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Abstract

In this paper, we consider a hyperbolic relaxation system arising from a dynamic continuum
traffic flow model. The equilibrium characteristic speed resonates with one characteristic
speed of the full relaxation system in this model. Thus the usual sub-characteristic condi-
tion only holds marginally. In spite of this obstacle, we prove global in time regularity and
finite time singularity formation of solutions simultaneously by showing the critical thresh-
old phenomena associated with the underlying relaxation system. We identify five upper
thresholds for finite time singularity in solutions and three lower thresholds for global exis-
tence of smooth solutions. The set of initial data leading to global smooth solutions is large,
in particular allowing initial velocity of negative slope. Our results show that the shorter
the drivers’ responding time to the traffic, the larger the set of initial conditions leading to
global smooth solutions which correctly predicts the empirical findings for traffic flows.
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1. Introduction

In this paper we continue to investigate the critical threshold phenomenon
for the following quasi-linear hyperbolic system with relaxation{

ρt + (ρu)x = 0,

ut + uux + p(ρ)x

ρ = 1
τ (ve(ρ)− u),

x ∈ R, t > 0 (1)

subject to the initial data

(ρ, u)(x, 0) = (ρ0, u0)(x), x ∈ R (2)

where τ > 0 is the relaxation time, p(ρ) is the pressure with p′(ρ) > 0 and
ve(ρ) is the equilibrium velocity with v′e(ρ) < 0. This system arises from a
continuum model of traffic flows, see [36, 39, 40].

We are concerned with both global in time regularity and finite time
singularity in solutions to such a relaxation system. As is known, the typical
well-posedness result of a one dimensional system of quasi-linear hyperbolic
balance laws asserts that either a solution exists for all time or else there
is a finite time such that slopes of the solution become unbounded as the
life span is approached, see e.g. Lax [16], John [14], Liu [32], Nishida [35],
Dafermos and Hsiao [5], Wang and Chen [38], Engelberg, Liu and Tadmor
[7]. In [22], we identified one lower threshold for global existence of smooth
solutions and one upper threshold for the finite time breakdown. The aim
of the current paper is to further our analysis to study solution behaviors
for more general data. Indeed we are able to obtain three lower thresholds
for global existence of smooth solutions and five upper thresholds for the
finite time breakdown.

In the context of traffic flows, the first equation in (1) is a conservation
law, while the second one describes drivers’ acceleration behavior. It is often
assumed that the desired equilibrium speed ve(ρ) is decreasing and satisfies
ve(0) = vf and ve(ρmax) = 0 where vf is the free flow speed and ρmax is the
maximum of concentration. τ > 0 corresponds to drivers’ responding time
to the traffic. Several well-known traffic flow models are special cases of (1),
[22]. We focus only on one physical scenario in this paper: Zhang’s model
[40] which is (1) with

p(ρ) =
v2
f

3
ρ3 (3)

and

ve(ρ) = vf (1− ρ), (4)

where vf is the free flow speed. The equilibrium velocity defined in (4) is
rescaled from an actual measurement done by Greenshields [9]. A global
weak solution of the Cauchy problem (1) (2) with (3) and (4) for initial data
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of bounded total variation was obtained in [17] and the L1 stability theory
was established in [18].

For hyperbolic systems with relaxation, it has been shown by Whitham
[39] that a sub-characteristic type condition is necessary for linear stability
of the system. A remarkable development of the stability theory for various
relaxation systems have appeared in past decades, see e.g., [3, 12, 15, 26, 25,
21, 33, 34], relying on some sub-characteristic type structure conditions [33].
Nonlinear stability of the traveling wave solutions of (1) with more general
p(ρ) and ve(ρ) is obtained again under the subcharacteristic conditions (12)
by Li and Liu [21]. The model (1) with (3) and (4) supports only a marginal
subcharacteristic condition (14), that is, the equilibrium characteristic speed
resonates with one characteristic speed of the full relaxation system. The
phenomenon also occurs in other traffic flow models, see, e.g., [1, 8, 19]. Pre-
vious techniques of analysis relying upon such a sub-characteristic condition
cannot be applied. In [22], we have developed novel techniques for analyzing
the underlying nonlinear dynamics.

