(x, p),

dp

dt
= −∇xH(x, p),

(2.2) x(0) = α, p(0) = ∇xS0(α).

Here p is the moment variable in phase space, i.e., p = ∇xS.
Following [3], let Φ(t, x, p) be a global invariant of (2.1) in the (x, p) space, then

d

dt
Φ(t, x(t), p(t)) ≡ 0,

which gives the following level set formulation

(2.3) ∂tΦ +∇pH(x, p)∇xΦ−∇xH(x, p)∇pΦ = 0.

Thus the multi-valued velocity is determined by the zero level set of Φ. Meanwhile, the
initial condition could be chosen as

(2.4) Φ(0, x, p) = p−∇xS0(x).

Note that the choice of initialization is not unique, as long as the zero level set gives
the initial phase gradient ∇xS0. We will see in later sections that this choice (2.4) would
simplify the post processing in the evaluation of density ρ.

2.2. Level set formulation for both velocity and phase. In addition to the bi-
characteristic system (2.1), we can have

dS(t, x)

dt
= −H(x, p) + p∇pH(x, p), S(0, x) = S0(α).(2.5)

Similarly let Φ(t, x, p, q) be a global invariant in the (x, p, q) space with q = S along zero
level set, then

d

dt
Φ(t, x(t), p(t), q(t)) ≡ 0,

which becomes

(2.6) ∂tΦ +∇pH · ∇xΦ−∇xH · ∇pΦ + (p · ∇pH −H)∂qΦ = 0.

The initial condition for Φ = (φ1, φ2, · · · , φn+1)
T could be chosen as

φi(0, x, p, q) = pi − ∂xi
S0(x), i = 1, 2, · · · , n

φn+1(0, x, p, q) = q − S0(x).

Here the necessity of doing computation in 2n+1-dimension space is to capture the phase
S as well. However, as pointed out in [3], multi-valued phase can also be recovered in
phase space by

S(t, x) ∈
{

S̃(t, x, p)| Φ(t, x, p) = 0
}

,
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where the level set function Φ is solved from (2.3), and S̃ solves

∂tS̃ +∇pH · ∇xS̃ −∇xH · ∇pS̃ = p · ∇pH −H,

S̃(0, x, p) = S0(x).

2.3. Evaluation of averaged density. Let f be the Liouville equation solving

(2.7) ft +∇pH · ∇xf −∇xH · ∇pf = 0, f0 = ρ0.

Then the average density can be determined by

(2.8) ρ̄(t, x) =

∫

IRn

fδ(Φ)dp.

Note that the momentum J̄ and energy Ē can be evaluated by

J̄ =

∫

IRn

Hp(x, p)fδ(Φ)dp,(2.9)

Ē =

∫

IRn

H(x, p)fδ(Φ)dp.(2.10)

3. Computation of Multi-valued Density

As is known, the position density also becomes oscillatory as ε → 0. The averaged
one may be regarded as the weak limit of position density. We shall now show how to
compute the multi-valued density to the WKB system through this level set approach.

Let L be a Liouville operator given by

L := ∂t +∇pH · ∇x −∇xH · ∇p,

and ρ̃ be a representation of ρ(t, x) in phase space with ρ̃(t, x,∇xS) = ρ(t, x) and J =
det(∇pΦ), then it is shown in [15] that

(3.1) L(ρ̃|J |) ≡ 0.

From (2.7), we have

(3.2) L(f) = 0, f0 = ρ0.

This shows that f and ρ̃|J | satisfies the same Liouville equation with the same initial
condition(|J0| = 1). Therefor uniqueness leads to

(3.3) f = ρ̃|J |.
Hence, we can determine multi-valued density by

(3.4) ρi ∈
{

f

| det(∇pΦ)|
∣∣∣ Φ(t, x, p) = 0

}
.

