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Abstract

The limiting behavior of the solution of scalar conservation laws with slow diffu-
sion and fast bistable reaction is considered. In a short time the solution develops
transition patterns connected by shock layers and rarefaction layers, when the initial
data has finitely many monotone pieces. The existence and uniqueness of the front
profiles for both shock layers and rarefaction layers are established. A variational
characterization of the wave speed of these profiles is derived. These profiles are
shown to be stable. Furthermore, it is proved that solutions with monotone intimal
data approach to shock layer or rarefaction layer waves as time goes to infinity.
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1 Introduction

Front propagation and interface motion occur in many scientific areas such as chemical
kinetics, combustion, biology, transport in porous media, geometry and image process-
ing. In spite of these different applications, the basic phenomena can all be modeled by
nonlinear parabolic PDEs, typically reaction-diffusion equations:

ut = g(u) + ∆xu.

The field has gone through enormous growth and development since the pioneering work
of Kolmogorov, Petrovsky, and Piskunov (KPP) [14] and Fisher [10] in 1937 on traveling
fronts in reaction-diffusion equations.

In this article we consider a reaction-diffusion equation with nonlinear convection:

ut + f(u)x = εuxx +
1

γ
g(u),

where f(u) is a smooth flux function and g(u) = −W ′, W being a double-wells potential,
γ > 0 and ε > 0 being small parameters. The physical motivation for studying above
equation is that general reacting flows or dynamics of phase transitions are combinations
of fluid dynamic equations and reaction-diffusion equations [2]. Typically, the reaction
time γ and viscosity ε are proportional to mean free path. Thus, in this paper, we take
γ = ε to get

ut + f(u)x = εuxx +
1

ε
g(u), (1.1)

The fundamental question we address here is to understand how the nonlinear convection
influences the characteristics of front propagation such as front speeds, front profiles, front
locations and pattern formations.

Equation (1.1) can be written as a convective gradient flow

ut + f(u)x = −δE

δu

with the free energy E being given by

E(u) =

∫

IR

[
ε2

2
u2

x −
∫ u

g(ξ)dξ

]
dx.

A special case of (1.1) is the so called Allen-Cahn equation [2] which corresponds to
the choice of

g(u) = u(1 − u2), f(u) = Const.

When the flux f(u) = 0, the equation (1.1) is a typical reaction-diffusion equation
which is pretty well understood. In particular, the front propagation has been exten-
sively studied. We refer to the review paper [22] and references cited therein for more
information.

Our interest is in the limiting behavior of u = uε as ε → 0 when the initial data
u0(x) ∈ L∞(IR) are assumed to have finitely many monotone pieces. We shall show that
in a small time O(ε) the transition layers are formed; outside the transition layers the
solution uε(x, t) behave as ±1. After this short time, the transition layer structure persists.
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These transition layer solutions, i.e., traveling waves of (1.1), are asymptotically stable
and are approached by solutions starting with arbitrary monotone initial data. We further
characterize the speed of the layers. The results on the reaction-convection equation, i.e,
(1.1) without the term uxx, [12], suggest that the speeds of different transition layers can
be different and hence they can collide later.

The aim of this article is to study

• the development of the pattern by convergence analysis;

• the construction of traveling waves by matching argument;

• the characterization of the speed by min-max formulation;

• the time-asymptotic stability of the waves by the spectral method;

Our work is closely related to that of Fan, Jin and Teng [12], Fan and Jin [11], Fife and
Hisao [9], Carr and Pego [6] and Fusco and Hale [8]. Fan, Jin and Teng uses the generalized
characteristic method to study the zero reaction limit for the inviscid equation

ut + f(u)x =
1

ε
g(u), (1.2)

Fan and Jin [11] give the rigorous prediction of the slow motion of the shock layer and
rarefaction layer generated by (1.2). The discussion of the traveling waves for (1.1) are
also given in [11]. The equation without the nonlinear convection has been extensively
studied in the literature. Fife and Hsiao [9] uses the maximum principle to predict the
pattern formed after a short time and the velocity of the transition point for the initial
data with single root. The papers of Carr and Pego [6], Fusco and Hale [8] give rigorous
justification of the formal asymptotic analysis, in particular their results show that the
transition points move with velocities of order e−Cl/ε, where C is a constant and l is the
minimum distance between the transitions in the initial data. Bronsard and Kohn [3] first
links the slow motion with the energy dissipation of the reaction-diffusion equation. Our
convergence analysis has several advantages over those mentioned above: (1) it is natural
to use BV norm for the limit is just a piecewise constant function; (2) it handles more
general initial data.

The multidimensional analogue of (1.1), has also been the subject of the recent atten-
tion [7]. In particular the case without nonlinear convection has been extensively studied,
consult [2, 19, 5, 4] and references therein. We would point out that the situation is rather
different in IRn, n ≥ 2, since the solution has transition surfaces rather than transition
points. As ε → 0 the transition surfaces have been proved to move with velocity εκ, where
κ is the sum of the principal curvatures.

