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Abstract

We study global orientation dynamics of the Doi—Smoluchowski equation with the Maier—Saupe potential on the sphere, which arises in the
modeling of rigid rod-like molecules of polymers. Using the orientation tensor we first reconfirm the structure and number of equilibrium solutions
established in [H.L. Liu, H. Zhang, P.W. Zhang, Axial symmetry and classification of stationary solutions of Doi—-Onsager equation on the sphere
with Maier—Saupe potential, Comm. Math. Sci. 3 (2) (2005) 201-218]. We then examine global orientation dynamics in terms of eigenvalues of
the orientation tensor via the Doi closure approximation. It is shown that for small intensity 0 < o < 4, all states will evolve into the isotropic
phase; for large intensity o > 4.5, all states will evolve into the nematic prolate phase; and for the intermediate intensity 4 < o < 4.5, an
initial state will evolve into either the isotropic phase or the stable phase of two nematic prolate phases, depending on whether such an initial

configuration crosses a critical threshold. Moreover, the uniaxial symmetry structure is shown to be preserved in time.

© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Rod-like polymer solutions exist in an isotropic phase at
low concentrations, but will undergo a phase transition to a
nematic phase if the molecule concentration exceeds a certain
critical value. The phase transition problem of this type was first
described by Onsager [20] via a variational approach, assuming
that steady states correspond to minimizers of a free energy.
Doi [5] made the first attempt at developing a molecular theory
for liquid crystalline polymers via the kinetic equation. Doi’s
model is based on Onsager’s expression for the free energy of a
solution containing rod-like polymeric molecules, and provides
a dynamic description of the isotropic—nematic phase transition
that occurs as the polymer intensity changes. The kinetic model
also serves as a framework within which the effect of external
fields on the isotropic—nematic phase transition can be studied.
In this paper we shall examine global orientation dynamics in
rigid rod-like polymers in the absence of external fields.
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The mathematical model we adopt is the Doi—Smoluchowski
equation on the sphere
af
55 = DR (Rf + fRU).
where f (¢, m) denotes the orientational probability distribution
function (PDF) for rod-like, rigid molecules with axis of
symmetry m on the unit sphere S?. D, is the averaged rotational
diffusivity, which will be set to 1. R := m x 3im is the gradient
operator. U is the mean-field interaction potential, which here
considered is the Maier—Saupe [19] one:

m e S?, (1)

U(m) = a/ lm x m'|> f(m")dm’'. )
[m’|=1

It is well known that the presence of flow fields affects the phase
transition as modeled by the Doi kinetic equation [5], based on
which various phase transition diagrams to equilibrium states in
rigid rod-like polymers have been observed in both experiments
and numerical simulations, see e.g. [7,10-13,17,18].

Recently the Doi—Smoluchowski model (1) has attracted a
great deal of attention in the mathematics community [2—4,8,
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15]. In particular, the equilibrium solutions are governed by the
Doi—Onsager equation

R-(Rf+ fRU) =0, 3)

subject to the usual normalization

/ f(m)ydm = 1. @)
Im|=1

Concerning the structure of equilibrium solutions of (1),
Constantin et al. [2] reduced the Doi—Onsager model (3)
into nonlinear equations with two parameters and classified
these solutions in the high intensity limit. They also proved
that the isotropic state is the only possible solution at low
enough intensity. Recently in [16] Liu et al. were able to
reduce the Doi—Onsager equation (3) into a nonlinear equation
with only one parameter and gave an explicit representation
of all equilibrium solutions. Hence a definite answer to the
Onsager conjecture [20] with the Maier—Saupe potential (2)
was achieved: (i) all equilibrium solutions are necessarily
uniaxially symmetric. (ii) The number of equilibrium states
and their qualitative behavior for the Doi—Onsager equation
hinge on whether the intensity « crosses two critical values:
a* ~ 6.731393 and 7.5. A different proof of the uniaxial
symmetry was done independently and at about the same
time by Fatkullin and Slastikov [9]; See also [21] for a
further effort in this direction. We note that the situation is
much better understood in the two-dimensional case when the
orientation variable lives on the circle, see [3,15,4,8,16] for
recent investigations.