Following [22], we track nonlinear dynamics of slopes of the Riemann in-
variants along two characteristic fields. For hyperbolic balance laws such as
(1), the coupling of different characteristic fields makes it difficult to detect
a sharp critical threshold, as observed in [29], and further studied in [37] for
a 1D Euler-poisson system with pressure effects. The situation for relax-
ation system (1) is more subtle. Nevertheless, for the physical scenario with
(3) (4), we are able to decouple slope dynamics of one Riemann invariant
from the system, and track dynamics of the whole system effectively. The
genuine nonlinearity of the hyperbolic system (1) and the a priori estimates
of solutions enable us to identify the asserted thresholds.

We state our critical threshold results as below.

Theorem 1.1 [Global in time regularity]
Consider the relaxation system (1) with (3) and (4), subject to initial

data (2) satisfying (ρ0, u0) ∈ C1(R)× C1(R). Let

r±(x, t) = ux(x, t)± vfρx(x, t)

and
r±(x, 0) = r±0 (x)

for all x ∈ R and t > 0.
If one of the following is satisfied, then the Cauchy problem (1), (2) with

(3) and (4) admits a unique global smooth solution.
(i) Both

−1
τ
≤ r+

0 (x) ≤ 0 and r−0 (x) ≥ 0

hold for all x ∈ R;
(ii)

0 <
1
τ
r+
0 (α) < δ(r−0 (β))2
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for all α, β ∈ R and for some 0 < δ < 1;
(iii)

−1
2

r+
0 (α)
τ

> (r−0 (β))2, −δ ≤ r−0 (β) ≤ 0, −1
τ
≤ r+

0 (α) < 0

for all α, β ∈ R and for some δ > 0.

Theorem 1.2 [Finite time singularity]
If one of the following is satisfied, then the solution must develop singu-

larity at a finite time T ∗, with

lim
t→T ∗

min
x∈R

(r+(x, t) + r−(x, t)) = −∞.

(i) r+
0 (x) ≥ − 1

τ fails to hold at any point x ∈ R;
(ii) For all α ∈ R

−1
τ
≤ r+

0 (α) ≤ 0

and r−0 (β) ≥ − 1
τ fails to hold at any point β ∈ R;

(iii) For all α ∈ R
r+
0 (α) > 0

and r−0 (β) ≥ 0 fails to hold at any point β ∈ R;
(iv) For all α, β ∈ R

0 ≤ r−0 (β) <
r+
0 (α)

τr+
0 (α) + 1

;

(v) For all α, β ∈ R

−δ(r−0 (β))2 <
r+
0 (α)
τ

< 0, −1
τ
≤ r−0 (β) < 0

for some 0 < δ < 1
2 .

A phase diagram is drawn in Figure 1 to describe different sets of initial
data for which we have clarified the global in time behavior of corresponding
solutions: initial data in

⋃3
i=1 Ri lead to global in time solution, and initial

data in
⋃5

i=1 Si lead to finite time singularity formation in solutions. The
solution behavior for initial data from

⋃2
i=1 Ui remains unknown. Never-

theless, the asserted results presented in this paper certainly indicate the
existence of a critical threshold consisting of the half line

{(r+
0 , r−0 )| r+

0 = −1/τ, −1/τ ≤ r−0 },

joint with a curve passing from equilibrium point (−1/τ,−1/τ) through U1

to equilibrium point (0, 0) into U2 in the first quadrant. However, we have
not been able to give a precise description of such a curve.