The main results and the plan of the paper is as follows: In §2, we prove that the
solution uε has a convergent subsequence uεn converging to ±1 as εn → 0+ almost every-
where for initial data having finitely many monotone pieces. This follows from the total
variation bound of the solution and the bistable structure of the fast reaction term. The
convergence result ensures the pattern formation in a short time O(ε). The uniqueness
of limits and the structure of the limit are left for future investigation. §3 is devoted to
the prediction of the speed of the front propagation, here the front is the internal layer
formed near the transition points after a short time. We discuss the law of motion for the
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front and the link of the speed to the Lax-shock condition. Following [21, 13] we derive a
variational characterization for the wave speed of the stable front profile.

In §4 we construct the monotone shock layer solution and rarefaction layer solution via
a shooting method. These complement the previous study performed in [11]. The dynamic
stability of the shock layer solution is investigated via the spectral method [20, 18]. Further
approaching to a stable wave by solutions with arbitrary monotone initial data is proved
along the line given in [21].

Reaction-diffusion-convection equations can serve as the prototypes for reactive flows,
whose governing systems contains the effect of reaction, diffusion and convection terms.
Although reaction-diffusion and convection-diffusion have been studied extensively, but
their combinations are not. Further research in this area can be fruitful.

2 Convergence and pattern formation

We proceed to characterize the front propagation and the motion of the level set Γ(t).
This consists of two main steps:

(1) Pattern formation (initialization of the front);
(2) Front propagation.
This section is devoted to (1) by proving the convergence of uε as ε → 0, which can

be realized by the time dynamics with the time scales involved.
To simplify the presentation we make the following assumptions
(a) Both f and g are smooth functions in C∞(IR).
(b) g(±1) = g(0) = 0 , g′(±1) < 0 and g′(0) > 0.
(c) Initial data u0(x) ∈ C(IR) has finitely many monotone pieces such that its total

variation is bounded, i.e. TV (u0) ≤ C.
Under the above assumptions the Cauchy problem yields a unique smooth solution.

We turn to prove the convergence of the solution uε as ε → 0. This will follow from a
series of lemmas.

Lemma 1 The number of monotone pieces of the solution uε is non-increasing as time
evolves.

Remark 2.1 For given ε > 0 the solution regularity is ensured by the viscosity and the
stable structure of the source term. Here we are concerned with the solution property.
Result of this nature was obtained by Nickel [16] in 1962, and revived by Matano [15] in
1982 and others e.g. [1]. To make the present paper self-closed, we sketch the proof of
this lemma.

Proof. Set v = ux, then v solves the following equation:

vt + (f ′(u)v)x = εvxx +
1

ε
g′(u)v.

Assume the contrary, i.e. that the number of zeros of v(x, t) : N(v, t) increase at time
t = t0 > 0 in the sense that

N(v, t0−) ≤ N(v, t0+) − 1.

Then at the new zero point x0 of v(x, t) we have the following cases:
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Case 1. In a neighborhood of (x0, t0) denoted by I0 := I(x0, t0), v(x, t) > 0 or (< 0)
for t < t0 and (x, t) ∈ I0. In fact, at t = t0

v(x0, t0) = 0 = vx(x0, t0), vxx(x0, t0) > 0(< 0).

From the fact v(x0, t) > 0 for t < t0 and v(x0, t0) = 0 it follows that

vt(x0, t0) ≤ 0.

However
vt(x0, t0) = εvxx(x0, t0) > 0

leads to a contradiction.
Case 2. In a neighborhood of (x0, t0), I(x0, t0) = I0,

v(x0, t0) = vx(x0, t0) = vxx(x0, t0) = 0, vxxx(x0, t0) > 0(< 0)

and vx(x, t) > 0(< 0) for t < t0 in I0.
Then w = vx solves

wt + (f ′(u)v)xx =
1

ε
(g′(u)v)x + εwxx.

Thus at (x0, t0),
wt(x0, t0) = (vx)t(x0, t0) > 0(< 0). (2.1)

However, from the fact that

vx(x0, t0) = 0, vx(x0, t) > 0 (< 0) for t < t0,

it follows that
(vx)t(x0, t0) ≤ 0 (≥ 0),

which contradicts (2.1).
Case 3. Same as Case 1 except that

v(x0, t0) = vx(x0, t0) = · · · =
∂2k−1

∂x2k−1
v(x0, t0) = 0

with
∂2k

∂x2k
v(x0, t0) > 0(< 0).

In a neighborhood of (x0, t0)

∂2k−2

∂x2k−2
v(x, t) > 0(< 0)

for t < t0 and (x, t) ∈ I0. Then a similar derivation to the Case 1 leads to the contradiction.
Case 4. Similar to Case 2 except that

v(x0, t0) = vx(x0, t0) = · · · =
∂2k

∂x2k
v(x0, t0) = 0
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with
∂2k+1

∂x2k+1
v(x0, t0) > 0(< 0).

In a neighborhood of (x0, t0)

∂2k−1

∂x2k−1
v(x, t) > 0(< 0)

for t < t0 and (x, t) ∈ I0. Then a similar derivation to Case 2 leads to the contradiction.
A combination of the above cases completes the proof.

Lemma 2 The solution uε is uniformly bounded in ε and

‖uε(x, t)‖∞ ≤ max(1, ‖u0‖∞).

