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Summary. This paper is concerned with polynomial decay rates of pertur-
bations to stationary discrete shocks for the Lax-Friedrichs scheme approx-
imating non-convex scalar conservation laws. We assume that the discrete
initial data tend to constant states jas+> +oo, respectively, and that the
Riemann problem for the corresponding hyperbolic equation admits a sta-
tionary shock wave. Ifthe summation of the initial perturbation dvex, j)

is small and decays with an algebraic ratéjas— oo, then the perturbations

to discrete shocks are shown to decay with the corresponding rateraso.

The proofis given by applying weighted energy estimates. A discrete weight
function, which depends on the space-time variables for the decay rate and
the state of the discrete shocks in order to treat the non-convexity, plays a
crucial role.
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1 Introduction

Let us consider a functiorf € C® not necessarily convex. For states
u—_, us+ € IR, shock speed € IR, space variable € IR and time variable
t > 0, we consider a shock wave solution

u(t,x) = {
to the scalar conservation law
(1.1) ur + f(u)y = 0.

Taking 1 €]0,1[, A € IR to be specified later, we consider the modified
Lax-Friedrichs (L-F) scheme

u_, r — st <0,
Uy, T — st > 0,

n n )\ n n H n n n
(1.2) Uj+1 —u; + §(f(uj+1) = fuj_y)) = §(Uj+1 = 2uj +uj_y).
In this paper we study the evolution of perturbations of discrete shock so-
lutions to the L-F scheme and their decay rate. The stateand related
shock speed € IR must satisfy the Rankine-Hugoniot condition

—s(uy —u_) + fuy) = f(u) = 0.

We want to restrict ourselves to the case of stationary shock waves, i.e. the
cases = 0 and therefore we have

(1.3a) fluy) = flu-)

inthis case. Further, we s8{u) := f(u)— f(ux ). Then foranyadmissible
stationary shock wave solution the Oleinik entropy condition

(1.3b)  (ug —u—_)Q(u) >0, for u€]min(u_,u), max(u_,ut)|

must hold. This condition plays an important role in proving the existence
and monotonicity of discrete shock solutions, cf. Jennings [6], as well as in
defining our weight function in a later argument.

It is noted that wherf’(u.) # 0, then (1.3b) implies Lax’s shock con-
dition

(1.3¢) fugy) <0< flu).

For convenience only we shall restrict our considerations to thewcase
u_ throughout the paper.

The discrete solution™ := (u?)jez should become an approximation
ofthe pointvalues(z;, t,,) of an exact solution to the conservation law (1.1)
on the grid given by:; = jAz andt,, = nAt, with Az = r andAt = h
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being the spatial and the temporal mesh lengths. Further, we assume that the
mesh ratio\ = % satisfies the Courant-Friedrichs-Lewy (CFL) condition

(1.4) Amax |f/| < p < 1.

Note that by Corollary 2.3 in Tadmor [23] the assumption (1.4) implies the
TVD property of the scheme (1.2).

Under the hypotheses (1.3a)-(1.3b) and (1.4), the scheme (1.2) admits a
uniquestationary discrete shock solution(¢;) jcz which takes on a given
valueu, €Juy,u_[atj =0, i.e., it satisfies the conditions

(1.5a) A f(Dj+1) = f(@j-1)) = u(Pj+1 — 205 + ¢j-1),
(1.50) ¢j = ut, as j — £oo,
(1.50) ¢j|j:0 = Usx.

The existence of this discrete solution and further properties, see Lemma
2.1, have been proved by Jennings [6] provided thatsatisfies (1.3a)-
(1.3b). Clearlyp; is a one-parameter family of the discrete shock profile
with parameter.*. As shown in in [12] another equivalent parameter can
be taken as the amount of the excess mass from the initial data, that is the
parameter* can be uniquely determined by the quan@g(@ — u?) for

given datau).
Let us now define the following weightéd spaces,

1
Be=1{f=Uiez: Wl = flc = [ S 15PK;] " < oo},
jez
where K = (Kj;);cz is any discrete weight function. When for= Ax
specifically K; = (jr)* := (1 + (jr)?)%, for somea > 0, we write
I2. =12 and| |k = | |- We will also consider bounded weight functions
w = (wj) ez With cl< w; < C for a constanC > 0. They are used
to define the weight&’; = (jr)*w;. In this case we writé}. = 12, with
the norm| - |k = | - |a.w- We note that? = 12 with the norm|| - || ~ | - |,
and that? ,, = 2 with | - |4 ~ | - |o. We will denote the difference of a
discrete functior{ f;) jcz in space by

Af = (fj1 = fi)jez-
Now we state the main theorem in this paper.

Theorem 1.Suppose that the assumptions (1.3a)-(1.3c) and for any given
positive constant < 1the CFL condition (1.4) hold. Further, considgr>
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0 suitably small. Leto;) jcz be the stationary discrete shock profile defined

by (1.5a)-(1.5c) connecting to u_. Definev) = Y7 (u) — ¢)
assuming that the mass of the perturbation satisfies
(1.6) D (W) - y) =0,

jEZ

from whichw«* in (1.5¢) is uniquely determined. Consider that for some
a > 0 the spatial decay rate

(1.7) 1090 < 61

with some constaid§ > 0is given. Then the unique global solutiorf ) ;e z

to the L-F scheme (1.2) with the initial da(ta?)jez deviatesin the maximum
norm from the shock profilgp;) jcz by at most

(1.8) sup [u? — ¢;| < C(1 +nh) =04, n>0.

jez
This means that the perturbation decays at the rate in the maximum
norm forn — oo. O

Remark 1.We point that a sufficient condition for (1.7) to hold is that there
exists a constant > § + 1 such that the estimate

(1.9) D (4770 - 65 < 6y
JEZ

holds. This was shown in Liu and Wang [11].

Remark 2. For the stability of a numerical method one always needs the
CFL condition. Itis a restriction on the productbfvith the maximal wave
speed, see (1.4). For large wave speeds this may become a severe restriction
on\. The detailed restriction ohwill be clarified in the course of weighted
energy analysis in Sects. 4 and 5.