Once we solve (2.3) and (2.7), we will be able to find ρi using (3.4).
Here, we summarize the computation of multi-valued density in general setting using

the following pseudo-algorithm:

1. Solve the level set equation (2.3) for Φ and equation (2.7) for f .
2. Computation of det(∇pΦ). Note that the size of ∇pΦ is n × n and it is very

efficient to evaluate the determinant for n = 1, 2, 3.
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3. Evaluate the quantity f
det(∇pΦ)

on zero level set of Φ.

The above approach works in all setting and it is sometimes more convenient to adopt
an easier approach in specific cases.

Recalling the ODE system (2.1), if we can solve x and p in terms of t and α explicitly,
we could use another Lagrangian approach to evaluate multi-valued density. By defining

(3.5) Γ(t, α) = ∇αx,

we could find density by the following parameterized solution

(3.6) ρ(t, x(t, α)) =
ρ0(α)

| det(Γ)| .

The justification of this formula is seen in the Appendix of this paper.

4. Superposition

Theorem 4.1 (Superposition Principle for ρ̄). Let {ρi}N
i=1 be multi-valued densities

corresponding to multi-valued velocity ui determined by

ui ∈ {p|Φ(t, x, p) = 0},
and

(4.1) ρ̄ =

∫
fδ(Φ)dp,

where f solves (2.7) and Φ solves (2.3) with initial condition (2.4).
Then

(4.2) ρ̄(t, x) =
N∑

i=1

ρi(t, x).

Proof. First note that here ui denotes ith branch of multi-valued u instead of ith component
of vector u. In order to evaluate the integral (4.1), we assume that all (ui) lie in a bounded
domain. Use a partition of unity, σ ∈ C∞

0 vanishes near pi, with σ(pi) = 1 and
∑

σ = 1,
we have ∫

IRn

fδ(Φ)dp =
N∑

i=1

∫

IRn

fσδ(Φ)dp.

It suffices to evaluate
∫

fσδ(Φ)dp.
Recall that

δ(Φ(t, x, p)) =
δ(p− pi)

|∇pΦ(t, x, pi)|
wherever |∇pΦ(t, x, pi)| is nonzero.

Finally, by (3.3), we have

(4.3) f(t, x, pi) = ρ̃(t, x, pi)|J |.
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Thus near each pi–support(pi), we have

ρ̄(t, x) =

∫

IRn

σfδ(Φ)dp =

∫

support(pi)

ρ̃|J |δ(p− pi)

|J | dp,

= ρ̃(t, x, pi) = ρi(t, x).(4.4)

This, combined with the partition of unity, gives the asserted (4.2). ¤

This theorem shows that the linear superposition principle holds for the density of the
general WKB system (1.1) and (1.2) in the sense that direct summation of all multi-valued
densities gives the physical observed density.

Similar results hold for other quantities and is summarized below.

Theorem 4.2 (Superposition Principle for General Function g(x, p)). Let {ρi}N
i=1

be multi-valued densities corresponding to multi-valued fields ui determined by

ui ∈ {p|Φ(t, x, p) = 0},
and g(x, p) be any smooth function of x and p. If

G =

∫
fgδ(Φ)dp,

where f solves (2.7) and Φ solves (2.3) with initial condition (2.4). Then

G =
N∑

i=1

g(x, ui)ρi(t, x).(4.5)

Proof. Following a similar argument to that in the proof of Theorem 4.1, we have

G(t, x) =

∫

IRn

σfgδ(Φ)dp,

=

∫

support(pi)

fg
δ(p− pi)

|J | dp.

Use (4.3) again, we obtain

G(t, x) =

∫

support(pi)

ρ̃|J |g δ(p− pi)

|J | dp,

= ρ̃(t, x, pi)g(t, x, pi),

= ρi(t, x)g(x, ui).(4.6)

This, combined with the partition of unity, gives the asserted (4.5).
¤

5. Numerical Implementation

In this section, we summarize our numerical procedures to compute the multi-valued
velocity and other quantities. Meanwhile, we also verify the superposition property stated
in Theorem 4.1 and Theorem 4.2.



