Exercise psychology has yet to produce intervention methods capable of increasing exercise and physical activity behavior in a sustainable manner. This situation is forcing a critical reevaluation of current conceptual models, especially the assumption that behavioral decisions are driven solely by the rational evaluation of information. Like other behavioral sciences, exercise psychology is transitioning to dual-process models that acknowledge the importance of non-reflective processes. Emerging evidence suggests that the pleasure or displeasure experienced during exercise may influence subsequent physical activity. These data raise the possibility of inactivity resulting from a conflict between positively evaluated information on health benefits and unpleasant affective experiences. Thus, researchers must devise methods to make exercise and physical activity more pleasant and enjoyable across the lifespan.

Limitations of the rational-educational model
This situation is forcing a reconsideration of the fundamental assumptions that have been underpinning physical activity promotion interventions. In the standard framework of public health campaigns, human beings are modeled as rational thinkers who systematically collect, rationally evaluate, and reliably act upon information that is relevant to their prime objective, namely the promotion of their self-interest (i.e., staying alive, healthy, and happy). Intervention methods based on these
theoretical models thus follow a ‘rational-educational’ model [12]. If individuals are provided with correct, complete, and engagingly presented information related to the behavior, the expectation is that individuals will change their behavior in the desired direction. For decades, campaigns to promote physical activity have adhered to this approach, focusing on such factors as raising awareness of the anticipated benefits compared to costs, strengthening confidence in the ability to maintain regular physical activity, and pointing out available sources of social support. As an example, the recommendation by the Centers for Disease Control and Prevention and the American College of Sports Medicine culminated in this call to action, which reflects the notion that educating the population about the health benefits of regular physical activity is the avenue that leads to behavior change: “Successfully changing our sedentary society into an active one will require effective dissemination and acceptance of the message that moderate physical activity confers health benefits” (p. 405) [13].

Contrary to this expectation, it now appears that, possibly more than any other health behavior, physical activity is disconnected from the awareness of its health benefits. The fact that physical activity is widely recognized as a ‘best buy’ in public health but is proving to be a ‘tough sell’ to the public represents a challenging paradox [14]. In the United States, 97% adults reported that they considered the lack of physical activity a health risk factor (52% as ‘very important,’ 37% as ‘important,’ 8% as ‘somewhat important’) [15]. However, as noted earlier, nationwide surveys based on objective measurement of physical activity with accelerometers showed that more than 90% of American adults were less active than the minimum level recommended for health promotion [5,6]. In a 2008 nationwide survey of Canadians aged 15 years and older, 78% gave the highest score (7 out of 7: ‘very strongly agree’) in response to a question on whether physical activity helps to prevent heart disease [16]. However, based on data collected with accelerometers between 2007 and 2009, only 4.8% did at least 30 min of moderate-to-vigorous physical activity, accumulated in bouts of at least 10 min, on at least 5 days per week and 15.4% did at least 150 min per week of moderate-to-vigorous physical activity accumulated in bouts of at least 10 min [17]. In Britain, 89% of men and 91% of women expressed the belief that physical activity confers meaningful health benefits [18] but 94% and 96%, respectively, were not physically active at the minimum recommended level [19].

The field of public health is now beginning to come to terms with the realization that its standard operating approach based on education has failed in the case of physical activity. According to the Lancet Physical Activity Series Working Group (the qualifiers ‘to some extent’ and ‘so far’ notwithstanding), “the traditional public health approach based on evidence and exhortation has – to some extent – been unsuccessful so far” (p. 254) [20]. In essence, the field is facing a paradigmatic crisis, as it is becoming apparent that the theoretical modeling is inconsistent with the available data [21]. Paradigmatic crises provide fertile ground for scientific advances. Since the ‘information processing’ paradigm that stands to be replaced has been the sole perspective through which health behaviors have been conceptualized for over a half century, it is reasonable to anticipate a long period of resistance and ‘essential tension’ between ‘tradition’ and ‘innovation’ [22].

Human rationality: bounded or unbounded?

The crucial question at this stage is this: if health behaviors are not driven solely by the deliberative contemplation of information by rational actors, what other factors are involved and how do these ‘other factors’ interact with the rational/deliberative processes of the human mind? Exercise psychology can utilize the experience gathered in fields that have already questioned the assumption of rationality and have attempted the transition to the postcognitivist era. The fact that human beings frequently act in ways that are inconsistent with or contrary to their self-interests, even when possessing information about the deleterious consequences of their actions or inactions, is becoming more widely recognized in behavioral economics [23,24], certain areas of psychology [25], and in the study of health behavior [26,27,28,29]. Experimental manipulations designed to demonstrate that human choices often violate the assumption of rationality and tend to rely instead on certain well-characterized heuristics (i.e., shortcuts or simplified rules that are prone to errors) yield robust results in the predicted direction in a variety of contexts, including exercise [30].