Concerning these theorems, several further remarks are in order.
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Figure 1: Qualitative diagram of thresholds

Remarks:
(i) For completeness, we have included case (i) in Theorem 1.1 and case (i)
in Theorem 1.2 which were identified in our previous paper [22].
(ii) The set of initial data leading to global regularity is rich. In particular,
it allows the initial Riemann invariant of negative slope. This is in sharp
contrast to the generic breakdown in homogeneous hyperbolic systems , see
Lax [16].
(iii) No smallness of data is assumed for the global existence of the smooth
solution. The critical thresholds we identified reveal the genuine nonlinear
phenomena hidden in the system.
(iv) Note that the bounds for the derivatives of the initial Riemann invariants
are of order 1

τ . This implies that the smaller the relaxation time τ , the larger
the set of initial data leading to global smooth solutions. This means that
the shorter the drivers’ reaction time, the larger the set of initial conditions
leading to global smooth traffic flows. This is in agreement with the finding
that in a class of optimal velocity models, the smaller the relaxation time
τ is, the larger the linear stable region is, [2]. Similar phenomena occur in
other problems. For example, in Euler-Poisson equations for plasma sheath
problem, the small Debey length does delay the finite time breakdown [23];
also small Rossby number in rotational Euler equations helps to prevent
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breakdown from happening in O(1) time [31]. These results show that the
equilibrium limit is highly singular.

Finally we comment on another physical scenario:

p(ρ) = c2
0ρ. (5)

with

ve(ρ) = c ln
ρmax

ρ
, 0 < ρ ≤ ρmax (6)

for some c > 0. This is a classical dynamic continuum model of traffic
flow: the Payne [36] and Whitham [39] (PW) model. In [22], we identified
one lower threshold for global existence of smooth solutions and one upper
threshold for the finite time breakdown. Following similar analysis as per-
formed in [22] and in this paper we are able to identify three lower thresholds
for global in time existence of smooth solutions and five upper thresholds
for finite time singularity. For brevity of the presentation, we choose to omit
the details in this scenario.

We now conclude this section by outlining the rest of this paper. In
Section 2 we present preliminaries about the hyperbolic relaxation system
(1) and reformulation of corresponding results in terms of the Riemann
invariants. This section also contains a priori estimates of solutions in L∞

norm for (1). Section 3 is devoted to identifying three lower thresholds for
global existence of smooth solutions, This is done by deriving the a priori
estimate of the derivatives of the solution. Finally, Section 4 is devoted to
detection of five upper thresholds for the finite time singularity formation.

2. Reformulation of the Problem

For the pressure and the equilibrium velocity defined in (3) (4), it is easy to
check that

p′(ρ) = (ρv′e(ρ))2 > 0. (7)

Thus the system (1) is a strictly hyperbolic balance law, the characteristic
speeds being

λ1(ρ, u) = u + ρv′e(ρ) < u− ρv′e(ρ) = λ2(ρ, u). (8)

The corresponding right eigenvectors of the Jacobian of the flux are

ri(ρ, u) = (ρ, (−1)i+1v′e(ρ))T , i = 1, 2.

Both characteristic families are genuinely nonlinear

∇λi(ρ, v) · ri(ρ, v) = (−1)i+1 d2

dρ2
(ρve(ρ)) 6= 0, i = 1, 2.
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Recall that in the usual relaxation limit, τ → 0+, the leading order of
the relaxation system (1) is the LWR (Lighthill, Whitham and Richards)
model

ρt + (q(ρ))x = 0, (9)

where

q(ρ) = ρve(ρ) (10)

is the equilibrium flux which is the fundamental diagram in traffic flows.
The equilibrium characteristic speed is

λ∗(ρ) = q′(ρ) = ve(ρ) + ρv′e(ρ). (11)

The so-called subcharacteristic condition is

λ1 < λ∗ < λ2 (12)

on the equilibrium curve u = ve(ρ). (12) was shown to be a necessary
condition for linear stability, Whitham [39].

It can be derived formally [33], in the same spirit as the classical Chapman-
Enskog expansion, that the relaxation process is approximated by a viscous
conservation law

ρt + (q(ρ))x = (β(ρ)ρx)x (13)

where
β(ρ) = −τ(λ∗ − λ1)(λ∗ − λ2).

