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A b s t r a c t - - A  mathematical model is formulated to catch the dynamics hidden in the plasma- 
sheath transition layer and the inner sheath layer for planar motion of a plasma. It is shown that the 
rescaled potential in the plasma-sheath transition layer and inner layer is governed by a perturbed 
KdV equation, through which some of the complex interactions and couplings among physical mech- 
anisms acting in the plasma-sheath formation process are elucidated. This model is analyzed and 
compared with the model used by Fokas in his study of nonlinear dispersive initial boundary value 
problems [1]. (~) 2004 Elsevier Ltd. All rights reserved. 

K e y w o r d s - - K d V  dynamics, Plasma sheath transition, Euler-Poisson system. 

1. I N T R O D U C T I O N  

Many problems in science involve s t ructures  on several d is t inct  length scales. Usual ly  the  relevant 

length scales are not  known a priori, but  emerge from an a t t e m p t  of the  sys tem to reach its 

equi l ibr ium state .  In  p lasma  physics, for example,  the  typical  length scale can be predica ted  

by  dimensional  analysis,  bu t  the  sheath t rans i t ion  and inner layer are de te rmined  by  a complex 

in terplay  of the  internal  dynamics.  The p lasma-shea th  t rans i t ion  is a fundamenta l  problem in 

p lasma physics and a good discussion is found in the  book by Lieberman  and Lichtenberg [2]. 

Mathemat ica l ly  i t  provides a challenge to the  appl ied  analys t  in t ha t  there  are mult iple  scMes 

which must  be resolved to ob ta in  an adequate  descr ipt ion of the  physical  process. 

Matched  asympto t ic  expansions provide a powerful me thod  to predict  l imit ing behavior.  Using 

this method,  several authors  [3-11] beginning with Frankl in  and Ockendon [3] have described the 

p lasma-shea th  t rans i t ion  by analysis of the  balance laws on three  relevant space scales for 

(A) the  bulk quasi -neutra l  plasma, 
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(B) the plasma-sheath transition layer, and 
(C) the sheath layer. 

Region (B) is governed by the Painlev~ equation, governing the electricM potential in the tran- 
sition layer joining quasi-neutral plasma to space charge sheath in a weakly ionized plasma. 

The intent of the present work is to provide a derivation of a new model, describing both the 

plasma-sheath transition layer and the sheath inner layer. 
For an ionized plasma consisting of electrons and ions, one -imensional motion is described by 

a normalized Euler-Poisson system of the form 

0,n + 0x(nu) = ze -~,  ( i . i )  

Otu + uOx~ = 0~¢ - / ( ~ )  - z e - % n  -1, (i.2) 
e20~¢ ---- n - e -¢,  (1.3) 

where u represents ion velocity, n the ion density, and ¢ is the electric potential (both suitably 
scaled), x is a dimensionless space variable, - L  < x < x~, where x~ = -ea/Sb(te -2/5) is the 
location of a possibly moving wall. Here the prescription of the moving boundary has taken the 
two fundamental length scales (the sheath scale and the intermediate scale) into consideration, 
and the regular fixed boundary is just a special case of b -- 0. The electron density is given 
by Boltzmann's relation and has been set equal to e -¢.  At x = x~, we prescribe boundary 
conditions ¢ = ¢~(t, e) and u = u~(t, e). In fact, the main goal of this paper is to derive a KdV 
model for the plasma sheath transition and compare with the recent result of [1] for a similar 
yet subtly different problem. A formal derivation of the current model in Section 2 provides us 
the necessary background information, and the discussion in Section 3 is devoted to a quantum 
formulation of the current Euler-Poisson system, which further elucidates the dispersive nature 
of the underlying force in the system. I t  would be of interest to derive the same boundary layer 
separation directly using the quantum formulation in Section 3. 