Reemergence of affect as an important driver of behavior

It is becoming apparent to a growing number of researchers that what has been missing in current thinking on the psychological processes that drive physical activity behavior is consideration of the motivational and demotivational role of affect. The first voices have started to emerge calling for a shift of emphasis in the messages used to promote physical activity, from providing data on long-term health benefits to simpler messages focusing on short-term affective regulation. For example, in the field of public health, de Souto Barreto [31] wrote: “since health-based models have failed to promote physical activity to the extent necessary, we must shift the argument from the finality or utility of physical activity (i.e., promoting health) to what a person experiences when physically active . . . Information on the health benefits of physical activity should be part of this new model, but not the central part” (p. 390). Expressing essentially the same perspective from observations from the field of
Toward dual-process models of exercise and physical activity behavior

Exercise psychology is undergoing a transition to dual-process theoretical models for conceptualizing the mechanisms that shape behavioral decisions about participation or nonparticipation in exercise and physical activity. Dual-process models have proliferated in cognitive science [33], social cognition [34,35], and health psychology [36,37].

Dual-process models exhibit considerable differences in terminology, specific theoretical postulates, and assumptions about underlying brain systems and processes. Nevertheless, they share the fundamental premise that the human mind incorporates two functionally distinct systems that jointly determine behavioral choices. One system, commonly termed ‘System 2’ or ‘Type 2’ to indicate its late phylogenetic and ontogenetic origins, reflects the deliberative mental operations typically postulated in cognitivist theories. In other words, behavioral decisions based on System 2 stem from the contemplation of acquired information on the relative pros and cons of each alternative and probabilistic predictions about their future consequences. The other system, termed ‘System 1’ or ‘Type 1’ to indicate its primordial evolutionary and developmental origins, reflects the formation of an associative pairing, formed over several episodes in the life course of an individual, of a stimulus with a valenced experience (positive or negative, pleasant or unpleasant). Dual-process models seek to elucidate the rules governing the constant interaction between these two systems that presumably reflect different priorities and rely on different principles of operation. Type 1 processes are theorized to be effortless and automatic, requiring little or no cognitive involvement and, therefore, also likely to be relatively impervious to cognitive control. On the other hand, Type 2 processes are flexible, controlled, and dependent on cognitive resources. Presumably, if a certain behavioral option is evaluated positively through Type 2 processes and has resulted in pleasant experiences in the past, it is likely to be selected again. Conversely, it seems reasonable to assume that options that are neither evaluated positively nor paired with pleasure will likely be avoided. The more intriguing and challenging interactions arise in cases of conflict.

Recent applications of dual-process theorizing to physical activity and exercise behavior have highlighted the possibility that chronic hypoactivity is the manifestation of a conflict between negatively laden Type 1 and positively laden Type 2 processes, with the more efficient Type 1 processes serving as the ‘default’ mode [38**, 39–41,42**]. Specifically, according to these proposals, most adults in western countries, burdened by excess body mass and deconditioned cardiorespiratory systems, have associated physical activity and exercise with reductions in pleasure [14]. These unpleasant experiences stem from the inability to maintain a physiological steady state during common physical activities of daily living. Somatic cues like muscle acidosis, elevated core body temperature, or inflamed and painful joints collectively form a negatively laden ‘somatic marker’ [43] associated with physical effort. Thus, despite exposure to social marketing campaigns about the health benefits of exercise and physical activity, ample sources of social support, expert encouragement from health professionals, and serious personal commitments (e.g., New Year’s resolutions), most individuals who initiate a program of regular activity in middle or old age tend to revert to hypoactivity after a number of attempts that result in displeasure or discomfort. Consistent with this scenario, most early studies show that affective responses to exercise significantly predict subsequent physical activity behavior [40,44]. Moreover, preliminary evidence suggests that manipulating affective responses to exercise may improve subsequent adherence [45*].

The reemergence of affect as a potentially powerful driver of behavioral decisions within the framework of dual-process models underscores the need for a new distribution of research effort in the field of exercise psychology. Alongside methods of improving explicit attitudes or bolstering self-efficacy, researchers are called to invest time and effort into investigations designed to develop and test methods of making the experience of exercise and physical activity more pleasant for individuals across all stages of life [46,47**].

Conflict of interest statement
Nothing declared.

Acknowledgements
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References and recommended reading
Papers of particular interest, published within the period of review, have been highlighted as:

- of special interest
- of outstanding interest

47. Zenko Z, Ekkekakis P, Ariely D: Can you have your vigorous exercise and enjoy it too? Ramping intensity down increases postexercise, remembered, and forecasted pleasure. J. Sport Exerc. Psychol. 2016, 38:149-159. First study to test an exercise prescription informed by the evidence base of the disciplines of exercise science, psychology, and behavioral economics. This could be a promising approach to accelerate physiological adaptations without compromising positive affective experiences.