Note that (13) is dissipative, β(ρ) > 0, provided that subcharacteristic con-
dition (12) is satisfied. Similar to the diffusion, the relaxation term has
smoothing and dissipative effects for the hyperbolic conservation laws. Non-
linear stability of the traveling wave solutions of (1) with more general p(ρ)
and ve(ρ) is obtained under the subcharacteristic conditions (12) by Li and
Liu [21].

From (8) and (11) we see that, the subcharacteristic condition (12) is
only satisfied marginally

λ1 = λ∗ < λ2. (14)

Thus the diffusion term in the Chapman-Enskog expansion of (1) vanishes,

β(ρ) = 0.

Hence previous stability analysis based on such a dissipation mechanism can-
not be applied. We shall track the nonlinear dynamics along characteristic
fields.
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For the system (1) with (3) and (4) we have{
ρt + uρx + ρux = 0,
ut + uux + v2

fρρx = 1
τ (vf (1− ρ)− u). (15)

Multiplying system (15) by the left eigenvectors of the Jacobian of the flux

li(w, u) = ((−1)ivf , 1), i = 1, 2,

we have {
R−t + λ1R

−
x = − 1

τ R+,
R+

t + λ2R
+
x = − 1

τ R+,
(16)

where

λ1 = R− − vf , λ2 = R+ + vf (17)

and the Riemann invariants{
R−(ρ, u) = u− vfρ + vf

R+(ρ, u) = u + vfρ− vf
(18)

define a one-to-one mapping from (ρ, u) to (R−, R+) in the entire phase
space.

The corresponding initial data is

(R−, R+)(x, 0) = (R−0 , R+
0 )(x) = (u0 − vfρ0 + vf , u0 + vfρ0 − vf )(x). (19)

Theorem 2.1 Consider the system (16) subject to C1 bounded initial data
(19).
If

R±0,x(x) := r±0 (x)

satisfy one of three conditions (i)-(iii) stated in Theorem 1.1, then the
Cauchy problem (16) (19) has a unique smooth solution for all time t > 0.

Theorem 2.2 If one of the five conditions (i)-(v) stated in Theorem 1.2 is
satisfied for

R±0,x(x) := r±0 (x),

then the solution of the Cauchy problem (16) (19) must develop singularity
at a finite time T ∗, with

lim
t→T ∗

min
x∈R

(R+
x (x, t) + R−x (x, t)) = −∞.

The local existence of smooth solutions of hyperbolic problem is classi-
cal, see e.g. Douglis [6] and Hartman and Wintner [10]. According to the
theory of first order quasilinear hyperbolic equations [4], solutions to initial
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value problems exist as long as one can place an a priori limitation on the
magnitude of their first derivatives.

Equipped with the classical local existence results in [6] and [10], we need
only to establish the a priori estimates in solutions and their derivatives,
which will be presented in the following sections. Using expressions of the
Riemann invariants to convert back to variables u and ρ, we prove our main
results as stated in Theorem 1.1– Theorem 1.2.

We end this section by giving the desired a priori estimates of solutions
in L∞ norm.

Lemma 2.3 Assume that R±0 ∈ C1(R) and that

‖R−0 ‖∞ + ‖R+
0 ‖∞ ≤ M

for some M > 0. Then the C1 solution of the Cauchy problem (16) (19)
satisfies the a priori estimates

‖R+(·, t)‖∞ ≤ ‖R+
0 ‖∞e−

t
τ (20)

and
‖R−(·, t)‖∞ + ‖R+(·, t)‖∞ ≤ M (21)

for all t ≥ 0 as long as the C1 solution exists.

Proof. Integrating the second equation in (16) along the second character-
istics x2(t, α)

dx2

dt
= λ2 = u + c0, x2(0, α) = α,

we have
R+(x2(t, α), t) = R+

0 (α)e−
t
τ ,

which leads to the asserted bound (20).
Now integrating the first equation in (16) along the first characteristics

x1(t, β)
dx1

dt
= λ1 = u− c0, x1(0, β) = β,

we have
R−(x1(t, β), t) = R−0 (β)− 1

τ

∫ t

0
R+(x1(s, β), s)ds

Using the above decay result for ‖R+(·, t)‖∞, we have

‖R−(·, t)‖∞ ≤ ‖R−0 (·)‖∞ + ‖R+
0 (·)‖∞(1− e−

t
τ ).