The study of existence and stability of discrete shocks is important to
the understanding of the convergence behavior of numerical shock com-
putations. Jennings [6] proved the existence and tis¢ability of discrete
shocks for general first order monotone schemes approximating scalar con-
servation laws, see also Engquist-Osher [3] and Osher-Ralston [19]. The
existence of discrete shock profiles of finite difference methods for sys-
tems of conservation laws was established by Majda and Ralston [15] by
means of the center manifold theorem, see also Michelson [17]. Szepessy
[22] studied the existence ait+stability of stationary discrete shocks for
a first order implicit streamline diffusion finite element method for systems



Convergence rates to discrete shocks for nonconvex conservation laws 517

of conservation laws. Smyrlis [21] proved stability of a scalar stationary
discrete shock wave for the Lax-Wendroff scheme. Tadmor [23] considered
the large time behavior of the Lax-Friedrichs scheme approximating scalar
genuinely nonlinear conservation laws. The nonlinear stability of discrete
shocks to the modified Lax-Friedrichs scheme approximating systems was
obtained by Liu and Xin [13, 14]. In their study each characteristic field was
assumed to be genuinely nonlinear. Recently, Engquist and Yu [4] showed
that the stability and existence of discrete shock profiles are closely related
to the convergence and stability of the scheme itself.

Discrete shocks for strictly monotone schemes approximating non-
convex scalar conservation laws were shown to be stable ih'therm
by Jennings [6]. The stability in tHé-norm of the scheme (1.2) was proved
by Liu and Wang [10]. The polynomial convergence rate to discrete shocks
for the Lax-Friedrichs scheme (1.2) was first obtained by Liu and Wang [11]
for convex flux functiong'. In the present paper, we investigate the conver-
gence rate to discrete shocks for (1.2) wifemay also be non-convex. We
show that polynomial spatial decay yields polynomial temporal decay. Our
result suggests that the increase in the spatial decay of initial perturbations
leads to an increase in the temporal decay of the corresponding perturba-
tions. Namely, the spatial decay rate is transformed to temporal decay. We
would like to point out that the decay result obtained here for non-convex
scalar conservation laws involved a much more elaborate analysis than the
previous decay results on the convex case and the stability results for the
non-convex case mentioned above. The authors are aware of the fact that
the restriction of the results presented here to the case of stationary shock,
i.e.s = 0, is rather severe and unwanted. This choice was made in order to
avoid further lengthy technical arguments. We do not have the feeling that
it is not possible to extend our results to the case of non-stationary shocks.

Equations of type (1.1) witli non-convex were considered, for example,
by Buckley and Leverett [1] as a model for the one-dimensional convection
dominated displacement of oil by water in a porous medium. The large time
behavior of solutions for non-convex conservation laws exhibits a much
richer and more complicated behavior than in the convex case, see Dafermos
[2].

Our time-decay estimate is motivated by decay estimates to shock pro-
files for scalar viscous conservation laws

(1.10) ut + f(u)g = gy, €>0.

Various time decay rates to viscous shock profiles for (1.10) have been inves-
tigated by many authors, see [5,7-9,16,18] and [20] as well as particularly
the papers of Liu [9] and Matsumura-Nishihara [16] from which we draw
ideas in the present work. For scalar conservation laws with viscosity (1.10)
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II'in and Oleinik [5] showed that if the integral of the initial disturbance over
(—o0, z] decays exponentially fdr:| — oo, then the solution approaches
the shock profile solution at an exponential rat¢ as oc. For Burgers’
equation, by using the Cole-Hopf transformation, Nishihara [18] showed
that if the integral of the initial disturbance over oo, z] has an algebraic
orderO(|z|~)(a > 0) for |z| — oo, then the solution converges to the
shock profile solution at the same algebraic taté ast — oc. This fact,

that decay rates of the primitive of the perturbation are considered spatially,
accounts for the one extra order in the decay rate in assumption (1.9). This
makes our results for the discrete case completely analogous. Nishihara [18]
also noted that this time decay rate is optimal in general. Therefore, our al-
gebraic decay rate in Theorem 1 seems to be optimal in comparison with the
continuous analogue considered by Nishihara. In analogy to the situation to
viscous conservation laws (1.10), one expects that exponential spatial decay
should yield exponential temporal decay. However, the rigorous justification
of exponential decay remains an open problem.

Before concluding this section, we would like point out that in our asymp-
totic stability analysis in this paper we frequently have to choose constants
implying that we have sufficiently small time steps, i.e. a severe restriction
of the CFL condition (1.4). Deriving sharper constants would involve more
technical analysis or restrictive assumptions on the flux functions. This is
not a pleasing situation, but a common occurance in numerical analysis that
we have to live with. The asymptotic stability estimates in our paper are in a
certain sense similar to error estimates, as for instance in the theory of finite
elements. These estimates are also only valid for sufficiently small mesh
lengths. In such type of analysis one usually cannot make this very pre-
cise. The same holds for truncation error analysis for higher order schemes,
which is also only valid for sufficiently small mesh lengths. In practice the
situation may be quite different. For a large mesh size a first order scheme
may perform better than a second order scheme. In three dimensional un-
steady problems this may become quite relevant. Still numerical analysis
gives valuable insight into the nature of numerical schemes.

This paper is organized as follows. We reformulate the original problem
and restate Theorem 1 in an equivalent form in Sect. 2. There it is shown
how Theorem 1 follows from the equivalent Theorem 2.3. Some properties
of the weight function are obtained in Sect. 3. In Sect. 4 we give the main
part of the proof of Theorem 2.3. We investigate the time decay rate by
using a weighted energy method. The key idea is to use a discrete weight
function which depends not only on the time-space variable for obtaining
the desired rates but also on the discrete shocks for dealing with the non-
convexity of the flux function. The proofs of some intermediate technical
estimates summarized in Lemmas 4.1-4.2 are relegated to Sect. 5.
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2 Reformulation of the problem

Let (¢;);ez be a stationary discrete shock wave for the L-F scheme (1.2).
Then(¢;);cz satisfies

AMf(@j41) = [(9j-1)) = w(dj41 — 205 + 1)
Summing it overj from —co to 5 yields
(2.1) (@1 — ¢5) = MQj+1 + Qj),

whereQ; = Q(¢;) = f(¢;) — f(u+). The equation (2.1) admits an unique
solution(¢;) jez satisfying¢+, = u+ which takes on a given value, €
Juy,u_[atj = 0. Since (1.2) is a first order monotone scheme, Theorem 1
in Jennings [6] implies the following lemma.