In this paper we focus our attention on the Doi-
Smoluchowski equation (1) on the sphere. We first utilize
the orientation tensor to reconfirm results obtained in [16]
as mentioned above. We then examine global dynamics of
the orientation tensor, and prove time-asymptotic stability of
some equilibrium solutions. Equilibrium solutions correspond
to either isotropic or nematic phases. More precisely, the
uniform distribution f = 1/4m corresponds to the isotropic
phase; The case when f is concentrated at some particular
director corresponds to the nematic phase, which includes the
prolate and oblate states.

Following the Doi closure assumption we obtain a closed
dynamic equation for the orientation tensor. The main tool
to study the orientation dynamics is to derive the spectral
equations from the closed orientation model. Due to the unit
orientation trace, the spectral dynamics is governed by a 2 x 2
polynomial (of degree three) system. All phase behaviors are
analyzed using some elementary phase plane analysis. For a
dynamical system, a set in phase space is called a global
invariant if the solution remains in this set for all time.

Our main results regarding the orientation dynamics are
summarized as follows:

e Global invariant. All uniaxial states are global invariants of
the orientation model.

e Time-asymptotic stability. The number of equilibrium states
for the orientation model of the Doi—Smoluchowski equation
hinges on whether the intensity o crosses two critical values:
o = 4 and 4.5. Moreover,

(1) if 0 < o < 4, only isotropic phase exists and is stable;

(i) if 4 < «a < 4.5, there are three equilibrium phases
(one isotropic and two nematic prolate phases), among
which both the isotropic phase and one nematic prolate
phase are stable.

(iii) If « > 4.5, there are three equilibrium phases
(isotropic, nematic oblate and nematic prolate). Only
the nematic prolate phase is stable.

e Global orientation dynamics. For small intensity 0 < o <
4, all states will evolve into the isotropic phase; for large
intensity o > 4.5, all states will evolve into the nematic
prolate phase; for 4 < o < 4.5, any given initial state will
evolve into either the isotropic phase or the stable phase of
two nematic prolate phases, depending on whether such an
initial state crosses a critical threshold.

We note that due to the use of closure approximation the critical
intensities here are slightly different from those identified
in [16]. Nevertheless the qualitative behavior and number
of equilibrium states are the same. The global orientation
dynamics described above is expected to be carried over to the
full Doi—Smoluchowski equation (1).

This paper is organized as follows: in Section 2, we use
the orientation tensor to reconfirm the uniaxial symmetry of
equilibrium solutions and their sharp classification, obtained
in [16]. The use of the orientation tensor makes phase transition
picture more transparent. Section 3 is devoted to the closure
approximation and derivation of the spectral dynamics of
the orientation model. Finally in Section 4, time-asymptotic
stability of equilibria and global phase behavior are obtained
via the elementary phase plane analysis.

2. Uniaxial symmetry and number of equilibrium solutions
2.1. Uniaxial symmetry

Let f(m) be a general local distribution of molecular
orientations, the traceless order tensor Q is defined as

0=

|m|=1

(m Q®@m — %1) f(m)dm.

The local physical properties are linked to the degree of
symmetry of (. The nematic is biaxial where the three
eigenvalues of the order tensor are all different; it is uniaxial
if two eigenvalues coincide; finally, it becomes isotropic if all
three eigenvalues coincide.

Applying the usual eigendecomposition upon Q we obtain

0 =Xre Qe +rer®er+ Aze3 Q e3,

where A; is the i-th eigenvalue of Q, ¢; is the corresponding
right eigenvector. From now on we take {e], e2, e3} as a local
orthonormal basis.