Proof. Note that the source term g(u) is bistable with u = 1 and −1 being stable
zeros. Therefore if u0(x) > 1 for some x ∈ IR then the maximum principle gives

u(x, t) ≤ max u0(x).

Hence
u(x, t) ≤ max(1, ‖u0(x)‖L∞)

Similarly
u(x, t) ≥ min(−1,−‖u0(x)‖L∞)

Lemma 3 The total variation of the solution uε is uniformly bounded in ε and

TV (uε(·, t)) ≤ 2N(u0) + TV (u0).

Proof. This Lemma follows from a combination of Lemma 1 and Lemma 2.

Lemma 4 There exists a subsequence {εn} → 0 such that

uεn → u(x, t), a.e. in IR × IR+.

Proof. The convergence is ensured by the Helley Theorem.

Lemma 5 Let {εn} be the subsequence in Lemma 4. Then the limit function u(x, t) :=
limn→∞ uεn(x, t) is a piecewise constant function taking only the values ±1 or 0, with
finitely many discontinuities.

Proof. Let φ ∈ C∞
0 (IR× IR+) be a smooth test function, then the weak formulation of

the solution to

uε
t + f(uε)x =

1

ε
g(uε) + εuε

xx

can be written as

0 =

∫ T

0

∫

IR

[
uε

t + f(uε)x −
1

ε
g(uε) − εuε

xx

]
φ(x, t)dxdt

=

(∫

IR

uεφdx

) ∣∣∣
T

0
+

∫ T

0

∫

R

[
−φtu

ε − f(uε)φx − εuεφxx −
1

ε
g(uε)φ

]
dxdt.
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Since ‖uε(, t)‖∞ ≤ C independent of ε and t, we have

−C1ε ≤
∫ T

0

∫

IR

g(uε)φdxdt ≤ C1ε,

where C1 is independent of ε. Now, let ε = εn and let n → ∞, we have
∫ T

0

∫

IR

g(u(x, t))φdxdt = 0

for any φ ∈ C∞
0 (IR × IR+). This implies that

g(u(x, t)) = 0, a.e.

Thus, the function u(x, t) = ±1 or 0 almost everywhere. The proof is complete.

Remark 2.2 We can see that the assumption that the initial data u0(x) consists of finitely
many monotone pieces played an important role in above proofs. We imagine that it
is possible to relax the assumption to that u0(x) has finitely lap number over intervals
[−M, M ] for any number M > 0. Can this condition be further relaxed? We consider the
following simplified problem

ut =
1

ε
u(1 − u2) + εuxx

with initial data u0(x). For fixed t > 0, as ε → 0+, the positive part of u(·, t) is pushed to
1 while the negative part of u(·, t) is pushed to −1. When t > 0 is small, there are almost
as many connected components of {x ∈ IR ; u(x, t) > 0} as that for u0. Same thing can
be said about the connected components of {x ∈ IR ; u(x, t) < 0}. Thus, if the lap number
of u0 over a finite interval is infinite, then the total variation of uε(·, t) over the interval
will go to ∞ as ε → 0+ In this case, the compactness of {uε} in ε cannot be achieved
through boundedness of total variations.

Remark 2.3 In Lemma 4, we proved the pointwise compactness of {uε(x, t)}. In section
5, we shall provide an argument for that all convergent subsequences of {uε(x, t)} has the
same limit, and hence the limit limε→0+ uε(x, t) exists a.e..

3 Propagation speed of fronts

3.1 Law of motion of fronts

Armed with the convergence theorem we turn to the study of the front propagation.
Formally in a short time the solution uε evolves according to the ordinary differential
equation

ut =
1

ε
g(u).

For x ∈ D+
0 := {x, u0(x) > 0}, u0 is in the domain of attraction of the equilibrium

point u = 1; Similarly it is attracted to u = −1 for x ∈ D−
0 := {x, u0(x) < 0}. To gain

further insight we take g = u(1 − u2), for which the solution of the above ODE can be
solved explicitly

u2 =
u2

0

exp(−2t
ε
) + u2

0(1 − exp(−2t
ε
))

.
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A simple calculation shows that for u0 6= 0 the solution uε will approach ±1 for a quite
short time in the sense that

|u2 − 1| ≤ ε

if

t ≥ 1

2
log

∣∣∣∣(1 − 1

u2
0

)
ε

1 − ε

∣∣∣∣ ∼ ε|lnε|.

Therefore as t increase, the values of uε of equation (1.1) are pulled apart near Γ0 and
layers (a zone near Γ(t) where uε has a large x−gradient) are formed at Γ0, called shock
layer or rarefaction layer depending on the relative position of Γ0 and D±

0 .
After this initial formation, the fronts will propagate. Let x = ξ(t) be the position

of the fronts (to be determined) as a function of t. Set z = (x − ξ(t))/ε and look for a
formally approximation of the form

uε(x, t) = U(z, t).

Upon substitution into (1.1) one has

−Uzξ
′(t) + εUt + f ′(U)Uz = Uzz + g(U),

whose leading order approximation is obtained by setting ε = 0

f ′(U)Uz − Uzξ
′(t) = Uzz + g(U).

