
Journal of Computational Physics 473 (2023) 111699
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier.com/locate/jcp

A dynamic mass transport method for Poisson-Nernst-Planck 

equations

Hailiang Liu a,∗, Wumaier Maimaitiyiming b

a Department of Mathematics, Iowa State University, USA
b Department of Mathematics, University of California Los Angeles, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 20 May 2022
Received in revised form 14 September 
2022
Accepted 16 September 2022
Available online 26 October 2022

Keywords:
PNP equations
Optimal transport
Wasserstein distance
Positivity
Energy dissipation

A dynamic mass-transport method is proposed for approximately solving the Poisson–
Nernst–Planck (PNP) equations. The semi-discrete scheme based on the JKO type variational 
formulation naturally enforces solution positivity and the energy law as for the continuous 
PNP system. The fully discrete scheme is further formulated as a constrained minimization 
problem, shown to be solvable, and satisfy all three solution properties (mass conservation, 
positivity and energy dissipation) independent of time step size or the spatial mesh size. 
Numerical experiments are conducted to validate convergence of the computed solutions 
and verify the structure preserving property of the proposed scheme.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we consider a time-dependent system of Poisson-Nernst-Planck (PNP) equations. Such system has been 
widely used to describe charge transport in diverse applications such as biological membrane channels [10,13,47], electro-
chemical systems [2], and semiconductor devices [36,44].

PNP equations consist of Nernst–Planck (NP) equations that describe the drift and diffusion of ion species, and the 
Poisson equation that describes the electrostatic interaction. Such mean field approximation of diffusive ions admits several 
variants, and in non-dimensional form we consider the following

∂tρi = ∇ · [Di(x) (∇ρi + ziρi∇φ)] , x ∈ � ⊂ Rd, t > 0, (1.1a)

− ∇ · (ε(x)∇φ) = f (x) +
s∑

i=1

ziρi, (1.1b)

subject to initial data ρi(x, 0) = ρ in
i (x) ≥ 0 (i = 1, · · · , s) and appropriate boundary conditions to be specified in section 2. 

The equations are valid in a bounded domain � with boundary ∂� and for time t ≥ 0. Here ρi = ρi(x, t) is the charge carrier 
density for the i-th species, and φ = φ(x, t) the electrostatic potential. Di(x) is the diffusion coefficient, zi is the rescaled 
charge. In the Poisson equation, ε(x) is the permittivity, f (x) is the permanent (fixed) charge density of the system, s is the 
number of species.

* Corresponding author.
E-mail addresses: hliu@iastate.edu (H. Liu), wumaier@math.ucla.edu (W. Maimaitiyiming).
https://doi.org/10.1016/j.jcp.2022.111699
0021-9991/© 2022 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2022.111699
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2022.111699&domain=pdf
mailto:hliu@iastate.edu
mailto:wumaier@math.ucla.edu
https://doi.org/10.1016/j.jcp.2022.111699


H. Liu and W. Maimaitiyiming Journal of Computational Physics 473 (2023) 111699
Due to the wide variety of devices modeled by the PNP equations, computer simulation for this system of differential 
equations is of great interest. However, the PNP system is a strongly coupled system of nonlinear equations, also, the PNP 
system as a gradient flow can take very long time evolution to reach steady states. Hence, designing efficient and stable 
numerical methods for the PNP system remains an active area of research (see, e.g., [12,30,33,35,45,46]).

PNP system possesses two immediate properties: it preserves the non-negativity of ρi and conserves total mass. There-
fore, we can consider non-negative initial data with mass one, so that the density is in the set of probability measures P(�)

on �. The third property is the dissipation of the total energy, which can be expressed as follows. Given energy

E =
∫
�

( s∑
i=1

ρi logρi + 1

2
( f +

s∑
i=1

ziρi)φ

)
dx + B, (1.2)

with boundary correction term B , the NP equation (1.1a) can be written as

∂tρi = ∇ · (ρi Di(x)∇(δρi E)). (1.3)

Differentiating the energy along solutions of the PNP system, one formally obtains the energy dissipation along the gradient 
flow

dE

dt
= −

∫
�

s∑
i=1

Di(x)ρi |∇(logρi + ziφ)|2dx ≤ 0,

which indicates that the solution evolves in the direction of steepest descent of the energy. This property entails a charac-
terization of the set of stationary states, and provides a useful tool to study its stability. Numerical methods for (1.1) are 
desired to attain all three properties at the discrete level, which are rather challenging.

1.1. Related work

The most common numerical approach is the direct discretization of (1.1) using classical finite difference, finite volume, 
finite element, or discontinuous Galerkin methods [11,12,14–19,29–33,35,39,45,46]. Such methods are explicit or semi-
implicit in time, so the per time computation is cheap. But it is often challenging to ensure both unconditional positivity 
and discrete energy decay simultaneously. The nonlinearity also complicates the way to obtain solutions when applying 
implicit or semi-implicit solvers.

Equation (1.3) with s = 1 and Di(x) = const reduces to the following scalar equation:

∂tρ = ∇ · (ρ∇(δρ E)). (1.4)

It is now well understood since the pioneering works of Otto [23,41] that equations of the form of (1.4) can be interpreted 
as the gradient flow with respect to the quadratic Wasserstein metric W2(·, ·). Such flow stems from an initial density and 
evolves following the steepest decreasing direction of a prescribed functional E . How to efficiently solve a gradient flow 
remains an intriguing question.

In contrast to the aforementioned direct PDE solvers, the minimizing movement scheme (see [1] and the references 
therein) respects the fact that the trajectory aims at optimizing the energy decay. With such a scheme, solutions of (1.4) are 
approximated by solving a sequence of minimization problems,

ρn+1 = argminρ∈K

{
1

2τ
W 2

2 (ρn,ρ) + E(ρ)

}
, ρ0 = ρ in(x), (1.5)

often called Jordan-Kinderlehrer-Otto (JKO) scheme after [23], which defines a sequence {ρn} in the probability space K to 
approximate the solution ρ(x, nτ ), where τ > 0 is the time step. Since ρn is in the probability space, thus method (1.5) is 
positivity and mass preserving. The fact W2(ρn, ρ) ≥ 0 ensures the energy dissipation for any τ > 0. In light of the favorable 
properties of the JKO scheme, there have been many works devoted to the computation of minimizers for problem (1.5). The 
main numerical difficulties arise in approximating the Wasserstein distance, and different approaches have been introduced 
to deal with this term; see, e.g., [7,8,24,25,38] for using the Lagrangian numerical methods to approximate the Wasserstein 
distance, and [4,6,9,27,28,37,42] for using the Eulerian numerical methods.

In our approach, we consider an Eulerian method based on Benamou-Brenier’s dynamic formulation [3] and a second 
order spatial discretization. This reframes the problem as a convex optimization problem with linear PDE constraints. The 
base formulation we use extends the one in [26], with the goal here to obtain a faster numerical solver. The authors in [26]
constructed the JKO type scheme for a two species PNP system with constant coefficient Di (x) = 1 and ε(x) = 1. The exis-
tence of the unique minimizer to the JKO scheme and convergence of the minimizer to the weak solution of the PNP system 
have been established in [26]. There are a few novel ingredients involved in our base variational formulation beyond that in 
[26]: (i) multi-species are considered, and the evolution of their density are strongly coupled; (ii) the diffusion-coefficient 
Di(x) for each species is varying in space, for which the underlying geodesic curve associated with the Wasserstein metric 
2
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is rather complex, instead of straight lines; and (iii) the general Poisson equation is dealt with as an additional linear con-
straint, instead of using the form of a compact expression in terms of the Newton potential [26]. To use either the classical 
JKO scheme for (1.4) or our formulation as a basis for numerical simulations of PNP systems, one must first develop a fully 
discrete approximation of the minimization problem at each step of the scheme. The fully discrete JKO-type scheme for 
the multi-species variable coefficient PNP system on a bounded domain has not been studied yet. This is what we aim to 
accomplish in this paper.

1.2. Contribution

In the general setting with mixed types of boundary conditions, we identify a unified form of the total energy functional 
which is dissipating along the solution trajectories (see sections 2.1–2.2). We also present (Theorem 2.2) lower energy 
bounds with coercivity for such a functional. These provide a solid basis for our approach.