2. SIMPLIFICATION OF THE BASIC EQUATIONS 

For completeness, we provide the relevant balance laws for hydrodynamic models for plasma [2]. 
Let mi denote the ion mass, ni the ion density, u~ the ion velocity, me the electron mass, 

n~ the electron density, ue the electron velocity, • the electric potential, and Z denotes the rate 
of ionization. The balance laws of mass and momentum for ions are 

Orni + Ox(niui) = Zne, 

cgr(niu~) -+- Ox (n~u~) --~ - en~ Ox~ -- ni ](ui) 
? n  i ,~ ' 

w h e r e / / A  denotes the ion friction and A > 0 the constant ion collision mean free path, and the 
balance laws of mass and momentum for electrons are 

Orne + Ox(neue) ---- Zne, 

O'(neue) + Ox ( neu2 ÷ P~ / -= enecgx~P'me 

where the pressure is given by pe = kneT~, here T~ denotes the electron temperature, the ion 
temperature is zero. In addition, • satisfies Poisson's equation 

eo 0~: 4) =- ni - ne, 
e 

where c0 is the permittivity of free space. Usually, the ions are heavy compared to the electrons, 
i.e., mi >> m~. Passing to the limit me --* 0 in the momentum equation for electron one can 
formally obtain 

Ox (kTene) = eneOx~. 
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Integration in terms of X gives 

me = ?~ch e x p  

This is the well-known Boltzmann relation for electrons, in which rich denotes the characteristic 
charged particle density, e the electron charge, and k Boltzmann's constant. 

The above systems may be further simplified if we introduce quantities 

Cs ~ - -  )~D 
v~n~ V~--- j~ ~ 

representing the ion sound speed and the electron Debye length. Indeed introducing the following 
dimensionless variables: 

rc~ X )~D 

Tti U i --e(]~ 
- -  --+ h i ,  ~ ---* u i  ¢ = 
r ich  Cs kTe  ' 

The Ue ~'be 
- -  --~ he ,  - -  --÷ ue ,  rn -~ - - ,  z = Z A / C s ,  
rt  c h C s Tr~ i 

the above coupled Euler-Poisson system may be rewritten as 

Otn~ + Ox (n~ud = zn~, 

o~ ( n ~ )  + o~ (n,u~) = ~ o ~ ¢  - ~/(~),  / (ud := 
c~ 

(2.1) 

(2.2) 

and 

Otn~ + O~ (neu~) = zne, 

Ot ( n e u e )  ÷ 0:~ (neu2e) + l o ~ n e  ne  = - - - 0 ~ ¢ ,  
m m 

(2.3) 

(2.4) 

coupled with Poisson's equation 

2 2 (2.5) 0x ¢ = ni - he. 

Recall that  the limit m ~ 0 in the above momentum equation (2.4) yields Boltzmann's relation 

ne = exp( -¢ ) .  

Hence, the limit system (m ~ 0) may be rewritten in nondimensional form 

Otn + O~(nu) = ze -¢ ,  

a t u  + u O x u  = 0 ~ ¢  - f ( u )  - z e - ¢ u n  - 1 ,  

~ 2 0 ~ ¢  = n - e - C ,  

which is exactly the system (1.1)-(1.3) stated in Section 1. 

3. Q U A N T U M  FORMULATION 

In this section, we will derive the system of SchrSdinger equations such that  their semiclassical 
limit coincides with the Euler-Poisson system with linear damping f ( u i )  = au~  in the momentum 
equation for ions. This partially justifies the dispersive nature of the force imposed by the Possion 
equation. 
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Let the desired Schr5dinger equation take the form 

ih0t¢ h = - ~ - A x C h +  V +  Q Ch, (3.1) 

with the potential V and nonhomogeneous term Q to be determined. We remark in passing 
that the connection between Schr5dinger equations and the classical hydrodynamical equations 
was already noted in 1927 by Madelung, in the context of semiclassical limit of the nonlinear 
Schr5dinger equation. To this end, one identifies two physical relevant observable quantities-- 
the fluid density [¢12, and the fluid velocity u n :-- hV~ arg¢  h. For the semiclassical regime, it is 
customary to consider the following WKB (after Wentzel, Kramers, and Brillouin) ansatz 

with A n _> 0 assuming that the phase and the amplitude are sufficiently smooth, and we expand 
the amplitude: in powers of h: 

A n = Ao + hA1 +h2A2 + . . . .  