Since Tr(Q) = Zi Aj = 0, we introduce two independent
parameters to express three eigenvalues

oA =a— —,

oAl =—a— =,
3 3

2b
ar3 = ER Ya > 0. ®))
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Then we have

1
OlQ=a(€2®€2—€1®€1)+b<€3®€3—§1>, (6)
I is the unit tensor, a and b are given by

2a=a0Q :(e2®er—e1 ®eyp),
(7N

2
§b=04Q i (e3 ® e3),

where the operator : is the tensor inner product defined by
A : B =Tr(A" B). From (7) it follows an a-free relation

360 :e3Q@e3+bQ : (e1 ®ep —ey ®ep) =0. ®)

We consider the Doi—Onsager equation (3) with (4), the
equilibrium distribution state is known to be determined by the
Boltzmann relation

e U eV

f: — = — N
Sz €Vdm  f_ e7Vdm

where, in virtue of the Maier—Saupe potential defined in (2),
U=V + fa with

V=—m®m:(aQ):a(m%—m%)—i—b(%—mz). )

These together when inserted into (8) yield
F(a,b) =0,

where
F(a,b):f [b(m3 —m3) +a(B3m3 — 1)]e”Vdm.
|m|=1

Clearly for any given b € R, one has
F(0,b) = F(+b,b) =0.

It was shown in [16] that these are only zeros on the a-b
plane, corresponding to three scenarios A; = A, j # k. The
uniaxial symmetry is thus confirmed. Considering the rotational
symmetry we can give all possible equilibrium solutions in term
of an order parameter 1 and a director n € S2. In summary we
state the following

Theorem 2.1 ([16]). All equilibrium solutions to the
Doi—Onsager equation (3) with the Maier—Saupe potential (2)
are necessarily invariant with respect to rotations around a
director n € S, i.e., it is uniaxially symmetric. Moreover, the
distribution function may be expressed as

—1
1

f(m) = ken™™’, "Z[Mf ebZZdZ] :
0

where n € R is an order parameter.

Note that the director n is unspecified as a consequence of the
rotational invariance of the equilibrium states.

2.2. Characterization of equilibrium solutions

We now study the structure and number of all equilibrium
solutions, which are either isotropic or uniaxial. Without loss
of generality, we consider the case where the axis of uniaxial
symmetry is e3, i.e. a = 0. Thus (9) gives

1
Vzb(g—mg).

Thereby the Boltzmann distribution takes the form

b2 le -
f=ke"s, k= 4nfezdz .
0

Note that b has to satisfy (7)
b=20: (e @e =2 3/
=3 (3 ®e3) = 2 ”

A simple calculation using spherical coordinates leads to

2b

m3 f (m)dm — 1) )

=1

o = = G(b)v
12k [ 22eb?dz — 1
where
1 _pz?
e’*'d
Gy = — Do

Jo 2201 — )bz

Here o = G (b) indicates the relation between « and b, besides
the isotropic case b = 0 for any @ > O.

It is elementary to verify that the function G(b) has the
following property:

(1) 4<G®) <o0,G0)=7.5and G'(0) = -5/7 <0,
2) G(xo0) = 0.

The latter is evidenced by the following two asymptotic limits:

lim 2 _ 6o _,

1, im
b—oo b b——oo |b|

Further we can show that G has only one global minimum
a* € (4,7.5) at b* > 0, whose numerical evaluation given
in [16] is

af = mbin G(b) ~ 6.731393.

Uniqueness of the minimizer is implied by the fact that G” > 0
whenever G'(b) = 0.

In order to justify this fact we set (g) = fol g(z)ebzzdz and
express G as

G = (1)/(Z(1 = 2%)). (10)
Differentiation in terms of b gives

G'(b)(Z2(1 — ) + GZ* 1 = 2H) = ().

For b where G’ (b) = 0 we have

(N2 = 2H) = () = 22, (11)
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and further G” (b) satisfies
G"(b) (21 =)+ G(Z°(1 = 22)) = (4.
This when combined with (10) and (11) yields
G"(b)(Z2(1 — 29)? = (ZM (1 = 22) — (1)(°(1 = 22))
= (- -2
— ()P =D - * A~ %)
= — (20 =)+ ()P = 22D

which, by the Holder inequality, is clearly positive.
These properties of G enable us to arrive at the following

Theorem 2.2 ([16]). The number of equilibrium solutions of
the Doi—Onsager equation (3) on the sphere hinges on whether
the intensity a crosses two critical values: a* =~ 6.731393
and 7.5, where

1 .2
e d
of = min — Jo o™ dz —. (12)
T fy (@2 = zhenrdz

All solutions are given explicitly by

f= ke'l(m%)z,

where n € S* is a parameter, n = n(a) # 0 and k =
[4r fol e’”zdz]_l are determined by o through

1 2
e dz
o= — Jo —. (13)
Jo (2% = zhen*dz
More precisely,

(1) If 0 < @ < o, there exists one solution fy = 1/4x.