This added upon (20) gives the desired bound (21). The proof is complete.

The uniform bound for (ρ, u) follows from (20), (21) and (18).
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3. Proof of Theorem 2.1 – Lower Thresholds

In order to identify three lower thresholds for global existence of smooth
solutions as claimed in Theorem 1.1 and 2.1, we derive the a priori estimates
of the derivatives of the Riemann invariants R±(x, t) of (1) with (3), (4).

Denote r− = R−x and r+ = R+
x , we shall show that R±x are bounded

when initial values of them, i.e., r±0 := R±0,x are bounded by some critical
thresholds, through three lemmas 3.1-3.3.

Lemma 3.1 Assume that R±0 (x) ∈ C1(R) and ‖R±0 ‖∞ are bounded.
If

0 ≥ R+
0,x(x) ≥ −1

τ
, x ∈ R

and
R−0,x(x) ≥ 0, x ∈ R,

then any C1 solution of the Cauchy problem (16) (19) has the a priori
estimates

0 ≥ R+
x (x, t) ≥ min

x∈R
R+

0,x(x)

and

max
x∈R

R−0,x(x) ≥ R−x (x, t) ≥ min
x∈R

R−0,x(x)

1 + R−0,x(x)t

for all x ∈ R and t ≥ 0 as long as the C1 solution exists.

Proof: From (17) we derive that

λ1,x = r−, λ2,x = r+.

We differentiate (16) with respect to x to obtain{
r−t + λ1r

−
x + (r−)2 = − 1

τ r+,
r+
t + λ2r

+
x + (r+)2 = − 1

τ r+.
(22)

Rewrite the second equation for r+ to get

r+
t + λ2r

+
x = −r+

(
1
τ

+ r+
)

.

Along the second characteristics x2(t, α): dx2
dt = λ2, x2(0, α) = α, we have

d

dt
r+ = −r+

(
1
τ

+ r+
)

.

Solving this differential equation, we obtain

r+(x2(t, α), t) =
r+
0 (α)

(τr+
0 (α) + 1)et/τ − τr+

0 (α)
, (23)
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which remains bounded

−1
τ
≤ r+(x2(t, α), t) ≤ max{0, r+

0 (α)} (24)

if and only if

r+
0 (α) ≥ −1

τ
, ∀α ∈ R.

Now we examine r− = R−x , which satisfies

r−t + λ1r
−
x = −r+

τ
− (r−)2.

It follows from (24) that if

0 ≥ r+
0 (α) ≥ −1

τ
, ∀α ∈ R, (25)

then
0 ≥ r+(x, t) ≥ −1

τ
, (x, t) ∈ R×R+.

Assume (25) and let x1(t, β) be the first characteristics, along which we have

1
τ2
− (r−)2 ≥ d

dt
r− ≥ −(r−)2.

If
r−0 (β) ≥ 0, ∀β ∈ R,

then r− stays bounded. Indeed

r−0 (β)
1 + r−0 (β)t

≤ r−(x1(t, β), t) ≤ 1
τ

c1e
2t
τ + 1

c1e
2t
τ − 1

where c1 = r−0 + 1
τ

r−0 −
1
τ

. Note that when r−0 ≥ 0, the function on the right hand

side is a decreasing function in time and satisfies

1
τ
≤ 1

τ

c1e
2t
τ + 1

c1e
2t
τ − 1

≤ r−0 (β).

Therefore, if r−0 (β) ≥ 0 for all β ∈ R, then

r−0 (β)
1 + r−0 (β)t

≤ r−(x1(t, β), t) ≤ r−0 (β), β ∈ R

which when optimizing the bounds in terms of the parameter β leads to the
desired estimates. The proof of Lemma 3.1 is complete.