Insertion of this expression into (3.1) leads to the following relation between the wave phase and 
its amplitude 

- A  h OrS ÷ IVSl 2 + Y(x) + T 

Nullifying the expressions related to the first two powers of h, we derive the WKB system with 
corrector term Q, A2o 

1 f v s 4  2 + v = 0, 

and the leading order of the amplitude A0 solves the forced transport equation 

0tA0 + v .  (A0 vs) = QA0 

When fi is small the leading term A0 becomes significant. Set (p, U) := (A02, VS), one then has 
the following system: 

o~p + v . (pu)  = qp ,  

OtU + U.  V U  = - V V .  

In order to recover (2.1),(2.2), it suffices to take (p, U) :-- (hi, ui), Q := Qi = zn~n( 1, and 
V :-- Vi such that -VzVi -- V¢ - aVxSi - QVxSi,  i.e., 

V~ = aS,  + z V I  1 [ n ~ V x S ~ ] - ¢ .  
Ln~ J 

Assume the wave function for ions is ¢i and for electron is ¢~, therefore, 

n, = I C J ,  n~ = I C J .  

Hence, the Poisson equation (2.5) becomes 
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or ¢ = e-2A-l(l¢il2 -I¢~]2). Note that the phase Si = harg (¢i). A combination of the above 
facts gives 

q~ = z ]¢~12 levi - 2  , 

V~ = -~-~A-I (I¢~[ ~ - 1¢~I ~) + ~harg (¢~) + V;  ~ [Q~hV~ (arg ¢,)]. 

To close the system, we need to derive the equation for Ce. To this end, we take (p, U) := (ne, u~), 
Q := Q~ = z, and 

: = V e =  --1 [¢ + /n1¢¢12] +zharg (G), V 
m 

such that -VV~ = -(1/m)V~[¢ + Inn¢] - zu¢. 
From the above analysis, we see that the scaled Euler-Poisson system (2.1)-(2.4) with (2.5) can 

be formally realized as a semiclassical limit of the following coupled Schr6dinger Poisson system 
for ~ = (¢i,¢~): 

iliOtq~ = - V A ~  + (3.2) 

with V = (V~, V~) T and Q = (Qi, Q~)T defined above. 
Passing to the limit m --* 0 in the second equation of (3.2), one has 

¢ + In ICe[ 2 = 0, i.e., I¢¢12 = e -¢. 

The limiting Schr6dinger-Poisson equation for ¢ := ¢i becomes 

h2 [~harg ( z h e  - ~  (arg (*)))] *, in0,¢ = - T ~ ¢  + (¢) - ¢ + v ;  1 IC1-2 v~ 

E 2 A ¢  = I¢l ~ - e - ~ ,  

(3.3) 

(3.4) 

which is the desired quantum description of the Euler-Poisson equation (1.1)-(1.3) for f ( u )  = au .  

4. B O U N D A R Y  L A Y E R S  A N D  T R A N S I T I O N  L A Y E R  

4.1. The Initial Boundary Value Problem 

We wish to show the initial boundary value problem for (1.1)-(1.3) with initial conditions 

n = l ,  u = l ,  ¢ = 0 ,  - o o < x < 0 ,  t = 0 ,  (4.1) 

and boundary conditions 

= ~ ( t ,  ~), ¢ = ¢ ~ ( t ,  ~), at  x = x ~ ( ~ ,  ~), t > 0. (4 .2)  