Lemma 2.1Suppose that (1.3a)-(1.3b) amd < u_ hold. Then for each
ux €|us,u_|[, there exists an unique stationary discrete shock profile

(¢5)jez to (1.2) satisfying

(2.2) ¢o =u. aswellas ¢; > ¢;j41, for jeZ.

Further, we obtain

Lemma 2.2We setM = sup,¢j,, .,_({.f(v)/u}. For the stationary dis-
crete shock solutions to scheme (1.2), the following estimates hold for any
JEZ,

(2.3) |Pjr1 — 205 + dj—1] < MAdj—1 — djt1],
(2.4) ¢j — djr1 < %(1 + M) (¢j-1 — ¢j+1),
L+ MXN)(dj—1 — dji1)-

1
(2.5) $j-1—¢j < 5(
Proof. The estimate (2.3) follows from (1.5a) singg.1 — 2¢; + ¢;—1 =
21'(6)(¢j11— ;1) for someg; €]¢;41, ¢;1 . Furthermore, we use the
simple identities

¢j — djr1 = %[(ij—l = ¢j1) — (P41 — 205 + ¢j-1)]
and

1
bj1— ¢ = 5[(%‘—1 — ¢jy1) + (Djr1 — 205 + 1)),

then (2.4) and (2.5) follow. The proof of Lemma 2.2 is complete. 0O
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To prove Theorem 1, we reformulate the scheme (1.2) by formally in-
troducing
J
(2.6) o= > (uf — ér).

k=—o00

It will be shown below that the summation gives always finite value. Sub-
tracting (1.5a) from (1.2) and summing up the resulting expressions from
—oo to 7, one obtains the scheme

(2 7) ’Uj+1 —Uj + §Aj+1(vj+l — ’U]) + 5/1](1)] — vj—l)
' Hoon n n n
B (Uj+1 — 2'Uj -+ ,Ujfl) = ej,
where
n A n n
A = f'(¢;) = Q'(¢)) and e} = —5(9j+1 +07)
with

07 = f(uf) — f(b;) — f'(¢5)(u] — &5).
Theorem 1 will be obtained from the following theorem.

Theorem 2.3. Suppose that the assumptions (1.3a)-(1.3c) and and the CFL
condition (1.4) hold(v}) jez € 2 for somen > 0, and\ is suitably small,

and that there exists a constafit> 0 (suitably small) such that®|,, < d;.
Then the scheme (2.7) with initial da(a?)jez admits an unique global
solution(v7) ez satisfying, for any > 0,

sup. | (L4 nh)° |02+ (L4 nh) ™ (14 i)™ A0 2
(2‘8) n€No i<n

< C]voli.

O

Since the scheme (2.7) is explicit with a given right hand side, we only
need an a priori bound in order to guarantee the global existence of the
unique discrete solutiofv?);cz for all n € INo. Therefore, Theorem 2.3
can be obtained by continuity arguments based on the following proposition.

Proposition 2.4 (A priori estimate) Letn; be a natural number. Suppose
thatthe unique solutiofv? ) jez to the scheme (2.7) withinitial da(a?)jez
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defined via (2.6) satisfied?);cz € I3 for somea > 0. Further, sup-
pose that there exists a constaint > 0 independently of.; such that
SUPg<p<n, |[V"]| < d2. Then the estimate

(2.9)

sup |(1+nh)®[[o"]|> + (1 +nh) ™ (14 ih)**P|| Avf||?
0<n=ny i<n

< CO3.

holds for a constanf’ > 0 independently of. ad

The proof of Proposition 2.4 is carried out in the remaining three sections
of this paper. The main part of the proof is given in Sect. 4.

Proof of Theorem 1 based on Theorem 2t ®llows from Theorem 2.3 that
v} is well-defined. By (2.6) we have

no__ 4. n_,n
uj = ¢j +vj —vj_g.

It follows from (2.7) and (1.5a) th&t:?) jez is the unique solution of the

L-F scheme (1.2) with initial datéu;’)jez. Moreover, we estimate from
above

uj = @5l = [vff = vjq] < [[A0™].

Next we derive the convergence rate of the squ(img"Djez to (1.2). It
follows from the crucial estimate (2.8) that

> (4 iR) P A2 < C(1+ nh)P 2
=0
holds, which implies
140" (| < C(1+nh) "% 1],

Combining the above facts gives

sup [uf = 5] < [[ A" < C(1 + nh) =2 [0°)a,
JE€

which yields the estimate (1.8) in Theorem 1. O



522 H. Liu et al.

3 The weight function

Let the discrete weight; = w(¢;) be chosen analogously to [9,16] as
(65 —u+)(pj —u-)
Q(¢5)

The functionw will be used to treat the non-convexity of the problem. We
introduce withr = Ax the abbreviations

(3.1) wy; = w(qZ)j) =

P; = (jr)’ and H;:= Pjw,.
Next we choose a time-dependent discrete weight function of the form
K} = (1+nh)"Hj; jEZ,

which will be used to characterize the decay rate.
The following properties are needed in proofs below.

Lemma 3.1For any given flux functiorf € C? and under the assumptions
(1.3a)-(1.3c) there exists a positive constahsuch that

(3.2) Cl'<w; <C,

(3-3) ()], |[w”(uw)| and |w"(u)Q(u)] < C
forall u € [uy,u_].

Proof. ClearlyC~! < w; < C under the shock condition (1.3b)-(1.3c). We
only consider the case; < u_. Note that due to the Lax shock condition
(1.3¢) Q(u) = f(u) — f(uy) has only simple zeros at;, andu_, i.e.
Q' (uy) # 0, and by (1.3b)Q(u) < 0 on the intervalu,u_[ . Setting

h(u) = (u—u_)(u— uy), we havew(u) = 5 and
W () = ' (u)Q(u) — h(w)Q'(u)
Q%(u) ’

which takes finite values on the interyal, , u_[ . At uy andu_ the deriva-
tives of numerator and denominator give the quotient

h"(u)Q(u) — h(u)Q" (u)
2Q(u) Q' (u) '
It is easily seen to be bounded in the limitsuat+ u. Here we used the

assumptiory € C2. Therefore, by L'Hopital’s rulew’(u) is bounded on the
interval]u4,u_[ .




Convergence rates to discrete shocks for nonconvex conservation laws 523

Now note that
(W'Q) = (wQ)" — (wQ') =2 —w'(u) f'(u) — w(u) f(u).