Lemma 3.2 Assume that R±0 (x) ∈ C1(R) and ‖R±0 ‖∞ are bounded.
If R±0,x(x) = r±0 (x) satisfy condition (ii) stated in Theorem 1.1, then any C1
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solution of the Cauchy problem (16), (19) has the a priori estimates: for
some C1 and C2 depending only on R+

0,x and R−0,x, we have

C1 ≥ R±x (x, t) ≥ C2

for all x ∈ R and t ≥ 0 as long as the C1 solution exists.

Proof: Assume that R±0,x(x) = r±0 (x) satisfy condition (ii) stated in Theo-
rem 1.1.

From (23) we have

0 <
r+
0 (α)

1 + τr+
0 (α)

e−
t
τ ≤ r+(x2(α, t)) ≤ r+

0 (α)e−
t
τ

for all α and for all t ≥ 0.

Step I. A priori estimates
We show that there is 0 < δ < 1 such that if the initial data satisfies

0 <
1
τ
r+
0 (α) < δ(r−0 (β))2

for any α and any β, then(
r−0 (β)

1 + 2r−0 (β)t

)2

>
1
τ
r+
0 (α)e−

t
τ

for any α and any β and for all t ≥ 0.
The above inequality can be proved by observing that the left and right

hand sides decay to zero algebraically and exponentially, respectively, and
by taking 0 < δ < 1 small.

For 0 < δ < 1 chosen above, consider initial data satisfying

0 <
1
τ
r+
0 (α) < δ(r−0 (β))2

for any α and any β.

Step II. Local estimates
By continuity of solutions of ODEs, there is t0 > 0 such that

1
τ
r+(x2(α, t)) < (r−(x1(β, t)))2

for any α and any β and for all 0 ≤ t ≤ t0.
For any (x, t) ∈ R×R+, there are α and β such that

x = x1(β, t) = x2(α, t).

Thus

−(r−(x1(β, t)))2 >
d

dt
r−(x1(β, t)) = −1

τ
r+(x2(α, t))−(r−(x1(β, t)))2 > −2(r−(x1(β, t)))2
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for all 0 ≤ t ≤ t0. Hence

r−0 (β)
1 + r−0 (β)t

> r−(x1(β, t)) >
r−0 (β)

1 + 2r−0 (β)t

for all 0 ≤ t ≤ t0.

Step III. Global estimates
Let

Γ =

{
t0 ≥ 0

∣∣∣ r−0 (β)
1 + r−0 (β)t

≥ r−(x1(β, t)) ≥ r−0 (β)
1 + 2r−0 (β)t

, 0 ≤ t ≤ t0

}
.

We claim
Γ = [0, +∞)

which implies the global estimates of solutions.
Now we prove the claim.
From definition of Γ, it is obvious that Γ is a closed and connected set

in R. Assume that
Γ = [0, T ]

for some T < +∞.
Using the a priori estimates established in Step I and Step II and defi-

nition of Γ, we have

−(r−(x1(β, t)))2 >
d

dt
r−(x1(β, t)) ≥ −1

τ
r+
0 (α)e−

t
τ − (r−(x1(β, t)))2

> −
(

r−0 (β)
1 + 2r−0 (β)t

)2

− (r−(x1(β, t)))2 ≥ −2(r−(x1(β, t)))2

for 0 ≤ t ≤ T . This implies that

r−0 (β)
1 + r−0 (β)t

> r−(x1(β, t)) >
r−0 (β)

1 + 2r−0 (β)t

for 0 ≤ t ≤ T .
By continuity of solutions of ODEs, we have that there exists T1 > T

such that
r−0 (β)

1 + r−0 (β)t
≥ r−(x1(β, t)) ≥ r−0 (β)

1 + 2r−0 (β)t

for 0 ≤ t ≤ T1.
Thus

T1 ∈ Γ = [0, T ]

which contradicts T1 > T . Therefore the claim is proved, and we have global
estimates of solutions.