(i) If a = ¥, there exist two distinct solutions fy = 1/4n
and fi = kjen™mm® p, < 0,

(i) If o* < a < 7.5, there exist three distinct solutions
fo=1/4m and f; = k"™ po 50 = 1,2).

(iv) If o = 7.5, there exist two distinct solutions fy = 1/4n
and f| = klem(’”'")z, n > 0.

V) If a > 7.5, there exist three distinct solutions fy = 1/4n
and f; = ki ™M (i = 1,2), 91 > 0,2 < 0.

3. Dynamics of orientation tensor

Having reviewed some remarkable properties of equilibrium
states, we proceed to study dynamics of solutions to the
Doi—Smoluchowski equation
L or-®f+ RO,
with the Maier—Saupe potential (2). Eq. (14) is nonlinear and
nonlocal for f, and its mathematical analysis is not trivial. In
this context the phenomenological theory in nematics proves to
be useful. De Gennes [6] showed that the dynamics of nematics
is essentially described by the Landau theory of phase transition
and proposed a phenomenological nonlinear equation for the
orientation tensor Q:

dA
30’

meS?, (14)

0
—0=—-L
8tQ

where L is a phenomenological kinetic coefficient and A is the
free energy, which, near transition point, can be expanded into
the following form

A = KTr(Q%) + K3Tr(Q%) + K4Tr(Q*) + K4 (Tr(Q?))%,

where K, ..., K 4/1. are constants. Doi and Edwards [5] derived
a closed equation of this type from approximating the kinetic
equation, which we will follow.

3.1. A closure system for orientation tensor

An evolution equation for the orientation order tensor is
obtained from the Eq. (14) by taking the second moment over
m to yield

d

1
a(mm) = —6<mm — §I>— (R-Um+mR-U),

which for the Maier—Saupe potential leads to

Q =—60 +2a(Q - (mm) + (mm) - Q) —4aQ : (mmmm).
15)

This equation governs the evolution of the structure in polymer
solutions in the absence of flow and external forces.

Since the kinetic equation is difficult to solve, as usual
we choose to use the moment equation to solve for the
structure tensor Q. However, (15) involves the fourth rank
tensor (mmmm), which must also be obtained. A closure
problem arises because the evolution equation for (mmmm)
involved the sixth rank tensor (mmmmmm). This requires
closure approximation to express high-order moments in terms
of lower ones. Following Doi [5], we employ the quadratic
closure approximation

Q : (mmmm) = Q :

These approximations maintain the trace of the governing
equations and are exact in the limit of perfect orientation order.
The resulting equation becomes

(mm)(mm).

0=F(Q) (16)

where
4a ’ ) 1
F(Q) = (? —6) 0 + 40 Q* — 4aTr(Q )<Q+§1).

Doi’s equation for Q can be recovered by simply adding a factor
D,, an averaged rotational diffusion coefficient, and effects
from the flow. As noted in [5], D, may depend on Q because
of the tube dilation.

3.2. Spectral dynamics of the structure tensor

It is usually difficult to quantify directly all entries in
the structure tensor Q. As observed in the equilibrium case,
eigenvalues of the orientation tensor play a special role in
governing the entries of @, in particular the orientation order
of our interest. We now study the dynamics for the eigenvalues
A(Q), which is real due to the symmetry of Q. We mention
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in passing that the spectral dynamics of velocity gradients has
played very important roles in the study of a class of Eulerian
flows [14]. The following lemma plays a key role.