On the other hand let u(x, t) = U(z) with z = (x − ct) be the traveling wave solution of

ut + f(u)x = uxx + g(u).

Then
(f ′(U) − c)Uz = Uzz + g(U), U(±∞) = ±1 (∓1).

It follows that the profile with desired limiting behavior as z → ±∞ can exist if

ξ′(t) = c

with initial data ξ(0) = z0(0) for i = 1, · · · , N . This is the law of motion of the fronts.

3.2 Lax Shock condition

In order to figure out the propagation speed of the transition layers, we proceed to seek
solution of the form u = U(z), z = (x − ct)/ε for equation (1.1) to obtain

−sU ′ + f(U)′ = U ′′ + g(U) (3.1)

with boundary conditions

U(±∞) = ∓1, U ′(±∞) = 0, (3.2)

or U(±∞) = ±1, U ′(±∞) = 0. (3.3)

As pointed in [11], the first boundary condition yields the shock layer and the second is
for the rarefaction layer connecting equilibrium points −1 and +1.
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As is well known for the reaction-diffusion equation the traveling wave speed is in gen-
eral unknown. We first discuss the determination of the wave speed for a given traveling
wave.

Let U be a traveling wave solution satisfying (3.1), (3.2). Multiplication of (3.1) by
V = U ′ and integration over IR gives

c

∫

IR

V 2(ξ)dξ =

∫

IR

[f ′(U)V 2(ξ) − g(U)U ′]dξ.

Thus

c =

∫ 1

−1
g(u)du +

∫
IR

f ′(U)V 2(ξ)dξ∫
IR

V 2dξ
.

Noting that g(u) = u(1 − u2) yields
∫ 1

−1
g(u)du = 0 and the speed c satisfies

c =

∫
IR

f ′(U)V 2(ξ)dξ∫
IR

V 2dξ
.

Clearly for convex flux f , it follows that

f ′(−1) < c < f(1),

which is in agreement with Lax’ shock condition in the context of scalar conservation
laws.

As is well known for the viscous conservation laws (g = 0) the shock speed is uniquely
determined by the Rankine-Hugoniot condition c[u] = [f ]. To clarify the contribution of
the source term we integrate the equation directly,

c =
[f(u)] +

∫
IR

g(U(ξ)dξ

[u]
=

f(1) − f(−1)

2
+

1

2

∫

IR

g(U(ξ))dξ.

To sum up, we state the following

Lemma 6 Let U be a monotone shock layer solution satisfying U(±∞) = ∓1. Then the
speed c satisfies

c =

∫ 1

−1
g(u)du +

∫
IR

f ′(U)V 2(ξ)dξ∫
IR

V 2dξ
or

c =
f(1) − f(−1)

2
+

1

2

∫

IR

g(U(ξ))dξ.

For the case
∫ 1

−1
g(u)du = 0, the Lax shock condition still holds

f ′(−1) < c < f ′(1).

For the monotone rarefaction layer, the speed can be similarly obtained.

Lemma 7 Let U be a monotone rarefaction layer solution satisfying U(±∞) = ±1. Then
the speed c satisfies

c =
−

∫ 1

−1
g(u)du +

∫
IR

f ′(U)V 2(ξ)dξ∫
IR

V 2dξ
or

c =
f(1) − f(−1)

2
− 1

2

∫

IR

g(U(ξ))dξ.

The above formulae are implicit because either the solution U or V = U ′ depends on
c.
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3.3 Variational formula

We proceed to obtain a formula for the speed of the unique stable traveling waves with
U(±∞) = ∓1.

To this end we assume that
(a) there exists unique traveling wave (U, c) of (1.1);
(b) the wave is stable with respect to some subset of the initial data

lim
t→∞

sup
x∈IR

|u(x, t) − U(x − ct + θ)| = 0

holds for some shift θ ∈ IR.

Remark 3.1 We shall verify these two assumptions in Section 4.

Define the admissible set

K := {v ∈ C2(IR), vx < 0, −1 < v(x) < 1, v(±∞) = ∓1, v ∈ Is},

where Is is the attractor domain of the stable traveling wave U . It will be shown in
Section 4 that this attractor domain is rather large.

We then have

Theorem 3.1 Assume (a) and (b). Then the speed c is uniquely given by

sup
v∈K

inf
x∈IR

φ(v(x)) = c = inf
v∈K

sup
x∈IR

φ(v(x)),

where

φ(v(x)) = f ′(v(x)) +
v′′ + g(v)

−v′(x)
.

Proof. By assumption the wave (U, c) satisfies φ(U) = c. Then, we have

sup
v∈K

inf
x∈IR

φ(v(x)) ≥ inf
v∈K

sup
x∈IR

φ(v(x)).

Thus, it suffices to show that for all v ∈ K

inf
x∈IR

φ(v(x)) ≤ c ≤ sup
x∈IR

φ(v(x))

holds. Assume the right inequality fails, then there exists c1 < c and a v ∈ K such that

φ(v(x)) ≤ c1, x ∈ IR,

which gives
c1v

′ + v′′ + g(v) − f ′(v)v′ ≤ 0.

Let v̄ = v(x − c1t), then
v̄t − v̄xx − g(v̄) + f(v̄)x ≥ 0.