8 HAILIANG LIU AND ZHONGMING WANG

Step 1. Discretization and Initialization
We will mostly use uniform mesh size (∆x, ∆p) in x and p. The determination of the com-
putation domain heavily relies on the bi-characteristic whenever possible. The guideline
is that it shall cover the range of velocity in p direction and contains at least one period of
initial velocity in x if given periodic initial data. By choosing large enough computation
domain, we mostly use periodic boundary condition in the simulation.

Step 2. Solve the level set equation (2.3) for Φ and equation (2.7) of f .
The transport equation (2.3) and (2.7) can be reduced into the form

dΦij(t)

dt
= −H ij

P (t)Φij
x (t) + H ij

x (t)Φij
p (t) := P(Φij(t)),

where H ij(t) and Φij(t) is the numerical approximation of H and φ at node (t, xi, pj).
Usually, Hp and Hx are given explicitly and Φx, Φp can be approximated by rth order
ENO scheme [11, 12, 24, 27, 28]. In our simulation, second order ENO approximation is
applied.

Then, for time discretization we use second order SSP Runge-Kutta method [10],

kij = Φij(t) + ∆tP(Φij(t)),

Φij(t + ∆t) =
1

2
Φij(t) +

1

2

(
kij + ∆tP(kij)

)
.(5.1)

Step 2. Visualize the multi-valued velocity by project the zero level set of Φ onto x−p
space.

Still in 1D example, we interpolate only grid points satisfying

{(xi, pj) ∈ Ω| |Φ(t, xi, pj| < ε′},
where ε′ is chosen in such a way that a unique grid point can be identified along the zero
level set. Computationally, a ε′ which is much smaller than h works well. We point out
that a larger ε′ may be necessary for the case when level set functions are rough.

Step 3. Evaluate the integral (2.8)

ρ̄int(t, x) =

∫

IRn

fδ(Φ)dp.

Since this integration involves the Dirac δ−function in its integrand, as usual we first
regularize the Dirac δ−function by a smooth bounded function δε in such a way that
δε ⇀ δ as ε → 0+. The error introduced in this regularization step depends on the choice
of the approximation, whose accuracy is indicated by a so called moment condition [1] of
the regularization. δε is said to satisfy rth order of moment condition if

∫
IR

δε(x) = 1 and∫
IR

δε(x)xk = 0 for 1 ≤ k ≤ r. It is known that the higher the order of moment condition,
the smaller the regularization error. The choice of regularization δε could be any smooth
function with the above properties. However, considering the concentration of the Delta
function, it suffices to choose δε to have a compact support:

δε(x) =

{
1
ε
Ψ(x

ε
), |x| ≤ ε,

0, |x| > ε.
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One of well accepted choices of this type of δε is the cosine kernel, Ψ(η) = 1
2
(1+ cos(πη)),

i.e.,

(5.2) δcos
ε (x) =

1

2ε

(
1 + cos

(πx

ε

))
I[−ε,ε],

which has first order moment condition. Here I[−ε,ε] is the standard indicator function.
Replacing δ(Φ) by δε(Φ), we thus have the first approximation of ρ̄,

(5.3) ρ̄int
ε (t, x) =

∫

IR

f(t, x, p, )δε(Φ)dp,

to which standard quadrature rules can be applied. In our simulation, the rectangle rule
is chosen and the numerical density is further evaluated by

(5.4) ρ̄int
εh (t, x) =

∑

{|Φ(t,x,pj)|≤ε}
f(t, x, pj)δ

cos
ε (Φ)∆p.

In this two-step procedure, total error is bounded by the sum of regularization error
|ρ̄int − ρ̄int

ε | and quadrature error |ρ̄int
ε − ρ̄int

εh |. For example, if the cosine kernel and the
rectangle rule are used, |ρ̄int − ρ̄int

ε | is of order ε and |ρ̄int
ε − ρ̄int

εh | is of order h/ε, where

h = max{∆p}. Then the optimal ε would be order of
√

h, which leads to order of
√

h in
total error. In the simulation, ε is tested with a range of quantities proportional to h, i.e.,
ε = mh, m = 1, 2, · · · . See [7, 21, 26] for details on the error analysis of approximating
Delta-functions.