Lemma 3.1. Consider the closed dynamical system of Q, (16).
Let ) := A(Q) be an eigenvalue of Q. Then the dynamics of A
is governed by the following

. 4o 2 : 2 1
A=<?—6))\+4ak —4a;Aj<A+§). 17

Proof. Let the left (right) eigenvectors of Q associated with A
be [(r), normalized so that /[r = 1. Then one has

Or = Ar, 1O = Al
Differentiation of the first relation with respect to ¢ yields
Or + OF = Ar + AF.

Multiplying / on the left of the above equation and using /Q =
Al we obtain

10r = i.
It is clear that
3
2. __ 42 2y 2
10%r = 22, Tr(Q )_ij.
j=1
A combination of above facts gives the Eq. (17) as

asserted. [

By the spectral dynamics described above, we have a closed
3 x 3 dynamical system

. 4o 3 1
A= <?—6>k,- +4a,\,.2—4a_2,\§ (Ai+§>,
]=
i=1,273.

Taking the difference of any two equations indexed by i and k
we obtain

4 a0 = o — i | (2% Z6) + 4wty 42
E(l_k)_(t_k) (?_ )+Ol(z+ k)

3
- 4a2x§] i #k
j=1

This implies that A; = X for i # k, corresponding to
uniaxial equilibria, are global invariants. We can thus claim the
following

Theorem 3.2. The uniaxial symmetry of the orientation
distribution function is preserved in time with the orientation
model (16).

The next natural question is whether an arbitrary distribution
will become uniaxial as time evolves.

It follows from (5) that
c:=b-—a.

2a c
— = Ay — Aj, A3 — Ay = —,
o o

In addition to the invariants A\; = A (a = 0) and Ay = A3 (a =

b), the third invariant A; = A3 corresponds to the line b = —a,
that is ¢ = —2a in the a—c plane. The reduced system for (a, ¢)
is
. W
a = aP(a,c), Pla,c):= 3~ 6
8 8 5 5
— =(a4+c¢)——@a”+2ac+c)|, (18)
3 3a
. [ da 4
¢ = cN(a,c), N(a,c):= ?—6 +§(4a+c)
o L
— —4a® +2ac+ A |. (19)
3

This is a polynomial dynamical system on a 2D plane. We
shall investigate both the linear stability of equilibria and the
global dynamics of general solutions via performing some
phase portrait analysis.

4. Stability of equilibrium microstructure and global
dynamics

4.1. Linear stability of equilibrium phases

Considering the order of eigenvalues and three invariants of
the system (18)—(19), we restrict attention to an order A <
A2 < A3, that is the first quadrant in the a—c plane. The other
five regions can be discussed similarly.

First we observe that inside this region

N—-—P=4QRa+c) >0,

thus all possible equilibrium points necessarily lie on the
boundary {(a, ¢),a = 0orc = 0} corresponding to 1| = Ay <
A3 Or A] < Ay = A3, respectively. We now check number of
equilibria and their dynamic stability in terms of the intensity
o.

On the c-axis, a = 0, the c-coordinate of equilibria must
satisfy

4o 4 8
NO,¢c)=c|l—=—-6)+-c——c*|=0,
cN(, ) c[<3 )4—30 Sac]
thatisc =0orc = %(1 + 31 —4/a) for « > 4; and on the
a-axis, ¢ = 0, the a-coordinate of equilibria must satisfy

4 8 32
aP(a,0) =a —a—6 ——a——=a? =0,
3 3 3

thatisa = 0ora = §(—1=£3/1—4/a) fora > 4.
Therefore there are three cases to be distinguished in terms

of a:

()0 < o <4,(0,0) is the only equilibrium point of (18)—(19);

(2)4 < a < 4.5, there are three zeros (0, 0), (0, ¢}) and (0, c3)

with

f = %(1 +3/1—4ja) > ¢t = %(1 —3/T—4/a) > 0.
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Note in this case other two equilibrium points (a},0) and
(a3, 0) on c-axis lie on negative axis a < 0:

S —143/T—4ja) > a

8

- %(—1 —3/1—4/a),

which are outside of the first quadrant of the a—c plane.
(3)4.5 < a, there are three zeros (0, 0), (0, ¢}) and (af, 0) with
cf > 0andaj > 0.