Let w be the solution of the equation

wt − wxx − g(w) + f(w)x = 0
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with initial data v̄(x), the comparison principle ensures that

w(x, t) ≤ v̄(x, t) = v(x − c1t),

and in particular
w(x + c1t, t) ≤ v(x) < 1, ∀t > 0. (3.4)

By the stability assumption we have

lim
t→∞

sup
x∈IR

|w(x, t) − U(x − ct + θ)| = 0.

Hence
|w(x + c1t, t) − U(x + (c1 − c)t + θ)| → 0 t → ∞.

Since c1 < c and U(−∞) = 1 one arrives that

w(x + c1t, t) → 1 as t → ∞

which contradicts (3.4) and finishes the proof.

4 Existence and stability of layer solutions

This section is devoted to the study of existence and stability of layer solutions for the
following scaled equation

ut + f(u)x = Auxx + g(u). (4.1)

Its traveling wave U(z), z = x − ct solves a second order ODE,

AU ′′ + (c − f ′(U))U ′ + g(U) = 0 (4.2)

with boundary condition
U(±∞) = u±

where u± = ±1 or ∓1, corresponding to the rarefaction layer or shock layer solution,
respectively.

4.1 Connecting orbit

Let us write the second order equation (4.1) of traveling wave into a closed dynamical
system

U ′ = V,

AV ′ = (f ′(U) − c)V − g(U).

To construct the traveling waves connecting ±1 it suffices to construct a connecting orbit
between the equilibrium points (1, 0) and (−1, 0).

The nature of the connecting orbit depends strongly on the type of three equilibrium
points (u∗, 0) = (−1, 0), (0, 0), (1, 0). Linearize the system about (u∗, 0) to obtain a system

(
U
V

)′

= B(u∗)

(
U
V

)
+ O|(U, V )|2

(
1
1

)
,
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where the coefficient matrix is given by

B(u∗) =

(
0 1

−g′(u∗)
A

f ′(u∗)−c
A

)
.

A simple calculation gives the eigenvalues of B(u∗)

λ±(u∗) =
1

2A

[
(f ′(u∗) − c) ±

√
(f ′(u∗) − c)2 − 4Ag′(u∗)

]
.

Since g′(±1) < 0, both (±1, 0) are both saddle points and the type of (0, 0) depends on
the relative size of c and A as well as f ′(0).

We shall use the above facts to construct the connecting orbit via the phase plane
analysis.

The connection orbit for the case U(±∞) = ±1 has been established by Fan and Jin
[11], which we state below for the readers convenience.

Theorem 4.1 For any A > 0, the boundary value problem (4.1), (3.3) has a monotone
rarefaction layer solution when c = f ′(0).

We now focus on the construction of the traveling waves for the case U(±∞) = ∓1.
The argument in [11] does not work for this case.

In the phase plane the system reduces to

AV
dV

du
= (f ′(u) − c)V − g(u), V (±1) = 0. (4.3)

Theorem 4.2 There exists unique traveling wave (U, c) of (4.1), (3.2) with the speed
determined by the min-max formula given in Theorem 3.1.

Proof. Let γu(+1, c) be the portion of the unstable manifold of (4.3) in V < 0 issued
from (1, 0) and entering {v < 0}, γs(−1, c) be the portion of the stable manifold of (4.3)
in V < 0 coming into (−1, 0) from {v < 0}. In order to prove Theorem 4.2 it suffices to
show there exists a unique c such that

γu(+1, c) ∩ γs(−1, c)

is not empty.
Proving this consists of the following four steps:

Step 1. The unstable manifold γu(+1, c) denoted by v = V (u, +1, c) moves upward as c
increase.

This follows from the following two observations:
(1) The slope of the unstable manifold γu(+1, c) at (+1, 0) is dV

du
|u=1 = λ+(+1, c) and

the eigenvalue λ+(+1, c) is decreasing in c; Indeed

dλ(+1, c)

dc
= −

f ′(1) − c +
√

(f ′(1) − c)2 + 8A

2
√

(f ′(1) − c)2 + 8A
< 0.

(2) γu(+1, c1) does not intersect with γu(1, c2) for c1 6= c2;
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Assume the contrary, i.e., that the two trajectories intersect at (u∗, v∗) with v∗ < 0
and u∗ < 1. More precisely

AV1
dV1

du
= (f ′(u) − c1)V1 − g(u), V1(u

∗) = v∗

and

AV2
dV1

du
= (f ′(u) − c1)V2 − g(u), V2(u

∗) = v∗.

Set w = V 2
1 − V 2

2 , the above two equations yield

dw

du
=

2(f ′(u) − c1)

V1 + V2

w +
2V2

A
(c2 − c1), w(u∗) = 0.

Integration over [u∗, u] with u∗ ≤ u < 1 gives

w(u) =
2(c2 − c1)

A

∫ u

u∗
V2(s) exp

(∫ u

s

2(f ′(ξ) − c1)

A(V1 + V2)
dξ

)
ds.

Letting u tend to 1, one has limu→1 w(u) 6= 0, which contradicts the fact that V1(1, c1) =
0 = V2(1, c2).