Lemma 3.3 Assume that R±0 (x) ∈ C1(R) and ‖R±0 ‖∞ are bounded.
If R±0,x(x) = r±0 (x) satisfy condition (iii) stated in Theorem 1.1, then any
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C1 solution of the Cauchy problem (16), (19) has the a priori estimates: for
some C1 and C2 depending only on R+

0,x and R−0,x, we have

C1 ≥ R±x (x, t) ≥ C2

for all x ∈ R and t ≥ 0 as long as the C1 solution exists.

Proof: Assume that the initial data satisfies

−1
2

r+
0 (α)
τ

> (r−0 (β))2, −δ ≤ r−0 (β) ≤ 0, −1
τ
≤ r+

0 (α) < 0

for all α, β ∈ R and for some δ > 0.
From (23) we have

r+
0 (α)

1 + τr+
0 (α)

e−
t
τ ≤ r+(x2(α, t)) ≤ r+

0 (α)e−
t
τ < 0

for all α and for all t ≥ 0.
By continuity of solutions of ODEs, there is t0 > 0 such that

−1
2

r+(x2(α, t))
τ

≥ (r−(x1(β, t)))2

for any α and any β and for all 0 ≤ t ≤ t0.
For this fixed t0 > 0, we have

d

dt
r−(x1(β, t)) ≥ −1

2
r+(x2(α, t))

τ
≥ −1

2
r+
0 (α)
τ

e−
t
τ

for any α and any β and for all 0 ≤ t ≤ t0.
Integrating over [0, t0], we have

r−(x1(β, t0)) ≥ r−0 (β) +
1
2

min
α
|r+

0 (α)|(1− e−
t0
τ ) > 0

provided that
−δ < r−0 (β) ≤ 0

where

δ = min


√

1
2

min
α
|r

+
0 (α)
τ

|, τ

2
min

α
|r

+
0 (α)
τ

|(1− e−
t0
τ )

 .

Thus the trajectory enters region (i) at a finite time t1 < t0. Therefore we
have global estimates of solutions.

This proves Lemma 3.3.
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4. Proof of Theorem 2.2 – Upper Thresholds

This section is devoted to detection of five upper thresholds stated in The-
orem 1.2 and 2.2 as detailed below.

(i) For initial data satisfying condition (i) as stated in Theorem 1.2, the
solution r+, expressed in (23), will becomes −∞ at some time before

T = τ min
α∈R

ln

(
τr+

0 (α)
1 + τr+

0 (α)

)
< +∞.

This proves (i) in Theorem 1.2 and 2.2.

(ii) For any (x, t) ∈ R×R+, there are α and β such that

x = x1(β, t) = x2(α, t).

With initial data (r−0 (β), r+
0 (α)) in region (ii) as stated in Theorem 1.2, we

have (24) for all t ≥ 0, and thus

d

dt
r−(x1(β, t)) = −r+

τ
− (r−)2 ≤ 1

τ2
− (r−)2,

from which it follows

r−(x1(t, β), t) ≤ 1
τ

c1e
2t
τ + 1

c1e
2t
τ − 1

,

where 1 > c1 = r−0 + 1
τ

r−0 −
1
τ

> 0 for r−0 (β) < − 1
τ . Thus r− will becomes −∞ in a

finite time before t∗ > 0 where t∗ = − τ
2 logc1.

(iii) If the initial data (r−0 (β), r+
0 (α)) is in region (iii) as stated in The-

orem 1.2, we already have r+(x2(α, t)) > 0 for all t ≥ 0, (23). Thus
d
dtr

−(x1(β, t)) ≤ −(r−)2, yielding

r−(x1(β, t)) ≤ r−0 (β)
1 + r−0 (β)t

.

This implies that if r−0 (β) < 0, then r− will become −∞ in finite time before
t∗ = − 1

r−0 (β)
.