Since the functions, w’, f and f” are bounded on the interval , u_|
we have(w'Q)’ bounded.

Similarly we now show that iff € C3[uy,u_] thenw” andw”'Q are
bounded on the intervéd ., u_]. In fact, as above we have

M (u)

w// — i
Q*(u)
which takes finite values on the interjal, , u_[ . To boundw”(u) at the

statesu, we have to show that the functidd also has zeros of third order
atu. We have byf € C? and introducing a suitable ter(u)

M'(u) =3(hQ" — M Q)Q" — hQQ" = G(u) — hQQ"

which vanishes at.;. The last term-hQQ"" in the functionM obviously
has zeros of second orderat. Now we only have to show that the function
G also has double zeros ai.. This can be obtained under the assumption
f € C3 giving

G,(u) — 3h(Q/Q//)/ _ ?)Q(h/@//)/ — 3h(f/f//>/ _ 3Q(h/f”)/,

which vanishes at_.. ThereforeM (u) has zeros of third order at.. This
implies thatw” is bounded on the interv@.,, u_].

Note that the identityw@)”” = 0 enables us to see that’Q is bounded
on the intervalu, u_]. This is due to the fact that we therefore have

w”’Q _ —3w”QI _ 3le” _ wQ/// _ —3w"f’ _ 3w'f” _ wf”’.

with M (u) == 2Q% — 20 QQ" + 2h(Q")* — hQQ"

This completes the proof of Lemma 3.1. O

We state some basic estimates on the weights= (jr)? = (1 +
(4r)%)7/2.

Lemma 3.2Foranyj € Z, 3 € [0, o], there exist constants€]0, 1[, and
¢ > 0, C, > 0 such that

(3.4) 07'P;> Py >0P,
(3.5) e BrijryPt < |Pjy1 — P < C,Br(jr)?

Proof. To prove (3.4) let us consider two cases. Siftge= P_; the discrete
weights are symmetric. They are increasingjfor 0, decreasing fof < 0.
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Therefore, we could choose afhy:]0, 1] for the right estimate in cage> 0,
for the left estimate in casg < 0. We now consider the right estimate for
J < 0. Then by the mean value theorem there existg;ag]j, j + 1] such
that

(3.6)  Pj— Pj1 = |Pjx — Pyl = [Bnyr{nyr)” 2| < Bjr) .
This gives the estimates

Pjy1 > Py — B(jr)?~'r = P <1 - ﬁr) > 0P;,
{r)
foro =1 — \/1‘17“7 < 1, provided thatr = Az is suitably small. The
left estimate forj > 0 follows analogously. One has to possibly choose a
smallerd.
The desired estimate (3.5) follows from (3.6) by simply defining

.. |mjrl(n;r)P=2
Cr r = f‘i,
(Crler = (sup ) inf s

which exist and are positive. They may depena ofhe technical derivation
of the fact that these bounds, . exist has been omitted. This proves the
lemma. O

4 Energy estimates

Throughout this section we suppose that the scheme (2.7)(w§t)l;€z
as initial data admits a solutiov}) ez € 12 for somea > 0 andn =
0,1,...,n1. We writeC as a generic positive constant which may depend
on(¢;)jez andA, butis independent of for 0 < n < n, and of(z;;?)jez.

To get the desired estimate, we use the weighted energy method. Taking
a time-dependent discrete weight function

(4.1) K" =(1+nh)H;, jeZ

as chosen in the Sect. 3.
Now we begin with the energy estimates. Multiplying (2.7)Zy K
and summing the resulting expressions guarne obtains

ntl g nyn g
> 2] GO
J€Z

Iy
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FA D AP KR =) + Y At K (0 — o))

jez jez
1P
(4.2)  +pd VPEFQE -l o)) =2 vfKlel
JjeZ JEZ
I3

We now estimate each term denotedbyor i = 1,2, 3 on the left hand
side of (4.2). We rewrite the first term as

I = Z |:(,U;z+1)2 _ (v;z—l-l _ v?)? B (U;L)2:| an

JEZ
D DARECES SR
JEZ JEZ
_ Z n+l 2Kn Z( jn-‘rl) (Kn—i-l an)
JEZ JEZ

Using an index shift for the second term we get

IQ =\ ZAj_HK ’U U]+1 ZAJ+1K ( )
JEZ JEZ

Y MKW =Y A K

jez jez

=M | YA K — D))

jez
D A (K] = K)o (v = o))
jez
and the third is rewritten as

Iy = p(1+nh)? | Y WFH;(w] — o) = > ofHi(of ) —of)
JEZ JEZ

= (4?30 T ) 4+ )2~ ()]
JEZ
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Hjiq
+ 3 ) = o)+ (0F0) = ()]
JEZ
o Hj+ Hjp

= p(1+nh) [ @f —ovf)*— 5
JEZ

v?—H + U}‘L n n
+ Z(Hjﬂ - Hj)#@jﬂ —v5)
jez

Furthermore for the very last term ig we obtain

S (Hp — 1) T
jez
= Z [ j+1 — wiPjp1) — (Hj — ijjJrl)] U]ng%
jez
= Pia(wjs — 7ule)U;l+122_rU§L2
jez
+ Z [ 41— JU?_’_;;LH] (v —vf)
ez
=->_|P [J w] - - j+1wj+12_wj] (v])?
jez
+ Z [ J+1 JU;L—;’U;L—H] (U?Jrl - U?)-
jez

Then, we finally have for the third term

H, + H;
I3 = p(1 +nh)? Z(”;l - ;L+1)2]7j+1

‘ 2
JEZ
Wi — Wi_1 Wir] — W, 9
e T [0
jEZ
vl Ut
+Z [ 41— 332]] (Vj41 — v5)
JEZ

We introduce the abbreviations

Aj = =MAj1Hjp — AjHj)

H. Liu et al.

j+1 U?)
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Wity — W, Wi — wi_y
(4.3q) _N[Pj—i-l ]+2 L — P 2] ],

J
43)  x(ul — o).