Step 4. Computation of multi-valued density {ρi}.
In general, we compute the multi-valued density by (3.4) and the detailed algorithm is
discussed in §3. This approach will work for general systems. However, in cases where
Γ = ∇αx(t, α) can be explicitly expressed in terms of α and t, we choose to use formula
(3.6), i.e.,

ρ(t, x(t, α)) =
ρ0(α)

| det(Γ)| .
This formula gives a parameterized solution in terms of α and thus can be used to plot

the contour of ρ in x − ρ space. Then interpolation should be used. In simulation, we
first discretize α into nodes {αk|k = 1, 2, · · · } and compute (x(t, αk), ρ(t, x(t, αk)). Then
linear interpolation is used locally for any points wherever function values are needed. In
this manner, ρ(t, x) can be evaluated at any point xi. Note that, in our simulation we
will utilize this formula (3.6) to compute exact multi-valued solution whenever available.

Step 5. Verify the superposition by comparing ρ̄int
εh and ρ̄ :=

∑N
i ρi using both figures

and tables of L1 errors. Here and after, we will refer ρ̄int
εh and

∑N
i ρi as the results from

integral and superposition respectively.
In one dimension with uniform mesh size in x, the L1 error for ρ̄ is defined by

Errorρ̄ =
∑
xi

∣∣ρint
εh (t, xi)− ρ̄(t, xi)

∣∣ dx,

where ρint
εh (t, xi) and ρ̄(t, xi) are defined by (4.2) and (5.4). Similar definitions apply to

other quantities of interest.
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6. Numerical Examples

6.1. The Schrödinger equation. In this example, the Hamiltonian is of the form

H(x, p) =
1

2
|p|2 + V,

which arises in the semi-classical limits of the Schrödinger equation (1.5).
In this case, we are interested in density ρ, and the quantities when g1 = ∇pH and

g2 = H. Actually, these two functions g1 and g2 correspond to the momentum

J̄ =

∫
|p|fδ(Φ)dp

and energy

Ē =

∫
(
1

2
|p|2 + V )fδ(Φ)dp.

We have already shown in §4 that all these three quantities can be calculated from those
multi-valued ui and ρi. Now we make numerical comparison of the averaged quantities
computed from two approaches, integration or superposition.

(1) Example 1: 1D and V = 0

u0 = − sin(πx),

ρ0 = exp(−(x− 0.5)2).

This example was used in [9].
Throughout the numerical simulation, unless otherwise specified, second order ENO

and second order SSP Runge-Kutta methods are used. The CFL number is taken to be
0.95 to ensure the time efficiency. Meanwhile, here and after, the solid line and circle
denote the numerical results from level set method (2.3) and exact solution respectively.
In this simulation, computation domain are [−1, 1]× [−1.5, 1.5] with step sizes (0.02, 0.02)
and time at about 0.1, 0.3 and 0.6. The multi-valued density is computed by (3.6).

From Fig.1, Fig.2 and Fig.3, we can clearly see the capacity of our method. Before
singularity, two results are the same and after singularity, peaks in all the three quantities
are well captured.

Table 1 shows the L1 error for the averaged density ρ̄, momentum J̄ and energy Ē,
which correspond to the quantities defined in Theorem 4.2 with g = 1 and g = p and
g = |p|2/2 respectively. Moreover, we also notice that there is an optimal ε as we pick
different m in ε = mh. At time 0.101333 the errors in ρ̄, J̄ and Ē are of order 10−2, 10−4

and 10−4 respectively with step size at ∆x = 0.02 and ∆p = 0.02 at the optimal ε. After
singularity we still get very good resolution as seen in Fig.2 and Fig.3.