Step 2. The trajectory γu(+1, c) fills the line l = {(0, v), v ∈ (−∞, 0)} as c runs in
IR. Observe that the unstable manifold γu(+1, c) can not enter the upper-plane from
{(u, 0), 0 < u < 1}, where V ′ = g(u) < 0. Thus all bounded orbits will cross the line
{(0, v),−∞ < v < 0}. Assume the contrary to the claim, i.e., there exists a c0 such that

V (0, +1, c0+) > V (0, +1, c0−).

Pick v∗ ∈ (V (0, +1, c0−), V (0, +1, c0+)) and consider the trajectory through this point:

AV
dV

du
= (f ′(u) − c0)V − g(u), V (0) = v∗.

The uniqueness of the ODE shows that the above trajectory must enter (1, 0) as z → −∞.
Since the equilibrium point (1, 0) is a saddle, these three trajectories must coincide as a
seperatrix.

We observe that the unstable manifold γu(+1, c) can not enter the upper-plane from
{(u, 0), 0 < u < 1}, where V ′ = g(u) < 0. Thus we see that

V (0, 1, c) ≤ 0 for all c ∈ IR.

We further claim that
lim

c→−∞
V (0; 1, c) = −∞.

To this end, we calculate from (4.3) to get that

A
dV

du
= f ′(u) − c − g(u)

V
≥ f ′(u) − c −

∣∣∣∣
u − 1

V

∣∣∣∣ max
|u|≤1

|g′(u)|.

As long as
c ≤ min

|u|≤1
f ′(u) − 2 max

|u|≤1
|g′(u)| (4.4)
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and
V ≤ u − 1 for |u| ≤ 1,

we have

A
dV

du
≥ f ′(u) − c − max

|u|≤1
|g′(u)| ≥ 1

2
(min
|u|≤1

f ′(u) − c).

This is equivalent to

−V (u∗) =

∫ 1

u∗

dV

du
du ≥ 1

2A
(min
|u|≤1

f ′(u) − c)(1 − u∗).

When
min
|u|≤1

f ′(u) − 4A ≥ c, (4.5)

then above inequality implies that

V (u∗) ≤ 1

2A
(min
|u|≤1

f ′(u) − c)(u∗ − 1) ≤ 2(u∗ − 1) (4.6)

if
V (u∗) ≤ (u∗ − 1) (4.7)

for |u∗| ≤ 1. Since
dV

du
= λ+(1) → ∞

as c → −∞, we see that (4.7) is satisfied for u∗ < 1 and close to 1. Then, above reasoning
shows that when −c is large enough so that (4.4) and (4.5) hold, then (4.6) will be valid
for all |u∗| ≤ 1. The claim now follows from (4.6) immediately.
Step 3. Similarly, we can prove that the stable manifold γs(−1, c) denoted by v =
V (u;−1, c) moves downward as c increase and that

lim
c→∞

V (0;−1, c) = −∞.

Furthermore, the set {V (0;−1, c) | c ∈ IR} is an interval.
Step 4. Combining the above three steps we conclude that there exists a unique c such
that

V (0;−1, c) = V (0; 1, c),

and hence there is a unique connecting orbit for the problem (4.1).

Remark 4.1 In fact, the proof of Theorem 4.2 also applies to the case where u(±∞) =
±1 to yield the existence of the unique traveling wave.

In next section, we shall prove that the solution with monotone initial data will con-
verge to a traveling wave of (1.1). This and the uniqueness of the traveling wave proved
above provide the conditions needed for the min-max formula in Theorem 3.1 to hold.
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4.2 Dynamic Stability and Approaching to a Wave

We now turn to the study of the dynamic asymptotic stability of the propagating fronts,
which is important because the fronts should be stable if they are to be experimentally
observed.

Definition 1 Let u(x, t) be a solution to (4.1) with initial data u0(x) = U(x)+ ũ(x) with
ũ(x) being a smooth spatial decaying perturbation. If for some θ ∈ IR

lim
t→∞

‖u(x, t) − U(x − ct + θ)‖∞ = 0,

the front profile U(x − ct) is called asymptotically stable.

Remark 4.2 The shift θ in the definition is clear since if we take the initial perturbation
φ = U(x + x0) − U(x) to the profile U(x), then the solution is U(x + x0 − ct) instead of
U(x − ct).

A theorem concerning stability may be stated as follows.

Theorem 4.3 Let U(x − ct) be the traveling wave connecting u+ and u− constructed in
§4.1. Then there exists a positive number δ, such that for any function u0(x), satisfying
the condition ‖u0 − U‖∞ ≤ δ, the solution u(x, t) of equation (4.1), with initial data
u(x, 0) = u0(x) exists for all t > 0 and asymptotically approach a shifted traveling wave,
i.e.

lim
t→∞

‖u(x, t) − U(x − ct + θ)‖∞ = 0,

where θ is some number.

Proof. Following Sattinger [20] we linearize the problem (4.1)( set A = 1 here and
below) by writing

u(x, t) = U(z) + w(z, t), z = x − ct.