Consistency requires that ¢~ (0, e) = 0 and u~ (0, e) = 1. 
In our formulation, there will be two fundamental length scales: 

and the time scale 

= x + e_ l /hb(z ) ,  

X y =  --~+b(~), 

the sheath scale (inner), 

the intermediate scale (outer), 

t 
T z  .... ~2/5" 
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For convenience, set 5 = E 2/~. Let us rewrite the Euler-Poisson system (1.1)-(1.3) at the inter- 
mediate scale by introducing the asymptotic expansions 

o o  

u = 1 + E 6iui' 
i = l  

o o  

n = 1 + E 5~ni' 
i = 1  

¢ = ~ 5~¢i • 
i = 1  

Substitution into the conservation of mass equation (1.1) with D,  := 0y + b'(r)Oy gives 

6-1Dr [6nl + 62n2] + 6-20y [5(n1 + Ul) + 62(nlul + n2 + u2)] = z (1 - 6¢1) + O (62), 

and 0(5 -1) terms are balanced if we take nl = -u~ + c(r), where c(~-) denotes an arbitrary 
function of % so that 

= 1 - 6 ( ~  - c(~))  + 52~2 + . . . ,  (4.3) 

and O(1) balance yields 
D~-nl + Oy (nlul)  = -0y  (n2 + u2) + z. 

Substitution of the expansion into the momentum equation (1.2) yields 

5-1D, [5ul + 62u2] + 6 -2 (1 + 6ul + 52u2) 0y (5ul + 62u2) 

(1 + 5~1 + . . .  ) (1 - 5¢1) + o (52) 
= 5 - 1 0 y [ ¢ l + S C 2 ] - f ( 1 ) - f ' ( 1 ) ( 5 u l ) - z  l + S n l + 5 2 n 2 + ' - "  

(4.4) 

o (5 -1 )  : 0~ (~1 - ¢1) = 0, (4.5) 
O(1) : D~ul + UlOyUl + Oyu2 = ay¢2 - f(1) - z, 

respectively. Also, Poisson's equation (1.3) yields 

E 2 ~ - 4 ~ 2  62¢2] 5(¢1 + n l ) +  52 (n2 + ¢2 _~)  + 0 (63). o % [6¢i  + = 

Since  for 5 = e 2/5, e26 -4 = 5, the relations from balance of terms O(g) and 0(62) give 

0(6) : ni + ¢1 = O, 

o(6~1 : 0~¢1 = n2 + ¢2 - CA 
2 

(4.6) 

(4.7) 

Substitution of (4.6),(4.7) into (4.5) gives 

D~¢1 + c'(7) + c(~-)0y¢1 + ¢10y¢1 = Oy (¢2 - u2) - f(1) - z. (4.s)  

Note that (4.4) with nl = -¢1  and ul = - n l  + c(~-) leads to 

Oy (n2 + u2) = D,¢1 + Oy¢~ + C(T)Oy¢1, 

where Taylor's expansion for f(1 + 5ul + . . .  ) = f(1) + f '(1)(6ul + . . .  ) has been used. Balance 
at levels of 0(6 -1) and O(1) gives 
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and (4.9) gives 

G (n2 + ¢2) = 0 ¢1 + ¢1G¢1. 

Both, when inserted into (4.8a), yield the following equation 

2D~¢1 + 0y¢1 ~ + 2c(T)0y¢l - 0~¢1 = - f ( 1 )  - z - c'(T). 

In order to determine c(~-), we need to impose an additional condition. Assume that  the mo- 
mentum nu approaches the state nu = 1 as y --+ - o o  for all T. Thus, one has (1 + 5ul + 
• . . ) (1 + flu1 + . . .  ) --+ 1 as y --* - o o  and nl  + ul  ~ 0 as y --* - o o .  This combined with the 
fact tha t  n l  + u~ = c(~-) implies c(~-) ~- 0 and so the scaled potential ¢1 is governed by the 

"KdV = - f ( 1 )  - z" equation 

2Dr¢1 + 0y¢~ - 03¢1 = - f ( 1 )  - z. (4.9) 