In order to check the stability of (a*, c¢*), we look for
solutions of the form a(t) = a* + €a and ¢(t) = ¢* + €c, for
small €, the local dynamics of (a, ¢) is expected to be governed
by the linearized system

d — A(a*. c*
£(6)

where A(0, 0) = (%“ — 6) 1, for (0, ¢*)

0>aj

[STRRNT]
o1 Q1

—4c* 0
A0,c*) =116 4c* ,
©,¢9 —c*(a — ) ¢ (o — 4c™)
3 3
and for (a*, 0)
a* * 8 * k
Aa*, 0) = —g(a—}—Sa ) —ga (o +2a™) ’

0 8a*

where relations satisfied by ¢*, a* have been used. The two
eigenvalues of A(0, 0) are 43—“ — 6, thus (0, 0) is a stable nodal
point for ¢ < 4.5 and becomes unstable for « > 4.5.

Two eigenvalues for A(0, c*) are

4
p1(c*) = —4c*, p2(c*) = 56*(01 — 4c%).

Thus for 4 < a < 4.5, pi(c]) < 0 and p2(c]) < O, the
equilibrium point (0, ¢}) is a stable node. Further (0, c3) is an
unstable saddle since p1(c3) < 0 < pa(c3).

For the case @ > 4.5, (0, ¢}) with ¢ > 0is a stable node and
(aj, 0) with a > 0 is an unstable saddle since two eigenvalues
for A(a*, 0):

8
pi1(a*) = ——a*(a + 8a™), p2(a*) = 8a*,

3a
have different sign for a* = a}. We thus have distinguished all
cases.
We now examine the phase behavior. Note that for the
equilibrium (0, ¢*) one has
s c* N 2c*
1= A= ——, = —.
3a T 3a
Here the two nematic phases given by the two solutions ¢} >
c5 > 0 make up a transcritical bifurcation from the isotropic
state ¢* = 0. Nematic phases that have prolate symmetry with
¢* > 0 are referred to as “Nematic P”. For equilibrium points

(a*, 0) one has

—4a* N 2a*
9 2 == == 9
3a 3 R
which for a* > 0 gives the nematic oblate state, referred to as
“Nematic O”.

Thus the time-asymptotic stability of equilibria can be
summarized in the following

A=

Theorem 4.1. The number of equilibrium states for the closed
orientation model (16) of the Doi—Smoluchowski equation on
the sphere hinges on whether the intensity o crosses two critical
values: « = 4 and 4.5.
Moreover,

(1) if 0 < o < 4, only isotropic phase exists and is stable;

(i) if 4 < o < 4.5, there are three equilibrium phases,
among which both the isotropic phase and one nematic P phase
are stable, another nematic P phase is unstable.

>iil) if a > 4.5, there are three equilibrium phases. Only the
nematic P phase is stable, both isotropic and nematic O phases
are unstable.

Remark 4.2. (1) Due to the approximation nature of the
closure system the critical intensities here are different
from those stated in Section 2. Nevertheless the qualitative
behavior and number of equilibrium states are the same. The
dynamic stability is expected to be carried over to the full
Doi—Smoluchowski equation.

(2) From the phase plane analysis, there exist up to seven
equilibrium states, but for each spectral order, only three states
are relevant. It is important to remember that these three
equilibrium states are just three of the infinite number of
possibilities, because the director {e, e2, e3} can be oriented
arbitrarily.