We also notice the effect of integration support ε on the error. Before multi-valued
solution appears, the larger the size of the support ε tends to give better accuracy, due to
the smoothness of the solution. We can see this from the errors for the average density,
momentum and energy at time 0.101333 in Table 1. Usually ε = 4h gives the best results
in our integration approximation. However, after the formation of multi-valuedness, we
have to pick smaller ε. Usually ε = 2h is the best after singularity in the Hamilton-Jacobi
system. Similar phenomenon is also observed in the following examples.
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Figure 1. Example 1, at t = 0.101333. Sub-figures, from up left, are
velocity, density, momentum and energy with ε̃ = 0.01 and ε = 4h. Circle
and solid line represent the results from integration and superposition.
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Figure 2. Example 1, at t = 0.304000. Sub-figures, from up left, are velocity,
density, momentum and energy with ε̃ = 0.015 and ε = 2h. Circle and solid line
represent the results from integration and superposition.
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Figure 3. Example 1, at t = 0.608000. Sub-figures, from up left, are velocity,
density, momentum and energy with ε̃ = 0.015 and ε = 4h . Circle and solid line
represent the results from integration and superposition.

t ε = 2h ε = 3h ε = 4h ε = 5h ε = 6h
0.101333 0.0167394677 0.0135057820 0.0126285789 0.0123750004 0.0122404699
0.304000 0.1293897319 0.1670558597 0.2117553210 0.2512718005 0.2806063519
0.608000 0.2105845480 0.1407095069 0.1774095427 0.2056773509 0.2268914252

1. Error for averaged density ρ̄

t ε = 2h ε = 3h ε = 4h ε = 5h ε = 6h
0.101333 0.0034993097 0.0010479213 0.0005364168 0.0004407054 0.0005107636
0.304000 0.0131135016 0.0098454853 0.0143602091 0.0225903714 0.0328003001
0.608000 0.1406452841 0.1122488771 0.1434971805 0.1673175011 0.1849303384

2. Error for averaged momentum J̄

t ε = 2h ε = 3h ε = 4h ε = 5h ε = 6h
0.101333 0.0014676255 0.0005905758 0.0006434041 0.0008985308 0.0012774845
0.304000 0.0092880972 0.0102827107 0.0141035968 0.0162260022 0.0177831562
0.608000 0.0570531980 0.0486087232 0.0624852617 0.0724525964 0.0798224902

3. Error for averaged energy Ē

Table 1. Example 1 , table of L1 error for each density momentum and
energy at different time and support size ε = mh, m = 2, 3, 4, 5, 6

(2) Example 2: 1D and V = 0

u0 = − sin(πx)| sin(πx)|,
ρ0 = exp(−(x− 0.5)2),
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t ε = 2h ε = 3h ε = 4h ε = 5h ε = 6h
0.101333 0.0201441257 0.0173173587 0.0163551543 0.0162149049 0.0160895224
0.405333 0.1353771931 0.2096008463 0.2570685836 0.2899839171 0.3458325428
0.810667 0.3638322043 0.3349340467 0.3721443546 0.4093349941 0.4441836011

1. Error for averaged density ρ̄

t ε = 2h ε = 3h ε = 4h ε = 5h ε = 6h
0.101333 0.0024015908 0.0008418077 0.0004557995 0.0005120796 0.0006508837
0.405333 0.0824243578 0.1045426391 0.1040800957 0.1170525606 0.1358341234
0.810667 0.2234771392 0.2049319728 0.2283069834 0.2550550387 0.2760111370

2. Error for averaged momentum J̄

t ε = 2h ε = 3h ε = 4h ε = 5h ε = 6h
0.101333 0.0010576917 0.0005229522 0.0006651123 0.0009172565 0.0012734635
0.405333 0.0318257465 0.0377931322 0.0354224554 0.0465411020 0.0560490059
0.810667 0.0973139057 0.0965972571 0.1084100663 0.1206675156 0.1305867870

3. Error for averaged energy Ē

Table 2. Example 2 , table of L1 error for each density momentum and
energy at different time and support size ε = mh, m = 2, 3, 4, 5, 6

which was used in [9].
At time about 0.1, 0.4 and 0.8 with step size [0.02, 0.02] we use second order ENO

and second SSP Runge-kutta method, see Fig.4, Fig.5 and Fig.6. In this example, the
multi-valued density is computed by (3.6).