Thus the perturbation w satisfies

wt = wzz + (c − f ′(U))wz + (g′(U) − f ′′(U)U ′)w + N(w) = Lw + N(w),

where

N(w) = [g(U+w)−g(U)−g′(U)w]−[f ′(U+w)−f ′(U)]wz−[f ′(U+w)−f ′(U)−f ′′(U)w]U ′

contains quadratic or higher order nonlinear terms. The location of the spectrum of L,
denoted by σ(L), carries information on the decay of w.

Moreover a straightforward computation shows that

U ′ ∈ kerL.

The essential spectrum is included in the union of the essential spectra of the limiting
operators

L± = lim
z→±∞

L = ∂2
z + (c − f ′(±1))∂z + g′(±1).

Since g′(±1) < 0, the essential spectrum of L± is strictly in the left-half plane, with a gap
from the imaginary axis (by Fourier transform).
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Take eL, a positive bounded linear operator from L2 to itself. The essential spectrum
of L is contained in B(0, r), a disc about 0 of radius r < 1. The remaining spectrum of
eL consists of isolated eigenvalues of finite multiplicities. Note that

LU ′ = 0, and U ′ ∈ L2 does not change sign.

Thus −U ′ or U ′ is a positive eigenvalue function of eL with eigenvalue 1. By Perron-
Frobenius Theorem, 1 is a simple eigenvalue, and the rest of the point spectrum of eL lies
strictly inside the unit disc.

Thus the perturbation can be decomposed as

w(x, t) = u1 + u2,

where < u1, U
′ >= 0 and u2 = U ′. The above spectral analysis shows that limt→∞ u1 = 0

and u2 leads to the translation of U by x0. Moreover, due to the exponential decay
rate in time (spectral gap), the nonlinear term N is governed by the linear part if the
perturbation is suitably small, i.e. choosing δ suitably small.

Armed with the above stability result we will be able to show that we have approached
to a wave from arbitrary monotone initial conditions with the same behavior at infinity
as the wave. The key in extending the known stability result is to utilize a global tool–
comparison principle.

We now establish a more general theorem concerning such extension in possibly
weighted space. Let w(x) > 0 be a given weight function and weighted norm ‖ · ‖w

be denoted by
‖f‖w = ‖f · w‖∞.

We say U(x− ct) is a w-stable traveling wave of (4.1) if there exists δ > 0 and θ ∈ IR such
that

lim
t→∞

‖u(x, t) − U(x + θ − ct)‖w = 0,

provided ‖u(x, 0) − U(x)‖w ≤ δ.
The traveling wave is assumed to approach equilibrium states u± in ‖ · ‖w norm, i.e.,

lim
x→±∞

‖U(x) − u±‖w = 0,

for the initial data u0(x) we also require existence of the limits

lim
x→±∞

‖u0(x) − u±‖w = 0. (4.8)

We prove the following theorem.

Theorem 4.4 Let U be a w-stable traveling wave described above, u0(x) be a monotone
function satisfying (4.8). Then the solution u(x, t) of the Cauchy problem (4.1) with initial
data u0(x) asymptotically approaches a shifted wave in ‖ · ‖w norm:

lim
t→∞

‖u(x, t) − U(x + θ − ct)‖w = 0,

where θ ∈ IR is some number.
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Remark 4.3 (1) There are typically three choices of w: w = 1, w(x) = 1 + eαx (expo-
nential decay) or w(x) = (1 + x2)β/2 (algebraic decay).

(2) The above approaching to a wave in weighted norm and its proof below is valid for
any system such that comparison principle holds.

The following lemma will be used for the proof of above theorem.

Lemma 8 [21, Lemma 6.1, page 245] Let gi(x), i = 1, 2 be two monotonically decreasing
continuous functions, given on the interval [a, b], where g1(a) > g2(b). Then there exists a
continuous monotonically decreasing function φ(x), such that φ(a) = g1(a), φ(b) = g2(b)
and

|φ(x) − gi(x)| ≤ |g2(x) − g1(x)|, i = 1, 2.

Proof of the Theorem 4.4: Without loss of generality, we assume that c = 0, u+ < u−
and u0(x) is a continuous monotonically decreasing function. Let δ be the amplitude of
the admissible perturbation in the statement of w-stability above. We now introduce a
monotonically decreasing function u∗

0 such that

‖U(x) − u∗
0‖w < δ (4.9)

and u∗
0(x) = u0(x) for large |x|. Indeed, from the assumption it follows that

lim
x→±∞

‖u0(x) − U(x)‖w = 0.

Therefore, there exists a number M1 > 0 such that

‖u0(x) − U(x)‖w < δ for |x| > M1.

On the other hand the monotonicity of U and u0(x) and their approaching the same limits
at infinity ensure that there exists M2 > M1 such that

U(M1) > u0(M2), U(−M1) < u0(−M2).

In the interval ±x ∈ [M1, M2] we apply Lemma 7 to U and u0(x). We obtain two
continuous decreasing functions g±(x) such that g±(M1) = U(±M1), g±(M2) = u0(±M2)
and

‖g±(x) − U(x)‖w ≤ ‖u0(x) − U(x)‖w < δ, ±x ∈ [M1, M2].