Inserting the new terms obtained fhrwith ¢ = 1,2, 3 into (4.2) and rear-
ranging these terms in a suitable way, we get

SOOI = S ()T Y A5
JEZ JEZ JEZ
H;+ Hj
+u(l+nh) Y %’”ﬁl —uf?
JEZ
= (1+nh) > (W — o) H; — (1+nh) ) BY
jez jez
(4.4) Y (KT = KPP 2(1+ nh)Y Y ol Hyel,
JjeZ JEZ

" " " 4 T 1
Bj = {— AMj10f (Hj = Hit1) = p(Pjar — Py ~L—25 ]

2

We use the discrete weighted norfn8|; and|v" |3, defined in the intro-
duction for3 = «a. They satisfy the relations

(45) > HjpiP? ="}, and > KIp®> = (1+nh)"[o"[3,,.
JEZ JEZ

Clearly, for a suitable constagt > 0 and using the Mean Value Theorem
the estimate

KM - K7 = H; [(1 +(n+1)h)T = (1+ nh)”]

<v(1+ Ch)Hj(1+nh)"1h

holds. Using this estimate and the discrete weighted norms introduced above
we have

SO K
JEZ

<2 Z |: n+l _ n + (,Ugl)ﬂ (K;-H_l N K]n)
JEZ

=2y(1+ Ch)(1+nh) ™" | Hlol T — o2+ > Hylo)|?
JEZ JEZ
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= 29(1+ C)(1 -+ b7~ [0 = 0" 4 [0 B |2

2v(1+4 Ch)
1+ nh

<Cly(1+ nh)7*1|v"]%’wh + (14 nh)? " — v”]%’wh} .

h

< Cy(L+nh) ™ Ho"[F,h + (1 +nh) "™ =03,

(4.6)

Now we take (4.4) and use (4.6) as well as (4.5) in order to obtain
(14 (n+ DR W, = (L4 nh) 7|03, + (1+nh) Y Aj(0])?
jEZ
H; + H;
n|2 +1
Lnh)? Y oy, — o PR
JEZ
< (14 Ch)(A + nh) " — ’U”\%’w + (1 + nh)” Z | B} |
jez
(4.7) +Cy(1 + nh) " w"|F, + 2(1+ nh)Y Y vl Hyel,
jez
Next we estimate the terms on the right hand side of (4.7). We set

4.8 N(ny) = P22,
(4.8) (m) = sup O 7%
JEZ

and assume a priori tha¥ (n1) is suitably small. Obviously we have the
bound

(4.9) sup [v]| < N(n1).

n<ni,j

The scheme (2.7) gives
n n_ (H_A n ny_ (B A
ij—vj (2—2AJ+1>(U]~+1—1}J-)—(2 A)(’U —vj_y) +ej.

— v, we have by using the remainder term in

From (2.6)u§? —¢j = v —viy,
the Taylor expansion of
07| < Clvj — v;l_1|2.

Note that
sup [vjyy —vf[ < 2N(n1).

n<ni,j

Combining these gives fef} = —%(G?H + 07) the estimate

(4.10) lej] < ON(n)| v —vj |+ [vfy, — o] |]'
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Now note that for any, b, ¢ € IR and anyd > 0, the inequality
2 2 2 L 5
(a+b+c) <2(1+6)a”+2(1+9)b -i-(l—i-g)c
holds. This leads to the bound
n+l n‘Q

|Uj

1+6 n n
< 13 = APl = o Gk AP o

(4.11) +C(1L/8)(N(m))’ [v;ul SR - vy_lrﬂ ,

whereC(1/4) depends or.
Considering the identity

2 2
Z‘U?H—Uﬂ H;+ E (Vi =i |"Hj = E [vf g — 2(Hj+Hji1)
JEZ JEZ jeZ

and multiplying (4.11) byf{; as well as summation ovgre Z gives
[ = 03, < (14 6) (e Amax | f])? + C(N (1))

H + H: +1
(4.12) XY oty — ff
JEZ

Next, using (4.9) and (4.10), one obtains

QZ lvj Hje}f| < CN(np) Z H; |:|UJ+1 vj (e v} — U;L1|2:|

JEZ JEZ
H, + H;
(4.13) <CN(m) Y ol - v;‘\z%.
JEZ

Substituting the estimates (4.11)-(4.13) into (4.7) yields

1+ (n+ DA "G, — (L4 nh)o"F, + (1 +nh)? > Aj(w])?
JEZ
+(1+nh)? [ — (L + Ch)(1 + 6)[(k + Amax | f'[)?
n n Hj; + H‘+1
+ON* ()] = CN ()] - 3 o = f P57
JEZ
(4.14) < Cy(1+nh)hlo"[3,, + (L+nh) > |BY].
JEZ
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To get the desired final estimate, one has to bound the tefms A;?(v;?)z
and}_ ..z |_B§L| respectively. This is done in Lemma 4.1 and 4.2 which will
be proved in Sect. 5.

Lemma4.1.Consider the assumptions made at the beginning of this section.
Forany 3 € [0, a], there are constants) > 0 andé €]0, 1] independent of
0 such that

(4.15) Aj 2 OA(r)?(d) — dj41) + o (i) h,
forall j € Z, provided thath = 4 is suitably small.

Lemma4.2.Consider the assumptions made at the beginning of this section.
For any 5 € [0,a], and any given constants> 0,.J > 0 there exists a
constantC' > 0, independently of;, such that the estimate

H;+Hjy, C
Y IB<e) vf - U"Ffj = 1Av" |5,

JEZ JEZ
np2 . B, n
+COBI| A" |* + R 5o,
\2C 12, -
(4.16) += D (4 - ¢j+1>|vj [*(jr)”
jE€Z
holds for alln < n, provided\ = |s suitably small.

Equipped with these Iemmas we turn to the proof of the following esti-
mate.

Proposition 4.3 Consider the assumptions made at the beginning of this
section. Le{(v}) ez be a solution of (2.7) fon < n;. Then there exists a
positive constant’ independently of; such that for alln < n;

(L+nh) "5+ B8 (1 + k)03 h+ Y (1 +ih)7| A" [3
<n <n
<C PG+ D (A +ih) ' Bh+ 8> (1+nh)|| A0
<n <n

(4.17)

provided that\ = A , 7= Az and N (n;) are suitably small.

Proof. Substituting the estimates bf

Ajand)_; .z |B}|into inequal-
ity (4.14) yields

jez

(L4 (n+Dh) "G, = (14 k) "[5,
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+(1+nh)Y [p—e = (1+ Ch)(1 + 6)[(1+ Amax |f])?