Our main contributions are:

• We construct a Wasserstein-type distance and formulate a corresponding variational scheme. The update at each scheme 
step reduces to solving a constrained minimization problem, for which we prove unique solvability (Theorem 2.3). 
Three solution properties: mass conservation, positivity, and energy dissipation are shown to be preserved in time 
(Theorem 2.4). We should point out such beneficial properties from the W2 based approach has already been recognized 
for a large class of gradient flows of form (1.4).

• We further convert the variational scheme into a dynamic formulation, which for variable diffusion coefficients ex-
tends the classical Bennamou-Breiner formulation. To reduce computational cost, we use a local approximation for the 
artificial time in the constraint transport equation by a one step difference and the integral in time by a one term 
quadrature. Such treatment was recently proposed in [28] for the aggregation equation to avoid the introduction on 
inner time stepping. Here we prove that the resulting minimization problem is a first order time consistent scheme for 
the PNP system (Theorem 2.5), as is expected.

• We present a fully discrete scheme – by coupling with a 2nd order finite difference method. The underlying principle 
for spatial discretization is to preserve the structure of Wasserstein metric in the discrete sense. We further prove 
the unique solvability (Theorem 3.1) of the fully-discrete scheme, exploiting the convexity property of the objective 
functional in a constraint fashion.

• We prove that for any fixed time step and spatial meth sizes, density positivity will be propagating over all time 
steps (Theorem 3.2). Such positivity-preserving property is proven by taking advantage of the presence of ρ logρ in 
the energy functional. For general aggregation equations, this is not the case. Indeed, in work [28], Fisher information 
regularization is added to enforce solution positivity for an aggregation equation.

• The fully-discrete minimization problem reduces to a convex optimization problem with linear constraints, and can be 
solved by efficient optimization solvers. Our numerical tests are conducted with a simple projected gradient algorithm. 
Compared to the usual primal-dual-interior-penalty (PDIP) algorithm [40], our method is both robust and efficient– 
mainly because positivity is rigorously proven to hold without a restriction on time steps.

• Numerical results are provided to demonstrate the superior performance of the proposed method.

1.3. Organization

The paper is organized as follows. In the next section, we provide necessary background on the dynamical formulation of 
the PNP system, main solution properties and its relation with Wasserstein gradient flows. We then derive the semi-discrete 
scheme. In Section 3, we introduce a fully discrete scheme and study the properties of this scheme. Numerical algorithms 
are given in Section 4. Numerical results are provided in Section 5, and the paper is concluded in Section 6.

Notation. We use [n] to denote {1, 2, · · · , n} for any natural number n. For vector φ (fully discrete case), its amplitude is 
denoted by |φ|. For function φ, ‖φ‖ is its L2 norm.

2. Model background and semi-discretization

In this section we briefly review the model setup and the corresponding Wasserstein gradient flow.

2.1. Boundary conditions

Boundary conditions are a critical component of the PNP model and determine important qualitative behaviors of the 
solution. Let � be a bounded domain with Lipschitz boundary ∂�. We use the no-flux boundary condition for the NP 
equations, i.e.,

Di(x) (∇ρi + ziρi∇φ) · n = 0, x ∈ ∂�, i = 1, · · · , s. (2.1)
3
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Here, n is the outer unit normal at the boundary point x ∈ ∂�.
The external electrostatic potential φ is influenced by applied potential, which can be modeled by prescribing a boundary 

condition. Here we consider a general form of boundary conditions:

αφ + βε(x)
∂φ

∂n
= φb, x ∈ ∂�. (2.2)

Here α, β are physical parameters such that α ·β ≥ 0, and φb = φb(x, t) is a given function. With such setup, we are to solve 
the following initial-boundary value problem:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tρi = ∇ · [Di(x) (∇ρi + ziρi∇φ)] , x ∈ �, t > 0, i = 1, · · · , s,

−∇ · (ε(x)∇φ) = f (x) +∑s
i=1 ziρi, x ∈ �, t > 0,

ρi(x,0) = ρ in
i (x) ≥ 0, x ∈ �, i = 1, · · · , s,

(Di(x) (∇ρi + ziρi∇φ)) · n = 0, x ∈ ∂�, t > 0, i = 1, · · · , s,

αφ + βε(x) ∂φ
∂n = φb, x ∈ ∂�, t > 0.

(2.3)

Remark 2.1. (2.2) includes three typical forms: (i) the Robin boundary condition (α = 1, β > 0) models a capacitor [14], 
(ii) the Dirichlet boundary condition (α = 1, β = 0) models an applied voltage, and (iii) the Neumann boundary condition 
(α = 0, β = 1) models surface changes. The case of pure Neumann boundary conditions requires the compatibility condition∫

�

(
f (x) +

s∑
i=1

ziρ
in
i

)
dx +

∫
∂�

ε(x)φbds = 0, (2.4)

and an additional constraint such as 
∫
�

φ(x, t)dx = 0 so that φ is uniquely defined.

Any combination of these three types can be applied to φ on a disjoint partition of the boundary. In what follows, we 
set

∂� = �D ∪ �N ∪ �R ,

and on each part, one type of boundary condition is imposed, i.e.,

α =

⎧⎪⎪⎨
⎪⎪⎩

1, on �D ,

0, on �N ,

1, on �R ,

β =

⎧⎪⎪⎨
⎪⎪⎩

0, on �D ,

1, on �N ,

βR , on �R ,

φb =

⎧⎪⎪⎨
⎪⎪⎩

φb
D , on �D ,

φb
N , on �N ,

φb
R , on �R .

The existence and uniqueness of the solution for the nonlinear PNP boundary value problems with different boundary 
conditions have been studied in [22,34,43] for the 1D case and in [5,21] for multi-dimensions.

2.2. Energy functional: dissipation and coercivity

In the presence of homogeneous boundary conditions on φ, i.e., φb = 0, the PNP system is energetically closed in the 
sense that the free energy functional associated to (1.1) is of form

E0 =
∫
�

( s∑
i=1

ρi logρi + 1

2
( f +

s∑
i=1

ziρi)φ

)
dx, (2.5)

which along solution trajectories is dissipating in time. For general boundary conditions with φb 
= 0, we need to modify 
the energy so that it is still dissipating along the solution of the PNP system. To this end, we differentiate (2.5) along the 
solution of (1.1), with integration by parts using (2.1), we have

d

dt
E0(ρ,φ)(t) = −

∫
�

s∑
i=1

Di(x)ρi |∇(logρi + ziφ)|2dx + 1

2

∫
∂�

ε(x) [φ(∂nφ)t − (∂nφ)φt] ds.

Assume that φb does not depend on time, then αφt + βε(x)∂nφt = 0 on ∂�, this allows us to express the last term as

1

2

d

dt

⎡
⎢⎣∫
�

ε(x)φb
D∂nφds −

∫
�

φb
Nφds − 1

βR

∫
�

φb
Rφds

⎤
⎥⎦ .
D N R

4
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Thus the modified total energy functional can be taken as

E = E0 − 1

2

⎡
⎢⎣∫
�D

ε(x)φb
D∂nφds −

∫
�N

φb
Nφds − 1

βR

∫
�R

φb
Rφds

⎤
⎥⎦ . (2.6)

Using the Poisson equation, the total energy can be rewritten as

E(ρ,φ) =
∫
�

( s∑
i=1

ρi logρi + 1

2
ε(x)|∇φ|2

)
dx −

∫
�D

ε(x)φb
D∂nφds + 1

2βR

∫
�R

|φ|2ds. (2.7)

Proposition 2.1. Assume that φb does not depend on time, then the extended energy functional (2.7) satisfies

d

dt
E(ρ,φ)(t) = −

∫
�

s∑
i=1

Di(x)ρi |∇(logρi + ziφ)|2dx ≤ 0, t > 0, (2.8)

along the solution of (1.1).

Recall that on �D , the usual strategy for analysis is to transform it to the case with zero boundary value for φ. This way 
the modified energy would include an additional term called the external potential energy. For simplicity, we take φb

D = 0, 
so that we have the following result.