Thus we can take

u∗
0(x) =





U(x), |x| ≤ M1,
g±(x), M1 ≤ ±x ≤ M2,
u0(x), |x| ≥ M2.

which satisfied the indicated property (4.9) and u0(x) = u∗
0(x) for |x| ≥ M2.

Next we introduce the function

φτ (x) = min(u0(x), u∗
0(x − τ)).

It is continuous and monotonically decreasing. A simple check shows that

φ−2M2(x) = u∗
0(x + 2M2), φ2M2(x) = u0(x).
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Moreover, we also obtain the inequality

u∗
0(x + 2M2) ≤ φτ (x) ≤ u∗

0(x − 2M2), −2M2 ≤ τ ≤ 2M2. (4.10)

Let uτ (x, t) be the solution of the Cauchy problem (4.1) with initial condition

uτ (x, 0) = φτ(x).

From ‖u∗
0(x + 2M2) − U(x + 2M2)‖w < δ and the stability result it follows that for

τ = −2M2 the solution uτ(x, t) of this problem approaches to a shifted wave. In order
to prove the theorem, i.e. approach to a wave for τ = 2M2, we advance with respect to
parameter τ with suitable step h until the value τ = 2M2 is obtained.

Thus, along with function u0(x) we consider the function φτ+h(x)(h > 0). From the
definition if follows that

φτ (x) ≤ φτ+h(x) ≤ φτ(x − h).

By the comparison principle we obtain

uτ(x, t) ≤ uτ+h(x, t) ≤ uτ(x − h, t), t > 0.

This gives

‖uτ+h(x, t) − uτ (x, t)‖∞ ≤ ‖uτ (x − h, t) − uτ(x, t)‖∞ ≤ Kh,

where K = sup |∂xuτ (x, t)| < ∞, which does not depend on τ, h, t for t > 1 since u+ ≤
uτ(x, t) ≤ u− and the boundedness of ux.

Applying the comparison principle to (4.10) we have

u∗(x + 2M2, t) ≤ uτ(x, t) ≤ u∗(x − 2M2, t). (4.11)

This yields

‖uτ+h(x, t) − uτ (x, t)‖∞ ≤ u∗(x − 2M2, t) − u∗(x + 2M2, t),

for −2M2 ≤ τ ≤ 2M2 − h, where u∗(x, t) denotes the solution of (4.1) with initial data
u∗

0(x). W-stability result tells that u∗(x, t) approaches a shifted wave in ‖ · ‖w norm, that
is there exists T1 > 0 and a shift θ1 ∈ IR such that

‖u∗(·, t) − U(· + θ1)‖w < δ/6 for t > T1.

On the other hand from lim±x→∞ ‖U(x) − u±‖w = 0 it follows that for large |x|

‖U(· + θ1) − U(· + x0 + θ1)‖w < δ/6.

The above estimates lead to

‖uτ+h(x, t) − uτ (x, t)‖w < δ/2

for all −2M2 ≤ τ ≤ 2M2 − h, |x| > M and t > T1.
Note that for |x| ≤ M one has

‖uτ+h(x, t) − uτ(x, t)‖w ≤ Kh sup
|x|≤M

w(x).
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Taking h so that
Kh sup

|x|≤M

w(x) = δ/2,

we thus obtain
‖uτ+h(x, t) − uτ (x, t)‖w ≤ δ/2

for all −2M2 ≤ τ ≤ 2M2 − h and t > T1.
We now conclude the proof by an induction argument. Let uτ(x, t) approach to a

wave. Then for some number T2 > 0 and a shift number θ2 ∈ IR we have

‖uτ (·, t) − U(· + θ2)‖w < δ/2

for τ > T2. Then it follows that

‖uτ+h(·, t) − U(· + θ2)‖w < δ

for t > max(T1, T2), which implies that uτ+h(x, t) approaches to a wave in ‖ · ‖w norm.
This completes the proof of the theorem.
2

5 Existence and Structure of the limit limε→0+ uε(x, t)

In Section 2, we proved the pointwise compactness of solutions of (1.1), uε, in ε > 0.
Now, we shall provide a formal argument for the existence of the limit limε→0+ uε(x, t).
To this end, it suffices to argue that limits of any convergent subsequences of {uε} are
the same. Let u(x, t) be the limit of uεn as n → ∞. Then, the function u(x, t) consists
of finitely many constant pieces with constants being ±1 and 0, under the conditions (a
- c) in Section 2. In fact, if we further restrict that the zeros of u0(x) are finite, then
u(x, t) = ±1 a.e. The jump discontinuities connecting the constant pieces, with constants
being ±1, originates at t = 0 at the points x across which u0(x) changes sign. These
jump discontinuities travel at speeds of the traveling waves of (1.1) connecting u = ±1,
according to the formal arguments in Section 3.1. In Section 4.1, we already proved the
existence of such traveling waves and the uniqueness of the speeds of traveling waves.
Furthermore, we have proved that the speeds are expressed as in Theorem 3.1. We see
that the structure of u(x, t) described in the above does not depend on the convergent
subsequences {uεn}. Combining this and the compactness of {uε}, we see that the limit
limε→0+ uε(x, t) exists. Above arguments also described the structure of this limit.
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