(iv) If the initial data (r−0 (β), r+
0 (α)) is in region (iv) as stated in Theorem

1.2, we have

d

dt
r−(x1(β, t)) ≤ −1

τ
r+(x2(α, t)) ≤ −1

τ

r+
0 (α)

1 + τr+
0 (α)

e−
t
τ .

Hence,

r−(x1(β, t)) ≤ r−0 (β)− 1
τ

∫ t

0

r+
0 (α)

1 + τr+
0 (α)

e−
s
τ ds
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= r−0 (β) +
r+
0 (α)

1 + τr+
0 (α)

(e−
t
τ − 1) < 0

in a finite time t = T1 < +∞.
Thus

d

dt
r−(x1(β, t)) ≤ −(r−)2, r−(x1(β, T1)) < 0.

Therefore

r−(x1(β, t)) ≤ r−(x1(β, T1))
1 + r−(x1(β, T1))(t− T1)

for t > T1.
This implies that r− will become −∞ in finite time before t∗ = T1 −

1
r−(x1(β,T1)) .

(v) Assume that the initial data (r−0 (β), r+
0 (α)) is in region (v) as stated in

Theorem 1.2.

Step I. A priori estimates
We show that there is 0 < δ < 1

2 such that if the initial data satisfies

0 <
1
τ
r+
0 (α) < δ(r−0 (β))2

for any α and any β, then

−1
2

(
r−0 (β)

1 + 1
2r−0 (β)t

)2

<
1
τ
r+
0 (α)e−

t
τ < 0

for any α and any β and for all t ≥ 0.
The above inequality can be proved by observing that the left and right

hand sides decay to zero algebraically and exponentially, respectively, and
by taking 0 < δ < 1

2 small.

Step II. Local estimates
By continuity of solutions ODEs, there is t0 > 0 such that

−1
2
(r−(x1(β, t)))2 <

1
τ
r+(x2(α, t))

for any α and any β and for all 0 ≤ t ≤ t0.
Thus

d

dt
r−(x1(β, t)) ≤ −1

2
(r−(x1(β, t)))2

for all 0 ≤ t ≤ t0 or

r−(x1(β, t)) ≤ r−0 (β)
1 + 1

2r−0 (β)t
< 0

for all 0 ≤ t ≤ t0.

Step III. Finite time blow up

16



Let

Γ =
{

t0 ≥ 0| − 1
2
(r−(x1(β, t)))2 ≤ 1

τ
r+(x2(α, t)), 0 ≤ t ≤ t0

}
.

We claim
Γ = [0, +∞).

From definition of Γ, it is obvious that Γ is a closed and connected set in R.
Assume that

Γ = [0, T ]

for some T < +∞.
Using the a priori estimates established in Step I and Step II and defi-

nition of Γ, we have

d

dt
r−(x1(β, t)) ≤ −1

2
(r−(x1(β, t)))2

for all 0 ≤ t ≤ T , leading to

r−(x1(β, t)) ≤ r−0 (β)
1 + 1

2r−0 (β)t

for all 0 ≤ t ≤ T .
Therefore

−1
2
(r−(x1(β, t)))2 ≤ −1

2

(
r−0 (β)

1 + 1
2r−0 (β)t

)2

<
1
τ
r+(x2(α, t)) < 0

for all 0 ≤ t ≤ T .
By continuity of solutions of ODEs, we have that there exists T1 > T

such that
−1

2
(r−(x1(β, t)))2 ≤ 1

τ
r+(x2(α, t))

for all 0 ≤ t ≤ T1.
Thus

T1 ∈ Γ = [0, T ]

which contradicts T1 > T .
The claim is proved.
Thus

d

dt
r−(x1(β, t)) ≤ −1

2
(r−(x1(β, t)))2, r−0 (β) < 0

for all t ∈ Γ = [0,+∞) as long as the C1 solution exists.
Therefore

r−(x1(β, t)) ≤ r−0 (β)
1 + 1

2r−0 (β)t
.

This implies that r− will become −∞ in finite time before t∗ = − 2
r−0 (β)

.

The proof of Theorem 1.2 and 2.2 is thus complete.
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