In Fig.4, Fig.5 and Fig.6, we notice that the results from level set method and the one
from Theorem 4.2 match quite well. Especially, before singularity, the result from level
set method are very accurate, which is shown in Table 2. At time 0.101333 the errors in
ρ̄, J̄ and Ē are of order 10−2, 10−4 and 10−4 respectively with step size at ∆x = 0.02 and
∆p = 0.02. After singularity we still get very good resolution as in Fig.5 and Fig.6. For
the integration support size ε, we also notice that before singularity, ε should be larger
and after singularity smaller ε is preferred. Usually, ε = 2h and ε = 4h will give good
results before and after singularity.

6.2. Wave equation. In this section, we test the following Hamiltonian

H(x, p) = c(x)|p|, Hp = c(x)
p

|p| .

This Hamiltonian comes from the WKB expansion of wave equation (1.6).
Now we are still interested in the following quantities

ρ̄ =

∫
fδ(Φ)dp,

J̄ =

∫
c(x)

p

|p|fδ(Φ)dp,
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Figure 4. Example 2, at t = 0.101333. Sub-figures, from up left, are velocity,
density, momentum and energy with ε̃ = 0.01 and ε = 4h. Circle and solid line
represent the results from integration and superposition.
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Figure 5. Example 2, at t = 0.405333. Sub-figures, from up left, are velocity,
density, momentum and energy with ε̃ = 0.01 and ε = 4h. Circle and solid line
represent the results from integration and superposition.
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Figure 6. Example 2, at t = 0.810667. Sub-figures, from up left, are velocity,
density, momentum and energy with ε̃ = 0.01 and ε = 4h. Circle and solid line
represent the results from integration and superposition.

Ē =

∫
c(x)|p|fδ(Φ)dp,

i.e., with g = 1, g = c(x) p
|p| and g = c(x)|p| in Theorem 4.2. Here and after, we call the

last two quantities momentum and energy. We now test them by the following examples
from [14].

(4) Example 4: 1D and constant speed c(x) = 1.

S0 = −x2 − 0.25

4
,(6.1)

A0 = χ[−0.7,−0.3]∪[0.3,0.7](x),(6.2)

where ρ0 = A2
0/c

2. Here χΩ is the characteristic function of Ω.
In this case, we have to solve the level set equation (2.3) for both H = c|p|. Meanwhile,

since ∇pH = c p
|p| , undefined at p = 0, as in [14] we choose to exclude this singular set in

our computation domain. In simulation, we exclude the set

Ωexclude = {(x, p)
∣∣|p| < max

i
∆pi, i = 1, 2, · · · , n},

where ∆pi is the step size in pi direction. The multi-valued density is computed by (3.6).
In this example, the initial velocity is u0 = −x/2, which is decreasing. We know that the
solution will become multi-valued immediately since the wave with negative speed is on
the right and moving towards left, while the wave with positive speed is one the left and
moving right.
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t ε = 2h ε = 3h ε = 4h ε = 5h ε = 6h
0.351500 0.1243459867 0.1243459894 0.1243460235 0.1243461163 0.1243450280
0.408500 0.1269397689 0.1269397703 0.1269398218 0.1269404161 0.1269415934
1.007000 0.1667407901 0.1667406964 0.1667402289 0.1667377286 0.1667242841

1. Error for averaged density ρ̄

t ε = 2h ε = 3h ε = 4h ε = 5h ε = 6h
0.351500 0.1122599833 0.1122599806 0.1122599464 0.1122595708 0.1122560508
0.408500 0.1260541833 0.1260541819 0.1260541304 0.1260535361 0.1260514986
1.007000 0.1667388478 0.1667387542 0.1667382866 0.1667357863 0.1667223418

2. Error for averaged momentum J̄

t ε = 2h ε = 3h ε = 4h ε = 5h ε = 6h
0.351500 0.0319705467 0.0319439985 0.0319378147 0.0319350105 0.0319335234
0.408500 0.0321329464 0.0321274079 0.0321255184 0.0321246575 0.0321242228
1.007000 0.0428831029 0.0428384220 0.0428303218 0.0428281333 0.0428269787