4.2.  S h e a t h  I n n e r  L a y e r  S o l u t i o n  

Set ~ = x/e  + b(~-)/e 1/5 and ~- = t/e 2/5, we then have 

E3/5 [Or + e-llhb'(T)O~] n + O~(nu) = £ze  - ¢ ,  (4.10) 

e 3/5 [O, + e - 1 / ~ b ' ( T ) O ~ ] u + u O ~ u = c g ~ ¢ - e f ( u ) - e z u n - l e  -¢,  (4.11) 

0~¢ = n - e -¢ .  (4.12) 

Thus, to leading order in e, the solution is a profile satisfying 

O~(nu) = 0, (4.13) 

uO~u = c9{¢, (4.14) 

c9~¢ = n - e -¢ .  (4.15) 

The original expansions for the transition layer give 

lira u(y,'r) = 1 +c2/hul(y, 'r) + . . . .  1, 
E--+O 
y---*O 

lira n(y,T) = 1 + e2/anl(y,~-) + . . . .  1, 
e--*O 
y---*O 

lim ¢(y,~-) = c2/5¢l(y,T ) + . . . .  0, 
¢-~0 
y---+0 

and hence, the matching condition for the steady inner sheath solution is 

lira u(Gw) = lim n(~,7) = 1, lim ¢(~,~-) = 0. (4.16) 
&-.-c~ &-+-oo f--.-oo 

Thus, integration of (4.11) subject to the above boundary  conditions yields 

u 2 = 1 + 2¢. (4.17) 

Substitution of (4.17) into the Poisson equation (4.15) gives the classical sheath equation 

0~¢ = (1 + 2¢)  - 1 / 2  -- e -~b, (4.1S) 

where nu = 1 derived from (4.13) has been used. Its energy integral is 

1_ (0~¢)2 = v f f  + 2¢ + e -~  - 2, (4.19) 
2 

where again (4.16) is used. Consistency of the wall boundary  implies tha t  we must  restrict 
ourselves to the case when u~, ¢~ satisfy (4.17)-(4.19). 
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5.  J U S T I F I C A T I O N  O F  T H E  K d V  D Y N A M I C S  

We are now in a position to modify the KdV = - f ( 1 )  - z  model  to ma tch  the dynamics hidden 
in the inner layer solution. 

Recall t ha t  the scaled quantities 

y =- E-415x ÷ b('r), ~ ---- e - i x  ÷ e-l/5b(~') 

give 
y = e1/5~. 

If  we write equation (4.9) in the independent  and dependent  variables ~ and 5 = e2/551, we 
obtain 

2e315D~ 5 = O~ [0~5 - 52] - e(f(1)  + z). 

Note tha t  the s teady inner solution reads 

0~5 - 52 = F (5 ) ,  

where 
1 

F (5 )  :-- (1 + 25) -1/2 - e - ¢  - ¢ 2 ~ O (53) ,  for 151 < 7" 

We thus introduce the model 

2e315D~. 5 = Oe [0~5 - 52 - F(5) ]  - E(f(1) + z). 

We now change back to the variables y and ¢1 to obta in  

2D~¢1 = b3¢1 - 2¢10vCz - 0v¢1 e-215F ' (e2 / s¢ l )  ( f (1)  ÷ z), 

which is a per turbed KdV -- - f ( 1 )  - z equation. In order to normalize the above equation, we 
introduce 

¢=--C ¢~ + ------ff--~r , 

~=¢/~@+/(1)+z2).4 

Then consider ¢z = (6 /~f2)¢  - ( f(1)  ÷ z/2)T: 

2D,51 = ~ D~¢  + ( f (1)  + z)'rO,7¢ - ( f (1)  ÷ z), 

2 3 3 2 3 

and so 

where 

D , ¢  ÷ [6¢ + g(e, ¢,  T)] 0 r e  - 0~¢ = 0, ( 5 . 1 )  

g:=3e_2/SG(e2/51__ ~ f (1)  ÷ z ) /  ¢ 2 r , 

with G determined by 
G(¢) := F ' ( ¢ )  = e - ¢  - 2¢ - (1 + 2¢) -3/2. (5.2) 