Theorem 2.2. (Lower bound and coercivity of E) Let � be an open, bounded Lipschitz domain, and φb be independent of time with 
φb

D = 0, βR > 0, and ε(x) ≥ a > 0. Then the energy of form

E(ρ,φ) =
∫
�

( s∑
i=1

ρi logρi + 1

2
ε(x)|∇φ|2

)
dx + 1

2βR

∫
�R

|φ|2ds (2.9)

is bounded from below. Moreover, there exist constants c0, c1 > 0 such that

E(ρ,φ) ≥ c0‖φ‖2
H1 − c1. (2.10)

Proof. For ρi ≥ 0, we have 
∫
�

∑s
i=1 ρi log(ρi) ≥ −s|�|/e =: −c1. For the φ-dependent part in E , we argue for all possible 

cases. For �D 
= ∅ we have φb
D = 0; for purely Neumann’s condition we have the additional condition 

∫
�

φ(x)dx = 0, in 
either case we can apply the Poincaré inequality or the Poincaré–Wirtinger inequality to conclude

‖φ‖2
L2 ≤ c∗‖∇φ‖2

L2

with constant c∗ depending on the geometry of �, hence

E ≥ −c1 + a

2
‖∇φ‖2

L2 ≥ c0‖φ‖2
H1 − c1, c0 = a

4
min{1,

1

c∗ }.
For the case ∂� = �R ∪ �N with �R 
= ∅, we have

E(ρ,φ) ≥ 1

2
min{a, β−1

R }Ẽ − c1

with Ẽ(φ) := ∫
�

|∇φ|2dx + ∫
∂�

|φ|2ds. We claim that

Ẽ(φ) ≥ c‖φ‖2
H1 for some c > 0,

which can be proved with a contradiction argument. Since otherwise we can assume Ẽ(φn) < 1
n ‖φn‖2

H1 . Set wn = φn/‖φn‖H1 , 
then wn ∈ H1(�) with

‖wn‖H1 = 1 and ‖∇wn‖2
L2 < 1/n.

By the Rellich-Kondrachov theorem, we can extract a subsequence {wnk } weakly converging to w in H1(�) with ∇wnk → 0
weakly in L2(�). This allows us to conclude w ∈ H1, and ∇w = 0. From 

∫
�R

|wnk |2ds < 1/nk and

‖w‖L2(�R ) ≤ ‖wnk ‖L2(�R ) + ‖wnk − w‖L2(�R ) ≤ 1/
√

nk + C‖w − wnk‖H1 ,

we obtain w = 0 on �R . Hence w = 0 a.e., this is a contradiction. We complete this case by taking c0 = c min{a, β−1}. �
2 R

5
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2.3. Wasserstein distance and JKO scheme for multi-density

In order to derive a variational scheme for the PNP system with multi-density, we need to introduce a Wasserstein-type 
distance. Motivated by the well-known characterization of the Wasserstein distance in a one-component fluid obtained by 
Benamou-Brenier [3], we consider to minimize a joint functional over the set

K : = {ρ = (ρ1, · · · ,ρs), u = (u1, · · · , us) :
∂tρi + ∇ · (ρiui) = 0, (ρiui) · n = 0 on ∂� × [0,1],
ρi ∈ P(�), ρi(x,0) = ρ0

i (x), ρi(x,1) = ρ1
i (x)}.

(2.11)

For the PNP system of two species s = 2 with Di(x) = 1 and ε(x) = 1 considered in [26], the distance inherited from the 
2-Wasserstein distance is defined by

d2(ρ0,ρ1) =
2∑

i=1

W 2
2 (ρ0

i ,ρ1
i ).

This is equivalent to the minimization of the joint functional:

d2(ρ0,ρ1) := min
(ρ,u)∈K

2∑
i=1

1∫
0

∫
�

|ui|2ρidxdt. (2.12)

Here t is an artificial time and serves to characterize the optimal curve in the density space. Following [23], the authors in 
[26] constructed the following JKO scheme: Given a time step τ , the scheme defines a sequence ρn as

ρ0 = ρ in, ρn+1 = arg min
ρ∈[P(�)]2

{
1

2τ
d2(ρn,ρ) + E(ρ)

}
. (2.13)

Here E is the total free energy, d2 is the (squared) distance on the product space as defined in (2.12). One of the challenges 
in this program lies in handling the coupling terms, some intrinsic difficulties arise due to both the specific Poisson kernel 
and the system setting. Note that in [26] with ε(x) = 1, the electrostatic potential φ in E(ρ, φ) is replaced by

φ[ρ] = N ∗ ( f +
2∑

i=1

ziρi), x ∈ �,

so that E(ρ) = E(ρ, φ[ρ]). Here the kernel N ∼ C/|x|d−2 serves as a counterpart of the Green’s function for the Newton 
potential in Rd . Even with this treatment derivation of the corresponding Euler–Lagrange equations is quite delicate. We 
refer to [26] for further details.

In order to extend the above JKO-type scheme to the present setting, we face two new difficulties: (i) Di(x) is no 
longer a constant, the kinetic energy corresponding to the squared distance cost needs to be modified; (ii) ε(x) is a general 
non-negative function, φ cannot be expressed explicitly in terms of ρ . As for (i), we follow [20] and consider a modified 
functional

d2(ρ0,ρ1) := min
(ρ,u)∈K

s∑
i=1

1∫
0

∫
�

D−1
i |ui|2ρidxdt. (2.14)

As for (ii), the Poisson equation is treated as a constraint in the resulting minimization problem. For ease of presentation 
we define

A :=
{

(ρ,φ) : −∇ · (ε(x)∇φ) = f (x) +
s∑

i=1

ziρi, αφ + β
∂φ

∂n
= φb, x ∈ ∂�,ρ ∈ [P(�)]s

}
. (2.15)

For fixed ρ∗ ∈ [P(�)]s , and time step τ > 0 we set

Gτ (ρ,φ) = 1

2τ
d2(ρ∗,ρ) + E(ρ,φ), (ρ,φ) ∈ A. (2.16)

In order to define a discrete sequence of approximate solutions using the minimizing scheme, we present a result on the 
existence of minimizers of Gτ . To establish the uniqueness, we now prepare a technical lemma, with (iii) to be used later 
in the proof of Theorem 3.1.
6
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Lemma 2.1. Given X0, X1 , let X(θ) = θ X0 + (1 − θ)X1 for any θ ∈ (0, 1).

(i) If X0, X1 are vectors, then

|X(θ)|2 − θ |X0|2 − (1 − θ)|X1|2 = −θ(1 − θ)|X1 − X0|2. (2.17)

(ii) If X0 > 0, X1 > 0 are scalars, then

X(θ) log X(θ) − θ X0 log X0 − (1 − θ)X1 log X1 = −θ(1 − θ)(X1 − X0)2 g(X0, X1; θ), (2.18)

for some positive function g depending on X0, X1 and θ .
(iii) If X0 > 0, X1 > 0, Y 0, Y 1 are scalars, then

(Y (θ))2

X(θ)
− θ

(Y 0)2

X0
− (1 − θ)

(Y 1)2

X1 = −θ(1 − θ)
(X1Y 0 − X0Y 1)2

X0 X1 X(θ)
. (2.19)

Proof. We only prove (ii); as (i) and (iii) can be verified by a direct calculation. Note that

X(θ) log X(θ) = θ X0 log(X(θ)) + (1 − θ)X1 log(X(θ)). (2.20)

Taylor’s expansion of log(X(θ) at X0 and X1, respectively, gives

log(θ X0 + (1 − θ)X1) = log(X0) + 1

X0
(1 − θ)(X0 − X1) − (1 − θ)2(X1 − X0)2

( X̃0)2
,

where X̃0 in between X0 and X(θ), and

log(θ X0 + (1 − θ)X1) = log(X1) + 1

X1 + θ(X1 − X0) − θ2(X1 − X0)2

( X̃1)2
,

where X̃1 in between X1 and X(θ). Substituting these into the right hand side of (2.20) leads to

X(θ) log X(θ) =θ X0 log X0 − θ(1 − θ)2 X0

( X̃0)2
(X1 − X0)2

+ (1 − θ)X1 log X1 − θ2(1 − θ)
X1

( X̃1)2
(X1 − X0)2,

this completes the proof of (ii) by defining g(X0, X1, θ) = (1−θ)X0

( X̃0)2 + θ X1

( X̃1)2 > 0. �
Theorem 2.3. (Existence of minimizers) Fix τ > 0, and ρ∗ ∈ [P(�)]s . Then the functional Gτ (ρ, φ) admits a unique minimizer on A.