(3) Due to the uniaxial symmetry of the equilibrium states one
may express the uniaxial orientational tensor by

1
Q:n(n@n——[),

3
with a scalar parameter n given by

_3 2 1
77—§<(m'”) )—5-

Substitution into F(Q) = 0 gives

4o 4o 8a
= 6+ —n——n*) =0,
g n<(3 )+3n 377)

which gives three distinct structural parameters

1 3 4742
=0, =-3-|1—-— .
n1 n2,3 4 4 |: a:|
This can also lead to two critical intensities ¢ = 4, 4.5, as

observed previously, see e.g. [1,5]. However the above simple
decompositions can give a misleading dynamic picture. Since
the dynamics is dictated by an one-dimensional equation, 1 =
g(n), in which the destabilizing effects of fluctuations have
been completely ignored. Therefore a faithful picture can not
be observed.
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4.2. Nonlinear stability and global dynamics

We shall explore a qualitative approach to examine the
global orientation dynamics. One of the main ingredient to an
understanding of the global dynamics of a given dynamical
system is to identify the boundary of two regions with different
phase behavior.

First for the case 0 < « < 4, there is only one stable
equilibrium point (0, 0) in finite plane. In the first quadrant of
the vector field, @ < 0 and ¢ < 0, showing that all vector fields
flow towards the origin. The system is dissipative and the (0, 0)
is globally stable.

When « crosses 4, bifurcation occurs and a new structural
pattern forms for 4 < o < 4.5. There are three critical points:
(0, 0) stable node, (0, c}) stable node and (0, c;) saddle. For
the saddle (0, ¢5) we have

(A0, ¢3) — pD)E =0,

one has ¢ = (1,—1)T corresponding to p; = —4c, and
& = (0, I)T for p» > 0. Thus the unstable separatrix leaves
(0, ¢3) along a = 0 and the stable one enters (0, ¢5) along
c=c;—a.

‘We now look at the level curve of vector fields of the system.
From P (a, ¢) = 0 it follows

2+](+ +a)2 Y@-3)

a —(a+c+ =) =—(x¢—23),

3 2 4

which is an ellipse, denoted by Ep, for « > 3; and the set
N = 0 can be written as

a\2 1 o\2 « 3
(a 4) 3 <a+c 4) =@

also an ellipse Ey for ¢ > 3. Both ellipses intersect at two
points on the line 2a + ¢ = 0 in the fourth quadrant for
3 < o < 4.5. Also the E intersects with a = 0 at two points
O, CT) and (0, c’zk ). The stable separatrix approaches the saddle
from inside the ellipse Ey, where N > 0 and P < 0, from the
vector field (a P, cN) it follows that this trajectory must enter
into the inside of Ey from its right, at say (a., c.). Outside of
Ex, both P and N are negative, no limit cycle exists. Thus the
right branch of the stable manifold, L, will pass (a, c.) and
extend to the far field in negative time, and is uniquely defined
by

dc _ cN(a,c)

da  aP(a,c)’ @(ce) = de.

Thus the whole region {(a, c)la > 0,c¢ > 0} is divided by L
into two subregions. Any initial state from the upper region
will be attracted to (0, c’f ) and those trajectories below the
curve will be attracted to another stable node (0, 0). Only initial
states on L will approach the saddle (0, c3). Note that more
information about ‘behavior at infinity’ can be obtained via
the Poincaré compactification, though we do not present details
here.
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4r 2atc=0——>

|
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This figure shows what was described above.

We now turn to the global dynamics for the case « > 4.5. In
this case both Ex and Ep are still ellipses, but have overlap
in the first quadrant. A phase field analysis shows that the
one unstable separatrix of the saddle (a},0) will extend up
and approach the stable node (0, c}). In this case the whole
region is also divided by this separatrix into two regions, but
trajectories in either region will be attracted to (0, ¢}); except
for the states on ¢ = 0 which will lead to the saddle (aT, 0)
along {a > 0,c = 0}. In this case (0, CT) is a global stable
equilibrium, see the following figure.

6

In summary we conclude the following

Theorem 4.3. Consider the closed orientation model (16) of
the Doi—Smoluchowski equation on the sphere. Given initial
states lie in any region of a spectral order; then

(1) if 0 < a < 4, all initial states will evolve into the
isotropic state;

(i) if 4 < a < 4.5, there exists a critical threshold for
the initial configuration. An initial state will evolve into either
the isotropic phase or the stable phase of two nematic prolate
phases, depending on whether such an initial state crosses the
critical threshold.

(iii) If o > 4.5, all initial states will evolve into the nematic
prolate phase.
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