+ON%(ny)] — C’N(m)] Z vy — UﬂQw

JEZ

Coﬁ
2

+(14nh)? (9 - ) AZ — ¢j1) (i) o]

JEZ

C n n

S e PEN (RO T
Noting thatH;; > 0, we have by (4.5) and droppind;

Hj+Hj1 1
Dy — P > Gl
JEZ

On the other hand, singe < 1, we taker = Az and\ = AA—; suitably
small, takeJ suitably largeg < ;1 andé suitably small, then
1

S| —e= L+ Ch)(A+0)[(n+ Amax |f'])? + CN?(ny)]

—C’N(nl) *%ZV>0,

provided thatV(n,) is suitably small. Here we see that we may choose a
suitably smallb, independent of.; such thatV(ni) < d2, as given in the
statement of Proposition 2.4. Fix the chosglet A = % be suitably small

such that also

0—&>0

hereC depends only om., 6 andf(u), see the proof of Lemma 4.2.
Combining these facts we obtain

(1+ (n+ DAY G, = (14 nh) 0”3, + v(1+nh) | A3,
Coﬁh
+ 2

(1+nh)"[o" [,
(4.18) < C [y(1+ nh)" " hjv"™3,, + B(1+nh)V||A0"|]?|.
Finally, summing up (4.18) with respecttofrom 0 ton — 1, we have

(L+nh) "3, +v > (1+ih)|Av'3,

<n
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ol . 02
+= ;(1 +ih) '3 1k

< C [, + 8 (1 +ih)|| A
<n
(4.19) +7 ) (A +ih) TR,k
<n
Noting thatC~! < w; < C by (3.2), the desired estimate (4.17) follows.
0

Next we proceed to estimate the solution of the scheme (2.7) with an
argument analogously to Liu and Wang [11].
First, takingd = v = 0 in (4.17), we get the following lemma.

Lemma 4.4.Under the assumptions made at the beginning of this section
there exists a constant > 0 independently of;, such that for any: < ny

(4.20) o712+ D 14 < ¢l
<n

holds, provided thatV(n;) and X are suitably small. 0
Applying induction to (4.17) as in Liu and Wang [11], one gets

Lemma 4.5.Under the assumptions made at the beginning of this section.
Lety € [0, o] be aninteger, then the following estimate holds forany n;

(14 nh)7|o"™ i_v + (a—7) Z(l +ih) 7|0 i_v_lh
<n
(4.21) +> (1 +ih)|AvE < CROJ2
<n
Consequently, iy is an integer, then fob < v < « we obtain the bound
(4.22)  (L+nh) 0"+ (1 +in)7[|Av']]> < CP°2
<n

for anyn < n; and a constan€’ > 0 independent off; . O

From Lemma 4.5, ifv is an integer, then

(14 nh)* "2+ Y (1 + i) A'|? < O3

<n
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which obviously implies (2.9).
We show a sharper estimate wheiis not an integer. Taking = 0 in
(4.17) gives
(1+nh) 0" 5 + ) (1 + i) Av'[3
<n
(4.23) SOl +~> (1 +ih) o' G| .
<n
Using (4.21) withy = [«a], one gets
(L+nh)elom 2 + (= [a]) D (1 + i) 2 1k
<n
(4.24) 4> _(1+in)AvZ_, < CRO2.
<n
We estimate the final term in (4.23) as follows
> @+ in) ' Gh
<n
— 2(1 + k)71 Z<j7a>(a—[a])([a]+1—a)—(a—[a])([aHl—a)
i<n JEZ
X(‘U;ﬂ‘2)([a]+1—a)+(a—[a])h

[a]+1—a
<Y (1+iny! (Z<y‘r>°”°4v;12)

i<n JEZ

a—[a]
« Z<jr>—([a}+1—a)’v§’2 h
JEZ

(ol 1— et i [a]+1-a
=3 (14in)~ (1= ((mh)[ Iy \;[a])
i<n

-2\, a=[e]
x (i) y) " by

where we have used thedldler inequality

Z o < (Z ap> 1/p (Z bp,) 1/’ ’

withp = W%_a andy’ = a_l[a} . Further, again using thedttler inequality

and (4.24) one obtains
> (4 in) T G

<n
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< Op0)Aled+1=a) Z(l + ih)~([el+1=7)
i<n
(14 i) 2 ) h

[a]+1—a
< C|Uo|g{([a]+1fa) !Z(l + Zh)_%z]]ﬁl]

<n

a—|a]
X Z(Hih)[a]w\i_[a]_ﬂ] h

<n

< O(1+nh)Pp°2h,

where we takey = a + p for anyp > 0 instead ofla] < v < «in Liu and
Wang [11]. Thus we obtain the following from (4.23).

Lemma 4.6 Under the assumptions made at the beginning of this section
there exists a constadt > 0 independent ofi; such that the estimate

(4.25) (L+nR)* P[P+ (1+ih)* | A'|2 < C(L+nh)?|°2

<n
holds for anyp > 0 and anyn < n;.

Combining the latter part of Lemma 4.5 with Lemma 4.6, we have com-
pleted the proof of Proposition 2.4.

5 Estimates of terms involving A", B;?

Proof of Lemma 4.For this estimate, we need some properties of stationary
discrete shocks. Since the discrete shock préfile;cz is strictly decreas-
ing in j € Z stated in Lemma 2.1, there exists a unique integesuch
thatg;, < @ < ¢j,—1, wherea = “3"= €luy,u_[ . Without loss of
generality one can assunie= 0, thus¢g_; > @ > ¢g > ¢1. Otherwise we
would have to consider the weigttj — jo)r)? instead of(jr)°.

We have for the discrete shock solution by definition

(5.1) AMf(@j+1) = f(@j-1)) = w(djt1 — 2¢; + 1),
which implies by the mean value theorem for an appropgate

21

(5-2) d)j—l - ¢j+1 = m

(pj — Dj+1) = (05 — Djs1)

for X satisfying (1.4).
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By the definition of4; and equation (2.1) we have

wj — Wil wj_1 — w;
Aj=p [] P Pjat — — Py = M4 Hj — A;Hj)

2 2
wj — Wit1 G5 — Pt wj—1 — W i1 — Pj
- [ b, p gt
Qb] - Qb]—‘rl 2 ¢]_1 — ¢] 2

~MNQj 1 Hj1 — Q5 Hj)
_ |:w] wit1 Qj+1+ Q; JOC o R Q; + Qj—le
bj — Pj41 2 Pj—1— &; 2

63 +Quityn - Q.