Proof. By Theorem 2.2, Gτ is bounded from below on A, hence there is a minimizing sequence (ρk, φk) and ρk is tight 
and uniformly integrable. By the Dunford–Pettis Theorem one may extract a subsequence such that ρk → ρ in L1(�), which 
together with ρk ∈ [P(�)]s ensure that ρ ∈ [P(�)]s . In addition, E(ρ, ·) is also coercive in φ because of (2.10), i.e.,

E(ρ,φ) ≥ c0‖φ‖2
1 − c1.

Hence one may extract a subsequence such that φk → φ weakly in H1(�). The weak L1 lower semi-continuity (l.s.c.) of the 
squared Wasserstein distance can be easily adapted to the present case. The lower semicontinuity of E with respect to weak 
convergence can be seen from the following inequality

E(ρk, φk) ≥ E(ρ,φ) +
∫
�

[
s∑

i=1

lnρi(ρ
k
i − ρi) + ε(x)∇φ · (∇φk − ∇φ)

]
dx + α

β

∫
∂�

φ(φk − φ)ds.

Putting all these together we claim that the limit is a minimizer.
Finally, the uniqueness comes from the fact that the admissible set A is convex w.r.t. linear interpolation and that 

the total free energy is jointly strictly convex in (ρ, φ) on A. More precisely, we argue as follows. Let θ ∈ (0, 1), then 
ρ(θ) = θρ0 + (1 − θ)ρ1 is a convex linear combination for ρ0 and ρ1. Let φ0 and φ1 be obtained from the Possion equation, 
corresponding to ρ0 and ρ1, respectively. Then φ(θ) = θφ0 + (1 − θ)φ1 must be the solution to the Poisson equation 
corresponding to ρ(θ). For the energy of form (2.9), we evaluate E(ρ(θ), φ(θ)) term by term to determine whether it is 
strictly convex. Using (2.18) for ρl = Xl and (2.17) for Xl = ∇φl in �, and (2.17) for Xl = φl on �R , respectively, we obtain
i

7
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E(ρ(θ),φ(θ)) − θ E(ρ0, φ0) − (1 − θ)E(ρ1, φ1) = −θ(1 − θ)I

with

I =
∫
�

( s∑
i=1

(ρ1
i − ρ0

i )2 g(ρ0
i ,ρ1

i ; θ) + 1

2
ε(x)|∇(φ1 − φ0)|2

)
dx + 1

2βR

∫
�R

(φ1 − φ0)2ds.

Convexity of E follows from I ≥ 0. Actually this inequality is strict, unless ρ0 = ρ1, φ0 = φ1, which can be derived from 
letting I = 0. Hence E(ρ, φ) is strictly convex under two linear constraints. �

We are now ready to present a variational scheme formulation – a JKO-type scheme for (2.3): given time step τ > 0, 
recursively we define a sequence {ρn, φn} by

ρ0 = ρ in, (ρn+1, φn+1) =arg min
(ρ,φ)∈A

{
1

2τ
d2(ρn,ρ) + E(ρ,φ)

}
. (2.21)

Theorem 2.4. (Solution properties of scheme (2.21))

(i) (Probability-preserving) If ρn ∈ [P(�)]s , so is ρn+1;
(ii) (Unconditionally energy stability) the inequality

E(ρn+1, φn+1) + 1

2τ
d2(ρn,ρn+1) ≤ E(ρn, φn)

holds for any n ≥ 0. Furthermore,

∞∑
n=0

d2(ρn,ρn+1) ≤ 2τ (E(ρ0, φ0) − inf
(ρ,φ)∈A E(ρ,φ)). (2.22)

Proof. (i) The constraint A ensures that ρn ∈ [P(�)]s which is inherited from initial data; namely the method is both 
positivity and mass preserving.

(ii) From the definition of the minimizer, it follows

E(ρn+1, φn+1) + 1

2τ
d2(ρn,ρn+1) ≤ E(ρn, φn).

Here we used d2(ρ, ρ) = 0 for any ρ ∈ [P(�)]s . Finally, summation over n yields (2.22). �
These properties in Theorem 2.4 are highly desirable for PNP systems, yet quite difficult to achieve by other methods 

without a restriction on time steps. But these properties are quite natural for W2 based approach, and easy to verify as long 
as the involved optimization step is well-posed.

2.4. Semi-discrete JKO scheme

We proceed to obtain a computable formulation. Let mi = ρiui , the dynamic formulation of the distance d2(·, ·) in (2.21)
can be expressed as: given ρn(x), we have

(ρn+1, φn+1) =arg min
(ρ,φ)∈A,m

⎧⎨
⎩ 1

2τ

s∑
i=1

1∫
0

∫
�

F (ρi,mi)D−1
i dxdt + E(ρ(·,1),φ(·,1))

⎫⎬
⎭ ,

s.t. ∂tρi + ∇ · (mi) = 0, mi · n = 0, x ∈ ∂�, ρ(x,0) = ρn.

(2.23)

Here t is an artificial time, and

F (ρi,mi) =

⎧⎪⎪⎨
⎪⎪⎩

|mi |2
ρi

if ρi > 0,

0 if (ρi,mi) = (0,0),

+∞ otherwise.

The use of mi has enhanced the functional convexity in mi and made the transport constraint linear (see Breiner [3]), yet 
causing difficulties for solutions near ρi = 0. We shall prove for the fully discrete case that positivity of ρn

i is preserved 
for all n. Another computational overhead with (2.23) is dealing with the artificial time t ∈ [0, 1] which is induced by the 
8
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optimal transport flow. To overcome this issue, we follow [28] with a local approximation in the artificial time: approximate 
the derivative in t in the constraint transport equation by a one step difference and the integral in time in the objective 
function by a one term quadrature. We thus obtain the following scheme:

(ρn+1, φn+1) =arg min
(ρ,φ)∈A,m

⎧⎨
⎩ 1

2τ

s∑
i=1

∫
�

F (ρi,mi)D−1
i dx + E(ρ,φ)

⎫⎬
⎭ ,

s.t. ρi − ρn
i + ∇ · (mi) = 0, mi · n = 0, x ∈ ∂�.

(2.24)

Theorem 2.5. The positive minimizer of the variational problem (2.24) is a first-order time consistent scheme for the PNP system.

Proof. Let (2.24) admit a minimizer with ρ > 0. We can derive optimal conditions by the Lagrange multiplier method. 
Define the Lagrangian as

L(ρ,φ,m, v, ξ) := 1

2τ

s∑
i=1

∫
�

F (ρi,mi)D−1
i dx + E(ρ,φ) +

∫
∂�

ξ(αφ + β∂nφ − φb)ds

+
s∑

i=1

∫
�

vi(ρi − ρn
i + ∇ · mi)dx +

∫
�

vs+1( f +
s∑

i=1

ziρi + ∇ · (ε(x)∇φ))dx.

The optimality conditions for x ∈ � are

δL

δρi
= 0 implies − 1

2τ

||mi||2
ρ2

i

D−1
i + log(ρi) + 1 + 1

2
ziφ + vi + zi vs+1 = 0, i = 1, · · · , s,

δL

δφ
= 0 implies

1

2
( f +

s∑
i=1

ziρi) + ∇ · (ε(x)∇vs+1) = 0,

δL

δmi
= 0 implies

1

τ

mi

ρi
D−1

i − ∇ · vi = 0, i = 1, · · · , s,

δL

δvi
= 0 implies ρi − ρn

i + ∇ · mi = 0, i = 1, · · · , s,

δL

δvs+1
= 0 implies f +

s∑
i=1

ziρi + ∇ · (ε(x)∇φ) = 0.

For x ∈ �, we thus have

vi = 1

2τ

||mi||2
ρ2

i

D−1
i − log(ρi) − 1 − 1

2
ziφ − zi vs+1, mi = τ Diρi∇vi

and

∇ · (ε(x)∇vs+1) = 1

2
∇ · (ε(x)∇φ).