3. Error for averaged energy Ē

Table 3. Example 4 , table of L1 error for each density momentum and
energy at different time and support size ε = mh, m = 2, 3, 4, 5, 6

In the simulation, the mesh size is picked as [0.02, 0.02]. In this example, the multi-
valued density is computed by (3.6). From Fig.(7), Fig.(8) and Fig.(9), we see that those
average quantities match nicely, which numerically shows the superposition. Meanwhile
the Table 3 of error gives the numerical L1 error of density, momentum and energy at
different time and support ε. We notice that the error doesn’t depend on the support size
ε.

(5) Example 5: 1D and variable speed c(x)

S0 = −x2

4
,(6.3)

A0 = χ[−0.45,−0.25]∪[0.25,0.45](x),(6.4)

with c(x) = 3 + 1.5 tanh(x) and ρ0 = A2
0/c

2.
Similar example was used in [14]. Here, the example taken is a re-scaled one for the

save of computation time. See the results in Fig.10, Fig.11 and Fig.12. Here, instead of
(3.6), the multi-valued density is computed by (3.4)

ρi ∈
{

f

| det(∇pΦ)|
∣∣∣ Φ(t, x, p) = 0

}
.

Central difference is used to approximate the Jacobian ∇pΦ. Then the multi-valued
data {ρ̃(t, xj, ui), j = 1, · · · ,M, i = 1, · · · , N} could be found. Note that those points
{xj, j = 1, · · · , M} might not be the same as our grid points from partition of x. Thus,
a simple linear interpolation is also used to compute the ρ(t, x) at any grid point x.

From these figures, Fig.10, Fig.11 and Fig.12, we can clearly see the waves crossing and
changing its velocity since c is not a constant. Moreover, the error Table 4 shows the L1
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Figure 7. Example 4, at t = 0.3515. Sub-figures, from up left, are velocity,
g = 1, g = ∇pH and g = H with ε̃ = 0.01 and ε = 2h. Circle and solid line
represent the results from integration and superposition.
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Figure 8. Example 4, at t = 0.408500. Sub-figures, from up left, are velocity,
g = 1, g = ∇pH and g = H with ε̃ = 0.008 and ε = h. Circle and solid line
represent the results from integration and superposition.
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Figure 9. Example 2, at t = 1.00700. Sub-figures, from up left, are velocity,
g = 1, g = ∇pH and g = H with ε̃ = 0.01 and ε = h. Circle and solid line
represent the results from integration and superposition.

error of the results from integration and superposition. We notice that in this case the
error does not depend on the support size ε too much.

Remark 1. In this example, numerical error is also introduce by the approximation of
| det(∇pΦ)|. Especially, when ui coincides with any of computational grids, | det(∇pΦ)| =
0 and ρi = ∞ at those points. This could result in huge numerical error. Numerical tests
are performed on this issue in two dimensional space, and large error is observed. Thus
a new approximation of | det(∇pΦ)| is expected in order to use (3.4).

Remark 2. From above examples, we notice that the integration support ε in (5.2) plays
an important role in the error control. Moreover, optimal ε depends on the appearance

of singularity or multi-valuedness. For some cases with H = |p|2
2

+ V , the singularity
appears in finite time, so optimal ε is larger before singularity and smaller after singularity
formation. For some cases with H = c|p|, the multi-valued solution appears immediately,
the choice of ε does not affect the error much, which can be observed in Table 3 and 4.
The reason for those observations could be that, if multi-valued u’s, say ui and ui+1, are
close, then ε is better to be small to avoid the overlap of the support in the numerical
integration.
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Figure 10. Example 5, at t = 0.05051. Sub-figures, from up left, are velocity,
g = 1, g = ∇pH and g = H with ε̃ = 0.01 and ε = 2h. Circle and solid line
represent the results from integration and superposition.
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Figure 11. Example 5, at t = 0.15146. Sub-figures, from up left, are velocity,
g = 1, g = ∇pH and g = H with ε̃ = 0.0085 and ε = 2h. Circle and solid line
represent the results from integration and superposition.
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Figure 12. Example 5, at t = 0.25243. Sub-figures, from up left, are velocity,
g = 1, g = ∇pH and g = H with ε̃ = 0.01 and ε = 2h. Circle and solid line
represent the results from integration and superposition.