As before, we take ¢ = Cw(e2/5~ -, e) at  the wall y = 0 and from the intermediate  sheath layer, we 
see 0~¢ = (1 + 2¢~) - U 2  - e -¢~ at y = 0 as well. 
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6. FROM P E R T U R B E D  KdV TO KdV 

As is well known, KdV equation of the form 

o~q + o,q + 6qo, q - o3q = o, (6.1) 

with periodic or decaying data on ( -co ,  co), is a completely integrable system and the solution 
of its corresponding initial value problem can be explicitly solved via the celebrated inverse 
scattering approach [12]. It is also believed that any perturbation imposed on the original KdV 
would easily render the failure of approach due to the loss of the integrability. In this section, we 
wish to bridge between our proposed model (5.1) and the exact KdV equation (6.1). 

Clearly, 'KdV = - f ( 1 ) -  z' equation is fundamentally different from the exact equation because 
the presence of the dissipation imposed by the damping and ionization. For the damping and 
ionization free case f(1) = 0, z = 0, we will show the perturbed equation can be linked to the 
exact KdV equation by a nontrivial transformation, see [13,14]. 

First, we replace the perturbed equation (5.1) by keeping only the leading perturbation term 
in g(E, ¢). It follows from (5.2) that 

G ( ¢ ) =  1 - ¢ + - ~ - +  . . . .  2 ¢ -  1 - 3 ¢ +  ¢ 2 +  . . . . .  7¢ 2 + O ( ¢ 3 ) ,  as I¢l-~ 0, 

which upon substitution of its leading term into (5,1) gives a simplified perturbed equation 

1176 215 2 \ 0~¢ + b'(~)0~¢ + 6¢ - - ~ - ~  ¢ ) 0~¢ - 0~¢ = 0. (6.2) 

Let ¢ be the solution of the equation (6.2), and introduce a transformation 

(6.3) 

A simple calculation gives 

- [aTq + b ' ( ~ ) O , q  + 6 q a ,  q - a3q ] 
14 392 2/5 \ 03¢] J 

from which we can conclude that the new unknown q satisfies a KdV-type equation 

o~q + b'(~)o,q + 6qO, q - o~q = o, (6.4) 

if ¢ satisfies the perturbed equation (6.2). Note that given q, ¢ is not uniquely determined from 
the transformation (6.3). Nevertheless, such transformation does lead us from perturbed KdV 
equation to the exact KdV equation with possibly time dependent linear convection (6.4). But 
now, we are in a extremely interesting situation. If b'(~-) = 1, i.e., b(~-) -- % then the initial 
boundary value problem for (6.1) is exactly the equation considered by Fokas [1] in the study of 
the boundary value problem for (6.1) on the right half-line. But the case here is subtly different. 
In Fokas's problem, waves move away from the boundary 77 = 0 while in our case on the negative 
half-line waves move into the wall. In fact, this can be seen as the source of the sheath formation. 
It thus seems very interesting to know if a result such as Fokas's can be obtained for the negative 
half-line problem. 
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7. C O N C L U S I O N S  

T h e  in ten t  of  th is  inves t iga t ion  is to fo rmula t e  a unif ied m o d e l  to  descr ibe  t he  dynamics  h idden  

in the plasma-sheath transition layer and inner layer for weakly ionized plasma. The main 
observation in this work is that above-mentioned dynamics is governed by a KdV equation, 
which reflects the dispersive mechanism hidden in the physical process. 

The solution methodology is to use asymptotic methods to simplify the governing equations. 
The asymptotic expansions take advantage of the many different length and time scales in the 
problem, and the varying magnitudes of material parameters. In particular, the discrepancy in 
length scales allows us to isolate the sheath transition region from both presheath region and the 
inner sheath region. Again, this discrepancy allows us to combine the sheath transition and the 
inner layer into one model equation--a modified KdV equation. 
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