On ∂�, from integrating by parts in calculating δL there remain the following boundary terms∫
∂�

ε(x)δ(∂nφ)vs+1ds −
∫
∂�

ε(x)δφ∂n vs+1ds +
∫
∂�

viδmi · nds,

where the last term vanishes due to the constraint mi · n = 0. In addition, we need also consider terms arising from

δB + δ

∫
∂�

ξ(αφ + β∂nφ − φb)ds.

Upon careful regrouping, we have two cases to distinguish:

(i) for β 
= 0, the correction term B in the energy (1.2) is given by

B = 1

2β

∫
φbφds.
∂�

9
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We obtain

ε(x)vs+1 + βε(x)ξ = 0, −ε(x)∂n vs+1 + αξ + 1

2β
φb = 0, on ∂�;

(ii) For β = 0.

The correction term B in the energy (1.2) is given by

B = − 1

2α

∫
∂�

ε(x)φb∂nφds,

from which we have

ε(x)vs+1 − 1

2α
ε(x)φb + βξ = 0, −ε(x)∂n vs+1 + αξ = 0, on ∂�.

These ensure that we always have

αvs+1 + β∂n vs+1 = 1

2
φb on ∂�.

Take ψ = 1
2 φ − vs+1 we have

∇ · (ε(x)∇ψ) = 0, x ∈ �;αψ + β∂nψ = 0 on ∂�.

By the uniqueness of the Poisson problem we conclude ψ ≡ 0 or ψ = cost if α = 0, i.e.,

vs+1 ≡ 1

2
φ + cost.

Combining the above we have the following update

ρi = ρn
i + τ∇ · (Diρi∇(log(ρi) + ziφ)) + O (τ 2).

This says scheme (2.24) is a first order time discretization of the PNP system (2.3). �
Remark 2.2. A natural question arises: is the discrete transport still preserves positivity of ρi . We shall address this issue 
for the fully discrete scheme, for which positivity propagation is rigorously established in Theorem 3.2.

3. Numerical method

In this section, we detail the spatial discretization. The underlying principle for spatial discretization is to preserve the 
structure of Wasserstein metric tensor in the discrete sense.

3.1. Spatial discretization

We only consider the discretization in one dimensional setting. Let � = [a, b] be the computational domain partitioned 
into N cells I j = [x j− 1

2
, x j+ 1

2
], with mesh size h = (b − a)/N and cell center at x j = x j− 1

2
+ 1

2 h, j ∈ {1, 2, · · · , N}. Let 

numerical solution be {φ j}N
j=1, {ρi j}N

j=1, and {mi, j+1/2}N−1
j=1 on two grids x j and x j+1/2, respectively. We define the difference 

operator by

(Dh v) j+1/2 := v j+1 − v j

h
, (dh v) j := v j+1/2 − v j−1/2

h

and average operator by

v̂ j := v j+1/2 + v j−1/2

2
.

We also use ε j+1/2 = ε(x j+1/2), f j = f (x j), and Dij = Di(x j).
The transport constraint is discretized with central difference in space as follows:

ρi j − ρn
i j + dh(mi) j = 0, (3.1)

and the zero boundary conditions mi,1/2 = mi,N+1/2 = 0 are applied.
10
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For the Possion equation, we consider the Robin boundary condition at both ends, other types of boundary conditions 
can be handled in same fashion. We introduce two ghost values φ0 and φN+1 for conveniently approximating the boundary 
condition (2.2) with center differences:

φ0 + φ1

2
− βaε(a)

φ1 − φ0

h
= φb(a),

φN+1 + φN

2
+ βbε(b)

φN+1 − φN

h
= φb(b). (3.2)

This together with the center difference approximation of the Poisson equation gives a coupled linear system:

(h + 2βaε(a))φ0 + (h − 2βaε(a))φ1 − 2hφb(a) = 0,

− dh(εDhφ) j − f j −
s∑

i=1

ziρi j = 0, j = 1, · · · , N,

(h − 2βbε(b))φN + (h + 2βbε(b))φN+1 − 2hφb(b) = 0.

(3.3)

We denote such linear constraint by Lh(φ, ρ) = 0. The objective function then writes as

Fh(ρ,m, φ) = h

2τ

N∑
j=1

s∑
i=1

m̂2
i, j

ρi, j
D−1

i, j + h
N∑

j=1

(
s∑

i=1

ρi, j logρi, j + ε j

8h2
(φ j+1 − φ j−1)

2

)

+ 1

8βa
(φ0 + φ1)

2 + 1

8βb
(φN + φN+1)

2,

(3.4)

which is a second order spatial approximation of the objective functional in (2.24).
To formulate an admissible set for the discrete minimization problem, let the discrete probability distribution set be: for 

δ > 0

Ph,δ =
⎧⎨
⎩(ρ1, · · · ,ρN ) : ρ j ≥ δ, h

N∑
j=1

ρ j = 1

⎫⎬
⎭ .

Then the constraint set for (ρ, φ) becomes

Ah,δ = {(ρ,φ) : ρ ∈ [Ph,δ]s, Lh(φ,ρ) = 0}.
Thus the admissible set for all (ρ, m, φ) collectively can be written as

V n
h,δ = {(ρ,m, φ) : ρi j − ρn

i j + dh(mi) j = 0, (ρ,φ) ∈ Ah,δ}
with mi,1/2 = mi,N+1/2 = 0. Thus we have

V n
h,δ ⊂ Rs(2N−1)+N+2.

The one time update with the fully discrete scheme is to find

ρn+1 = arg min
u∈V n

h,δ

{
Fh(u)

}
, u := (ρ,m, φ). (3.5)

Theorem 3.1. (Unique solvability) Fix τ > 0, h > 0 and {ρn
i ∈ Ph,δ}s

i=1 for some δ > 0. Then the function Fh(ρ, m, φ) admits a unique 
minimizer in V n

h,δ
⊂Rs(2N−1)+N+2 .

Proof. The proof proceeds in two steps:

Step 1 (Admissible set is non-empty and convex) The conservative form of the transport constraint ensures that we always have

h
N∑

j=1

ρi j = 1 i ∈ [s].

For fixed δ > 0, take ρi j ≥ δ, we can uniquely determine m by

mi, j+1/2 = 1

h

j∑
(ρil − ρn

il), (3.6)

l=1

11
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for j = 1, · · · , N − 1. From the linear system L(φ , ρ) = 0 we obtain a unique φ = (φ0, · · · , φN+1) in terms of f j and ρi j ≥ δ, 
since its coefficient matrix is tridiagonal, and diagonally dominated. Hence the admissible set V n

h,δ
is non-empty. The fact 

that both the transport constraint and L(φ, ρ) = 0 are linear implies that the set V n
h,δ

is convex in Rs(2N−1)+N+2.

Step 2 (Objective function is strictly convex under constraints) With u = (ρ, m, φ), for any u0, u1 ∈ Vh,δ and θ ∈ (0, 1), u(θ) =
θu0 + (1 − θ)u1 is a convex linear combination of u0 and u1. In addition, as argued in the proof of Theorem 2.3, we have 
u(θ) ∈ Vh,δ . We now show the convexity of Fh(u) by directly calculating

Fh(u(θ)) − θFh(u0)) − (1 − θ)Fh(u1) = −θ(1 − θ)(I1 + I2 + I3),

where applying Lemma 2.1 to each term Ii , we have

I1 = h

2τ

s∑
i=1

N∑
j=1

(ρ1
i, jm̂

0
i, j − ρ0

i, jm̂
1
i, j)

2

ρ0
i, jρ

1
i, jρ(θ)i, j

≥ 0, by (iii) of Lemma 2.1

I2 =h
s∑

i=1

N∑
j=1

gi, j(ρ
0
i, j,ρ

1
i, j, θ)(ρ0

i, j − ρ1
i, j)

2 ≥ 0, by (ii) of Lemma 2.1

I3 = 1

8h

N∑
j=1

ε j[(φ0
j+1 − φ0

j−1) − (φ1
j+1 − φ1

j−1)]2 by (i) of Lemma 2.1

+ 1

8βa
[(φ0

0 + φ0
1) − (φ1

0 + φ1
1)]2 + 1

8βb
[(φ0

N + φ0
N+1) − (φ1

N + φ1
N+1)]2 ≥ 0.

Convexity of Fh follows from I1 + I2 + I3 ≥ 0. To establish strictly convexity we only need to show I1 + I2 + I3 = 0 must 
lead to u0 = u1. We argue as follows.