By using the Taylor expansion we easily get

o ‘ 1 " .
Wj — Wj+1 _ Wt + 2w]+1(¢ — ¢jt1) + w” (&5) (65 — dj1)?

®j — Pjt+1 6
and
w = Qj+1+ j2+1 (¢j - ¢j+1) + « flnj) (¢] - ¢j+1)2'

whereg;, n; are valuesinthe intervad; 1, ¢;[ . When taking the product
of the two terms note that using (2.1)

3 w1 Q" () (b5 — dj1)’

1 A

SWin Q" (nj )M(% — $j+1)*(Qj1 + Q)
< C(j — dj41)°.

Also due to the boundness of”(Q shown in Lemma 3.1, we have

Qi1+ Q5 w" (&)
2 6

\1 \

(¢ — dj+1)°| < Cl¢; — dj1)°

Substituting these into (5.3) and suitably regrouping terms, and using the
fact thatw’, w” andw”’@Q are bounded by suitable consta@t®ne gets the
lower estimate

(W' Q)i

5 (05— 011) + Clo5 — ¢je1)?]

4> ) [ Pral(wQ) oy +

—Pj[(wQ); + w Q) (-1 — b5) — C(dj-1 — ¢;)°]
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> A[ﬁl[(wQ)JH (wQY] + (wQ)}(Pys1 — P)

P; 'Q): (¢,

n J2+1 [(w’Q);H(‘Z’ $j+1) — (w ) (¢j-1— &5)
Piy1—P +CPj1(oj— ¢
M(w'@)}(% — ¢5) + CPjqa( J+1>2

2
—CPj(¢j-1 — ¢j)2} -

Further, by(w@Q); = 2(¢; — @) we obtain
A5 2 A = 2Pl — d5:) + (0@ (Pror - )

+%[((w’@)j+1 (w'Q);) (5 — dj+1)
Pip1 — b
(W Q) (B541 — 205+ 651)| + L (w

+CPjt1(¢j — djr1)* — CPi(¢j-1 — ¢j)2] :

(W' Q)j(¢j-1 — ¢;)

From the mean value theorem with’'Q)”" = w"”'Q + 2w"Q" + w'Q",
which is bounded as we have seen in Lemma 3.1, and (2.3) we obtain

A5 2 APy ()~ 65:0) = A| P (651 = 87) + 265 — 0)(Pros — )

+0(0; — d301)” + OAbj1 — 630)] — OP(651 — 65)°
(5.4) +%P(w Q)j(dj-1— @)] :

Applying (5.2), Lemma 3.2 and Lemma 2.2 we proceed as follows
A5 = APyia(6; = 65:0) = A| P65 — 85) + 265 — 0)(Proa — )

+P]+1 [C(6) = ¢j+1)* + CNj-1 — ¢j41)] — OFj(¢j-1 — ¢;)°

P]-i-l b

212 Q051 - 09)|

> HAP (¢ ¢j+1) + /\[ j+1(¢ ¢J+1) [1 —CA— C(¢j - ¢j+1)
—2(Pjy1— P;j)(¢; — 1) — CPj(¢j—1 — ¢5)°
(5.5) ~C|Py 1 — Py|(6;-1 — @)@ .
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Note that|P;1 — Pj| < BC,r{jr)?~! for some positive constait, by
(3.5). Therefore, we get

Aj > OAPi(¢5 — ¢jv1) + A |:0Pj(¢j — ¢j11) [1 = AC = C(¢j — ¢j41)]
—2(Pj11 — Pj)(¢j — @) — CPi(¢; — ¢j41)°
—BC(jr) " 'rC(¢j—1 — @)]

> 60D, (05— d310) + A (87505 = 501

XP—AC—C@rw%ﬂ—C7}]—%%H—RM%—UO

(jr)
— OG0y — dyat) + A<9<jr><¢j — 41)

X [1 — )\C — C(qu — ¢j+1)

T (P'+1 — P) _ > . —
56) —C——| — 2L (g —a) ) (Gr)PL.
68) -0 | -2 B0 ) i)
We want to estimate the second summand further from below. Noting that
(¢; — ¢j4+1) < CAwe may find a constant €]0, 1[for r = Az, A= 4L
taken suitably small such that the lower bound

r
1—C>\—C(¢j—¢j+1)—0% >V

holds independently of. From the equations (2.1), (5.1) as well as the
choice of the weightsv;, it is clear that the constants involved in the
above estimates depend only on, M = max f'(u)/p and the bound
encountered in Lemma 3.1.

First we consider the cage= 0. In this casesy — @ may vanish. But
we have—2(P; — Py)(¢o — @) > 0 due togy < @. So withe; = W
we obtain for anys € [0, «| the lower estimate

Ag > X0 — ¢1) + M0(do — ¢1)v > OX(do — ¢1) + c18h.

Now we consider the cage# 0. We setcy := 2¢, minj»g [¢; — a| > 0.
By Lemma 3.2 we get the inequality
(P —Fj) _ | Pj+1 — Py
—2(¢; — U)W =2|¢p; — MW > cafr.

Since
00 (65 — b51)v > 0,
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we may neglect this term in the estimate from below. Therefore we obtain
with A\r = h

Aj = 0N (b5 — Bj1) + AcaBr(jr)’
> OA(jr)7 (95 — Bjr1) + c2B(jr)"~"h.
Now takingcg := min{c, c2} we have for anyj € Z the final estimate
Aj 2 OMjr)7 (95 = ¢j1) + coBlir) b,
which proves the Lemma 4.1. a
Proof of Lemma 4.2Rearranging the terms iR}’ we obtain
(e

B} = |=Adj 10} (Hj — Hjy1) — p(Pj1 — Pjw; 2

J
X (Vi1 —vf)
= )\Aj+1U§L(Hj+1 - Hj)(v?-i-l - ’U?>
’l)n+1 — o
Py = By (17 + P ) =)
57) =1L +1.

SinceH; > Oforall j € Z one hagH;, — H;| < H; | + H;. By using
the Cauchy-Schwarz inequality we estiméteas follows

|| = (A1) (Hjp1 — Hy) (0] — 7))

< VHj+ Hjpi|viy —vf M/ |Hjwr — Hj|[Aj 07|

H; +H A
(58) < 8( ]+1 ])2 + Jj+1 + ( ]+1)

|Hjp — Hjl(w))*.