t ε = 2h ε = 3h ε = 4h ε = 5h ε = 6h
0.050510 0.0004124339 0.0002574400 0.0002064428 0.0001860470 0.0001836040
0.151460 0.0066038938 0.0065472959 0.0065354958 0.0065220750 0.0065486092
0.252433 0.0005593891 0.0002781005 0.0002250622 0.0002342965 0.0003174496

1. Error for averaged density ρ̄

t ε = 2h ε = 3h ε = 4h ε = 5h ε = 6h
0.050510 0.1314190720 0.1314198912 0.1314201536 0.1314201914 0.1314201904
0.151460 0.1070391216 0.1070397427 0.1070394493 0.1070387782 0.1070392338
0.252433 0.1516576004 0.1516669850 0.1516688414 0.1516792368 0.1516929572

2. Error for averaged momentum J̄

t ε = 2h ε = 3h ε = 4h ε = 5h ε = 6h
0.050510 0.0237754984 0.0237694404 0.0237608625 0.0237498011 0.0237362724
0.151460 0.0292403331 0.0292340795 0.0292253946 0.0292141528 0.0292005134
0.252433 0.0249560424 0.0249503050 0.0249415895 0.0249318013 0.0249203468

3. Error for averaged energy Ē

Table 4. Example 5 , table of L1 error for each density momentum and
energy at different time and support size ε = mh, m = 2, 3, 4, 5, 6
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Appendix

Here we justify the formula (3.6)

(A.1) ρ(t, x(t, α)) =
ρ0(α)

| det(Γ)| ,

where x = x(t, α) is the characteristics satisfying dx
dt

= ∇pH|p=∇xS, and Γ = ∂x(t,α)
∂α

. Let

J = det
(

∂x
∂α

)
, then

∂

∂t
J =

∂

∂t
det

(
∂xi

∂αj
(t, α)

)
=

∑

i,j

Aj
i

∂

∂t

∂xi

∂αj
(t, α),

where Aj
i is the minor of the element ∂xi

∂αj
of the matrix ∂x

∂α
.

The minors satisfies
∑

j

∂xk

∂αj
Aj

i = δk
i J, δk

i =
{

1 k = i,
0 k 6= i.

Thus the use of the equation dx
dt

= ∇pH gives

∂J

∂t
=

∑

i,j

Aj
i

∂

∂αj

∂

∂t
xi =

∑

i,j

Aj
i

∂

∂αj
(∂piH)

=
∑

i,j,k

Aj
i

∂xk

∂αj

(
∂

∂xk
(∂piH)

)
=

∑

i

∂

∂xi
(∂piH)J

= ∇x · (∇pH)J.

For any domain Ω, the change of variables α → x(t, α) leads to∫

x(t,Ω)
ρ(t, x)dx =

∫

Ω
ρ(t, x(t, α))Jdα,

This, by differentiation in t, gives

d

dt

∫

x(t,Ω)
ρ(t, x)dx =

∫

Ω
(ρt +

dx

dt
· ∇xρ)J + ρ

∂J

∂t
dα

=
∫

Ω
(ρt + Hp · ∇xρ)J + ρ∇x · ∇pHJdα

=
∫

Ω
[ρt +∇x · (ρ∇pH)]Jdα

=
∫

x(t,Ω)
(ρt +∇x · (ρ∇pH))dx

= 0.

Therefore, we obtain ∫

x(t,Ω)
ρ(t, x)dx =

∫

Ω
ρ0(α)dα.

Since this holds for any Ω, we must have

ρ(t, x(t, α))J = ρ0(α),

which gives (A.1), except for the absolute sign on J , which is needed to ensure positivity
of the density after singularity.
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