Clearly the equality holds only when I1 = I2 = I3 = 0. From I2 = 0 it follows ρ0 = ρ1. This when combined with I1 = 0
implies m̂0

i, j = m̂1
i, j , which together with ml

i,1/2 = ml
i,N+1/2 = 0 yields m0 = m1. Finally we show φ0 = φ1 must also hold. Set 

ξ j = φ0
j − φ1

j for j = 0, · · · , N + 1, then I3 = 0 corresponds to the system of linear equations ξ0 + ξ1 = 0, ξN + ξN+1 = 0 and 
ξ j+1 − ξ j−1 = 0, for j = 1, · · · , N . This obviously admits non-zero solutions. From the constraint for φ near the boundary we 
have

φ0
0 + φ0

1 = 2φb(a) + βa

h
ε(a)(φ0

1 − φ0
0), φ1

0 + φ1
1 = 2φb(a) + βa

h
ε(a)(φ1

1 − φ1
0),

this implies ξ0 + ξ1 = βa
h ε(a)(ξ1 − ξ0). Using also ξ0 + ξ1 = 0, we can conclude ξ0 = · · · = ξN+1 = 0, therefore φ0 = φ1. Hence 

Fh(u) is strictly convex on Vh,δ . �
The last issue is to find a threshold for δ so to ensure that solution positivity for the PNP system is propagated at all 

time steps.

Theorem 3.2. (Positivity propagation) There exists δ0 > 0 such that the minimizer does not touch the boundary of V n
h,δ

for all 0 < δ ≤
δ0 . This implies that ρn > 0 for all n > 0 as long as ρ0 > 0.

Proof. We use a contradiction argument: suppose there exists a minimizer u∗ to the optimization problem (3.5) touching 
the boundary of V n

h,δ
at some grid points j1 < · · · < jk with 1 ≤ k ≤ N − 1 for ρi , that is

ρ∗
i, j1

= · · · = ρ∗
i, jk

= δ.

From h 
∑N

j=1 ρ∗
i, j = 1, we see that δ < 1

b−a . Since Fh is convex and differentiable, we only need to find u ∈ Ah,δ such that

∇Fh(u∗) · (u − u∗) < 0. (3.7)

Note that both m and φ can be uniquely determined by ρ from the constraints, it suffices to first choose ρ and then express 
all components of u in terms of ρ . Let ρ∗

i, jk+1
be the maximum component in vector ρ∗

i , using h 
∑N

j=1 ρ∗
i, j = 1 we thus have

1

b − a
< ρ∗

i, jk+1
<

1

h
= N

b − a
. (3.8)

Without loss of generality, we assume jk+1 > jk , and

ρ∗ ≥ δ + rp(h), jp < j < jp+1, p = 1, · · · ,k, (3.9)
i, j

12
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where rp(0) = 0 and rp(h) > 0 for h > 0 small. This can be justified by approximation for sufficiently small h. Fix h > 0, we 
take for 0 < γ < 1

k ( 1
b−a − δ),

ρl, j =
⎧⎨
⎩

δ + γ , l = i, j = j1, · · · , jk,

ρ∗
i, jk+1

− γ k, l = i, j = jk+1,

ρ∗
l, j, else.

Hence ũ = u − u∗ can be determined by

ρ̃l, j = ρl, j − ρ∗
l j =

⎧⎨
⎩

γ , l = i, j = j1, · · · , jk,

−γ k, l = i, j = jk+1,

0, else.

Using m̃ = m − m∗ and formula (3.6) for both m and m∗ , we have

m̃l, j+1/2 = 1

h

j∑
p=1

ρ̃l,p =
{

1
h b jγ , l = i, j1 ≤ j ≤ jk+1 − 1,

0, else,
(3.10)

for 0 ≤ b j ≤ k. Hence

0 ≤ ˆ̃mi, j ≤ kγ

h
, j1 ≤ j ≤ jk+1.

For φ̃ = φ−φ∗ , using (3.3) for both φ and φ∗ , we obtain Aφ̃ = [0, zih2ρ̃i, 0]� , where the coefficient matrix A is non-singular, 
more precisely, φ̃ solves

(h + 2βaε(a))φ̃0 + (h − 2βaε(a))φ̃1 = 0,

− ε j−1/2φ̃ j−1 + 2ε̂ jφ̃ j − ε j+1/2φ̃ j+1 = h2ziρ̃i, j j = 1, · · · , N,

(h − 2βbε(b))φ̃N + (h + 2βbε(b))φ̃N+1 = 0.

The solution of this linear system can be expressed as

φ̃l = γ h2(cl − kdl)zi, l = 0,1, · · · , N + 1

for some cl, dl depending on the coefficients in the above system. The above preparation yields

∇Fh(u∗) · (u − u∗) = ∇Fh(u∗) · ũ

=
s∑

l=1

N∑
j=1

∂ρl, jFh(u∗)ρ̃l, j +
s∑

l=1

N−1∑
j=1

∂ml, j+1/2Fh(u∗)m̃l, j+1/2 +
N+1∑
j=0

∂φ jFh(u∗)φ̃ j

= γ

⎡
⎣ k∑

p=1

∂ρi, jp
Fh(u∗) − k∂ρi, jk+1

Fh(u∗)

⎤
⎦+

jk+1−1∑
j= j1

∂mi, j+1/2Fh(u∗)m̃i, j+1/2 +
N+1∑
j=0

∂φ jFh(u∗)φ̃ j

=: I1 + I2 + I3.

In order to estimate I1, I2, I3 we also need to bound u∗ in terms of ρ∗ . From (3.6) and (3.8) we have

|m∗
i, j+1/2| ≤

1

h

j∑
l=1

ρ∗
il ≤ N j

(b − a)h
⇒ |m̂∗

i, j| ≤
N2

(b − a)h
= Nh−2.

For φ∗ satisfying Aφ∗ = h[2φb(a), h( f +∑s
i=1 ziρ

∗
i ), 2φb(b)]� , we have

|φ∗| ≤ h|A−1|[2φb(a),h( f +
s∑

i=1

ziρ
∗
i ),2φb(b)]�| =: C∗

φ.

We proceed as follows: from the definition of the objective function

Fh(u) = h

2τ

N∑
j=1

s∑
i=1

m̂2
i, j

ρi, j
D−1

i, j + h
N∑

j=1

(
s∑

i=1

ρi, j logρi, j + ε j

8h2
(φ j+1 − φ j−1)

2

)

+ 1

8βa
(φ0 + φ1)

2 + 1

8βb
(φN + φN+1)

2,
13
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given in (3.4) we have

I1 = γ

k∑
p=1

[
− h

2τ
·
(m̂∗

i, jp
)2

(ρ∗
i, jp

)2
D−1

i, jp
+ h(1 + logρ∗

i, jp
)

]
− γ k

[
− h

2τ
·
(m̂∗

i, jk+1
)2

(ρ∗
i, jk+1

)2
D−1

i, jk+1
+ h(1 + logρ∗

i, jk+1
)

]

= − γ h

2τδ2

k∑
p=1

(m̂∗
i, jp

)2 D−1
i, jp

+ γ hklogδ + γ kh

2τ

(m̂∗
i, jk+1

)2

(ρ∗
i, jk+1

)2
D−1

i, jk+1
− γ hklogρ∗

i, jk+1

≤ − γ h

2τδ2

k∑
p=1

(m̂∗
i, jp

)2 D−1
i, jp

+ γ hklogδ + γ kN4

2τh
D−1

i, jk+1
+ γ hklog(b − a)

= − γ h

2τδ2

k∑
p=1

(m̂∗
i, jp

)2 D−1
i, jp

+ γ kN4

2τh
D−1

i, jk+1
+ γ hklogδ(b − a).