2 2¢e
We set
- "y Wit — W
C = max { sup i+l , Sup i+l N
jez Wj jez | Pj+1 — ¢;

This quantity exists due to the fact that! < w; < C by (3.2) for some
suitable constart’ > 0 and the fact that the first derivative ofis bounded,
see (3.3).

Using the identity

Hji1 — Hy = wjt1(Pj1 — Pj) + Pj(wj1 — wj),
and Lemma 3.2 one obtains

|Hj1 — Hj| < BCC, w](]r>ﬁ 17’+

<z>3+1 i1 — &;|(ir)?

gﬁé@@@ﬂ*%r+0wﬁq—%Mﬂ>-
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By \r = h and setting” = max{C, CC, max|f’|*} we have

Z\Il\<52 Vi1 — 2%

JEZ JEZ
AC n|2 n(2/:.\0
(5.9) + 50 | BRI B + A D (05 = 50 lvf P ()P
JEZ

On the other hand

Iy < p|Pjy1 — Pjlwj | |[v]||vi — o7 +

(U;‘l+1 - U?)2
2

B 1 1
< pBC,r{jr)’ [51|U§L2 + 471|U;’L+1 - Jn|2 + §\U§L+1 - U§L|2] wyj,

which, after summing up overfrom —oo to +o00, becomes

1 1
n|2 n|2
(5.10)) || < pBCyr [51]1) 31w+ (451 + 2) | Av |ﬁ_17w] :

JEZ
Noting that
/3
A" 1 = D ) o — o Py + Z <Jr> — vj[Pw;
lil<J 1j1>J
1
D)l =P+ 7 D n et — o Py
jez jez
1
= CDIIA|? + | A" 3,
for some large fixed numbef > 0, we get
H; + H; 1BCy (5
2447 Jj+1 2e 2
je% i gjeZZ o1 =05 2 + 2J1 ’A”n‘ﬁ,w
Vol AC[
+CﬂHA’0nH2T + [51Nﬁcrr + T&‘h "Un‘%’—l,w
\2C .
+50 205 = drl P’
JEZ

Hj+ Hipr uBCH (5= + 1)
eI - P e 1A,

jez

0Bl r 4 22

h| n|ﬁ 1w

539
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A2C .
+Ta (0 — dj+1)|v] 2(jm)”,
jEZ

where we have chosen

€

E1 =
! 2ucey

andC = C(J) (é + %) pc,. We see that; > 0 provided that) is
suitably small. This completes the proof of Lemma 4.2. O

References

1.

2.

3.

10.

11.

12.

13.

14.

15.

16.

17.

S. E. Buckley, M. C. Leverett: Mechanism of fluid displacement in sands. A.l.M. E.
146, 107-116 (1942)

C. M. Dafermos: Regularity and large time behavior of solutions of a conservation law
without convexity. Proc. R. Soc. Edin®9A, 201-239 (1985)

B. Engquist, S. Osher: One-sided difference approximations for nonlinear conservation
laws. Math. Comp36, 321-351 (1981)

. B. Engquist, Shih-Hsien Yu: Convergence of finite difference schemes for piecewise

smooth solutions with shocks (manuscript)

. A. M. I'in, O. A. Oleinik: Asymptotic behaviour of solutions of the Cauchy problem

for certain quasi-linear equations for large time. Mat. Sbo&1ik191-216 (1960)

. G. Jennings: Discrete shocks. Comm. Pure Appl. M2ith25-37 (1974)
. C.Jones, R. Gardner, T. Kapitula: Stability of travelling waves for non-convex scalar

viscous conservation laws. Comm. Pure Appl. Mdt5).505-526 (1993)

. S. Kawashima, A. Matsumura: Asymptotic stability of travelling wave solutions of

system for one-dimensional gas motion. Comm. Math. P1§%.97-127 (1985)

. H. L. Liu: Asymptotic stability of shock waves for non-convex Convection-Diffusion

equation. Appl. Math. Lettl0, 129-134 (1997)

H. L. Liu, J. H. Wang: Nonlinear stability of stationary discrete shocks for non-convex
scalar conservation laws. Math. Con@s, 1137-1153 (1996)

H. L. Liu, J. H. Wang: Decay rate for perturbations of stationary discrete shocks for
convex scalar conservation laws. Math. Co®f).69-84 (1997)

H. L. Liu, J. H. Wang: Asymptotic stability of stationary discrete shocks of Lax-
Friderichs scheme for non-convex conservation laws. Jn. J. Indust. Appl. V&th.
147-162 (1998)

J. G. Liu, Z. P. Xin: Nonlinear stability of discrete shocks for systems of conservation
laws. Arch. Rat. Mech. Anall25 217-256 (1993)

J. G. Liu, Z. P. XinZ! stability of stationary discrete shocks. Math. Co®@.233-244
(1993)

A. Majda, J. Ralston: Discrete shock profiles for systems of conservation laws. Comm.
Pure Appl. Math32, 445-483 (1979)

A. Matsumura, K. Nishihara: Asymptotic stability of travelling waves for scalar vis-
cous conservation laws with non-convex nonlinearity. Comm. Math. Rl§s%83-96
(1994)

D. Michelson: Discrete shocks for difference approximations to systems of conservation
laws. Adv. Appl. Math 5, 433—-469 (1984)



Convergence rates to discrete shocks for nonconvex conservation laws 541

18.

19.

20.

21.

22.

23.

K. Nishihara: A note on the stability of travelling solutions of Burgers equation. Jn. J.
Appl. Math. 2, 27-35 (1985)

S. Osher, J. Ralstoii;* stability of travelling waves with applications to convective
porous medium flow. Comm. Pure Appl. Ma8, 737-749 (1982)

D. Sattinger: On the stability of waves of honlinear parabolic systems. Adv. Rath.
312-355 (1976)

Y.S. Smyrlis: Existence and stability of stationary profiles of the LW scheme. Comm.
Pure Appl. Math43, 508—-545 (1990)

A. Szepessy: On the stability of finite element methods for shock waves. Comm. Pure
Appl. Math.45, 923-946 (1992)

E. Tadmor: The large-time behavior of the scalar genuinely nonlinear Lax-Friedrichs
scheme. Math. Com@.3, 353—-368 (1984)