Next, we estimate I2:

I2 = h

2τ

jk+1−1∑
j= j1

(
m̂∗

i, j

ρ∗
i, j

D−1
i, j + m̂∗

i, j+1

ρ∗
i, j+1

D−1
i, j+1

)
m̃i, j+1/2

= h

τ

jk+1−1∑
j= j1

m̂∗
i, j

ρ∗
i, j

D−1
i, j

ˆ̃mi, j + h

2τ

(
−m̂∗

i, j1

ρ∗
i, j1

D−1
i, j1

m̃i, j1−1/2 +
m̂∗

i, jk+1

ρ∗
i, jk+1

D−1
i, jk+1

m̃i, jk+1−1/2

)

= h

τ

k∑
p=1

m̂∗
i, jp

δ
D−1

i, jp
ˆ̃mi, jp + h

τ

k∑
p=1

jp+1−1∑
j= jp+1

m̂∗
i, j

ρ∗
i, j

D−1
i, j

ˆ̃mi, j + h

2τ
·

m̂∗
i, jk+1

ρ∗
i, jk+1

D−1
i, jk+1

m̃i, jk+1−1/2

≤ h

τ
· kγ

h

⎛
⎝ k∑

p=1

|m̂∗
i, jp

|
δ

D−1
i, jp

+
k∑

p=1

jp+1−1∑
j= jp+1

D−1
i, j

Nh−2

δ + rp(h)
+ N2

h
D−1

i, jk+1

⎞
⎠

≤ kγ

τ

⎛
⎝ η

2δ2

k∑
p=1

(m̂∗
i, jp

)2 D−1
i, jp

+ 1

2η

k∑
p=1

D−1
i, jp

+ N

h2

k∑
p=1

jp+1−1∑
j= jp+1

D−1
i, j

rp(h)
+ N2

h
D−1

i, jk+1

⎞
⎠ , ∀η > 0.

Take η so that kη = h, we have

I2 ≤ γ h

2τδ2

k∑
p=1

(m̂∗
i, jp

)2 D−1
i, jp

+ C1, C1 := k2γ

2τh

k∑
p=1

D−1
i, jp

+ Nkγ

τh2

k∑
p=1

jp+1−1∑
j= jp+1

D−1
i, j

rp(h)
+ N2kγ

τh
D−1

i, jk+1
.

Note that

∂φ jFh(u∗) = 1

4h

[
ε j−1(φ

∗
j − φ∗

j−2) + ε j+1(φ
∗
j − φ∗

j+2)
]

j = 2, · · · , N − 1,

this together with derivatives involving boundary terms allows us to estimate I3:

I3 ≤ |∂φFh(u∗)| · |φ̃|
≤ 1

h
(|ε| + β−1

a + β−1
b )C∗

φ · γ |z|(|c| + k|d|)h2 = C0C∗
φh.

For δ < 1
2(b−a)

, we can take γ k = 1
2(b−a)

such that kγ < 1/(b − a) − δ still holds. Hence

I1 + I2 + I3 ≤ γ hklogδ(b − a) + γ kN4

2τh
D−1

i, jk+1
+ C1 + C0C∗

φh

= 1

2N
logδ(b − a) + N3

4τh2
D−1

i, jk+1
+ C1 + C0C∗

φh < 0

provided δ < δ0 with

δ0 := 1
min

{
exp

(
− N4

2
D−1

i, jk+1
− 2NC1 − 2C0C∗

φ Nh

)
,

1
}

.

b − a 2τh 2
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This gives (3.7) as we intended to show. Such contradiction allows us to conclude that a minimizer at nth step can only 
occur in the interior of V n

h,δ0
for some δ0 > 0. In order to show such solution positivity can propagate, we start from ρ0 > 0. 

Based on the above conclusion we recursively have

ρn+1 ∈ V n
h,δ ⊂ V n

h,δ0
.

This completes the proof. �
4. Optimization algorithms

In this section, we discuss numerical techniques for solving the constrained optimization problem (3.5). Let u = (ρ, m, φ), 
(3.5) can be written as

min
u

Fh(u), s.t. Au = b, Su ≥ δ, (4.1)

where Fh(u) is defined in (3.4), Au = b is the linear system corresponding to the constraints (3.1) and (3.3), and S is the 
selection matrix that only selects ρ component in u.

A simple method to solve (4.1) is the following update:

ũn+1 = un − ηG∇uFh(un),

with the projection matrix defined by

G = I − A�(A A�)−1 A,

which ensures Aũn+1 = b if Aun = b. One then applies another projection

un+1 = �(ũn+1),

so that ρn+1
i j ≥ δ.

Algorithm 1: PG Algorithm.
Input: A, b, un , K = Itermax , and ε .
Output: un+1

initialization;
G = I − AT (A AT )−1 A, u(0) = un .
for k = 1 : K do

• Compute the update direction by

v = −G∇uFh(u(k−1))

• Use backtracking to determine step size η;
• Update to get

ũ = u(k−1) + ηv

• Projection u(k) = �(ũ);

if ||Au(k) − b|| + ||ηv|| ≤ ε then
Stop the iteration;

end
end

un+1 = u(k) .

The positivity propagation property stated in Theorem 3.2 ensures that Su ≥ δ will be fulfilled by the scheme as long as 
ρ0 ≥ δ for δ suitably small. Hence in our numerical tests the second projection � is not enforced, where we select

δ = max{min{h2, τ },min{ρ in
i (x j)}} > 0.

In summary, the numerical solutions ρn and φn are updated with the following algorithm:
i, j j

15
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Table 1
Accuracy for Example 5.1 with τ = h.

h ρ1 error order ρ2 error order φ error order

1/10 2.67958E-02 - 9.80117E-03 - 1.17890E-03 -

1/20 1.27689E-02 1.06937 4.12484E-03 1.24862 5.46161E-04 1.11004

1/40 6.20098E-03 1.04207 1.91422E-03 1.10758 3.18396E-04 0.77850

1/80 3.04165E-03 1.02764 9.21957E-04 1.05399 1.74525E-04 0.86739

Algorithm 2: Algorithm for the fully discrete scheme.

Input: ρ in
i (x), final time T , and discretization parameters h, τ , δ > 0

Output: ρn
i, j , φn

j for n = 1, · · · , T /τ .

initialization: u0 = (ρ0, m0, φ0) with
ρ0

i j = max{ρ in
i (x j), δ}.

m0
i, j = 0, and φ0

j is obtained by solving (3.2) with ρ0
i, j .

for n = 1 : T /τ do

ρn+1 = arg minu∈V n
h,δ

{
Fh(u)

}
with Algorithm 1.

end

Remark 4.1. One may also apply other optimization solvers such as the Primal-Dual Interior-Point algorithm (PDIP) [40, 
Chapter 19]) to solve the minimization problem in Algorithm 2, as long as a positive lower bound for densities can be 
properly enforced.

5. Numerical tests

In this section, we present a selected set of numerical tests to demonstrate the convergence and properties of the 
proposed scheme. In all tests, the tolerance for PG method is set as 10−6.

Errors are measured in the following discrete l2 norm:

err =
⎛
⎝ ∑

1≤ j≤N

h|un
j − Un

j |2
⎞
⎠

1/2

.

Here un
j and Un

j denotes the numerical solutions and reference solutions at (x j , tn). In what follows we take un
j = ρn

i, j , or φn
j

at time t = nτ .

5.1. 1D multiple species

We apply our scheme to solve the 1D two-species PNP system (1.1) and verify the proven properties.

Example 5.1 (Accuracy test). We consider the following PNP system

∂tρ1 =∂x (∂xρ1 + ρ1∂xφ) ,

∂tρ2 =∂x (∂xρ2 − ρ2∂xφ) ,

−∂2
x φ =ρ1 − ρ2,

(5.1)

in [−1, 1] and t > 0. This is (1.1) with D1 = D2 = ε = 1, q1 = 1, q2 = −1, and f (x) = 0. The initial and boundary conditions 
are chosen as

ρ in
1 (x) = 2 − x2, ρ in

2 (x) = 2 + sin(πx),

φ(0, t) = −1, φ(1, t) = 1.
(5.2)

In the accuracy test, we consider the numerical solutions obtained by h = 1/320 and τ = 1/10000 as the reference solution. 
Our scheme is unconditionally energy stable, hence no CFL condition on the time step is needed. Formally the scheme is 
first order accurate in time, and second order accurate in space. Accuracy test is done in the following manner: we set the 
time step as τ = h to confirm the first order accuracy in time, and set τ = h2 to confirm the second order accuracy in space. 
The errors and orders at t = 0.5 are listed in Table 1 and Table 2, respectively.
16
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Table 2
Accuracy for Example 5.1 with τ = h2.

h ρ1 error order ρ2 error order φ error order

1/10 9.00817E-03 - 3.13854E-03 - 1.42932E-03 -

1/20 2.22285E-03 2.01882 7.47122E-04 2.07068 3.62387E-04 1.97973

1/40 5.36781E-04 2.05001 1.78121E-04 2.06849 9.15204E-05 1.98537

1/80 1.15944E-04 2.21091 3.79348E-05 2.23126 2.35563E-05 1.95798

Fig. 1. Solution evolutions for ρ1,ρ2, and φ.

Example 5.2. In this test, still with the initial boundary value problem (5.1)-(5.2), we show the proven solution properties. 
We take h = 0.05, τ = 0.01 to compute the numerical solutions up to T = 2. Solutions at T = 0, 0.05, 0.25, 1.5, 2 are 
given in Fig. 1. In Fig. 2 are total mass of ρ1 and ρ2 (the right vertical axis), and free energy profile (the left vertical axis). 
We see from Fig. 1 and Fig. 2 that the scheme is positivity preserving, mass conservative, and energy dissipating.

Example 5.3 (Positivity propagation). In this test, we consider the PNP system (5.1) with following initial and boundary 
conditions

ρ in
1 (x) = 10

3
χ[−0.5,0.5] , ρ in

2 (x) = 2 + sin(πx),

φ(0, t) = −1, φ(1, t) = 1.

(5.3)

We take h = 0.05, τ = 0.01 to compute the numerical solutions up to T = 2. Solutions at T = 0, 0.015, 0.1, 1, 2 are 
displayed in Fig. 3. In Fig. 4 are total mass of ρ1, ρ2, and free energy profile. From these results we see that the scheme 
17
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Fig. 2. Energy dissipation and mass conservation. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 3. Solution evolutions for ρ1,ρ2.

is positivity preserving, mass conservative, and energy dissipating. We also observe that steady state solutions are identical 
to those in Example 5.2; this suggests that steady state solutions of the PNP systems with the Dirichlet boundary condition 
only depends on the total mass and the boundary condition, but not sensitive to the profile of the initial data.

We attempted at applying the PDIP method to solve the minimization problem (4.1) and found it slow. To be more 
precise, let us compare PG with PDIP in terms of the computational cost. Motivated by perturbed KKT conditions the PDIP 
algorithm updates both primal and dual variables by taking one Newton step per iteration. PDIP methods are typically quite 
efficient. Under suitable conditions they have better than linear convergence. However, for numerical tests presented in this 
work, we found it much more expensive than the PG method. The PG method only requires inversion of A A� once, hence 
more efficient. In Table 3 we compare CPU times (in seconds) needed for solving system (5.1) with initial and boundary 
conditions (5.3) when using the PDIP method and the PG method. Here we set T = 0.5 and choose different number of 
sub-intervals.

5.2. 2D single and multiple species

We further apply our scheme to solve the 2D PNP system and verify the proven properties.

Example 5.4. 2D single species (Neumann boundary condition). We now apply our scheme to solve the 2D single-species 
PNP system

∂tρ =∇ · (∇ρ + ρ∇φ) ,
18
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Fig. 4. Energy dissipation and mass conservation.

Table 3
CPU times comparison for PDIP method and PG method.

h 1/10 1/50 1/100 1/150 1/200 1/20 1/300

PDIP 1.22 2.37 8.38 17.73 31.32 48.97 74.71

PG 0.19 0.39 1.15 2.02 3.12 4.56 6.38

−�φ =ρ + f (x, y),

on domain � = [0, 1] × [0, 1]. We consider the initial boundary conditions

ρ in(x, y) = −4(x2 − x) − 8(y2 − y),
∂φ

∂n
|∂� = −1.

The permanent charge f (x, y) is

f (x, y) =

⎧⎪⎨
⎪⎩

32,
5

8
≤ x ≤ 7

8
,

5

8
≤ y ≤ 7

8
,

0, else.

(5.4)

This problem satisfies the compatibility condition (2.4). We take hx = hy = 0.025, τ = 0.01 to compute the numerical 
solutions up to T = 6. Color plot of the solutions at T = 0.01, 0.5, 1, 2, 4, 6 are given in Fig. 5. In Fig. 6 are total mass of ρ
and free energy profile.

Example 5.5. 2D multiple species (Mixed boundary conditions). In this test, we solve the 2D multi-species PNP system

∂tρ1 =∇ · (∇ρ1 + ρ1∇φ) ,

∂tρ2 =∇ · (∇ρ2 − ρ2∇φ) ,

−�φ =ρ1 − ρ2 + f (x, y),

on domain � = [0, 1] × [0, 1]. We consider the initial boundary conditions

ρ in
1 (x, y) = 4x(1 − x) + 8y(1 − y),

ρ in
2 (x, y) = sin(πx) + sin(π y),

φ = 0 on ∂�D , and
∂φ

∂n
|∂� = −1 on ∂�N ,

where ∂�D = {(x, y) ∈ � : x = 0, x = 1} and ∂�N = ∂� \ ∂�D . The permanent charge f (x, y) is
19
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Fig. 5. Solution evolutions for ρ .

Fig. 6. Energy dissipation and mass conservation.

f (x, y) =

⎧⎪⎨
⎪⎩

8,
5

8
≤ x ≤ 7

8
,

5

8
≤ y ≤ 7

8
,

0, else.

We take hx = hy = 0.025, τ = 0.001 to compute the numerical solutions up to T = 1. Color plot of the solutions ρ1 (first 
row) and ρ2 (second row) at T = 0.1, 0.2, 0.3, 0.5 are given in Fig. 7, showing the density evolution profiles obtained by 
our proposed numerical scheme. From Fig. 7 we see that the positively charged ρ1 diffused away from the center of the 
domain and the lowest concentration accrued near top right corner (this is where we placed the permanent charge f ). The 
negatively charged ρ2 moved towards the region where we placed the permanent charge.

In addition, we demonstrate the performance of our numerical scheme in preserving physical properties at a discrete 
level. With zero-flux boundary conditions, the total mass of concentrations over the computational domain should be con-
served for each time step. This is perfectly confirmed in Fig. 8(a) for both ρ1 and ρ2. Displayed in this figure is also the 
discrete free energy profile, one can observe that it decreases monotonically (energy dissipating), as predicted in our numer-
ical analysis. The free energy profile also suggests that the solutions approach the steady state at around t = 0.5. To verify 
the positivity-preserving property, we focus on the evolution of the minimum concentration for ρ1 and ρ2 over time interval 
20
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Fig. 7. Solution evolutions for ρ1 and ρ2.

Fig. 8. Energy dissipation, mass conservation, and positivity.

(0, 1]. As shown in Fig. 8(b) the numerical density functions remain positive all the time, even though the concentrations 
are initially low near domain boundary.

6. Concluding remarks

In this paper, a dynamic mass transport method for the PNP system is established by drawing ideas from both the 
JKO-type scheme [23,26] and the classical Bennamou-Breiner formulation [3]. The energy estimate resembles the physical 
energy law that governs the PNP system in the continuous case, where the JKO type formulation is an essential component 
for preserving intrinsic solution properties. Both mass conservation and the energy stability are shown to hold, irrespective 
of the size of time steps. To reduce computational cost, we use a local approximation for the artificial time in the constraint 
transport equation by a one step difference and the integral in time by a one term quadrature.

Furthermore, by imposing a centered finite difference discretization in spatial variables, we establish the solvability of 
the constrained optimization problem. This also leads to a remarkable result: for any fixed time step and spatial meth size, 
density positivity will be propagating over all time steps, which is desired for any discrete version of the PNP system.

In the previous section, some numerical experiments were carried out to demonstrate the proven properties of a com-
puted solution. The first experiment numerically verified that the variational scheme yields convergence to the solution of 
the nonlinear PDE with desired accuracy. Secondly, with further numerical tests the computed solutions are also shown 
to satisfy the energy dissipation law for the PNP system, mass conservation, and positivity propagation. It is a matter of 
future work to prove an error estimate for these numerical solutions. This is not a standard error analysis due to the non-
linearities in these problems, as well as the reformulation as a constrained optimization problem. This method is expected 
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to be extended to more complex PNP models such as PNP equations for semiconductor devices and three-dimensional ion 
channels.
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