Chapter 5

Matrix Semantics and Algebraizability

We will use the characterization results of the preceding chapter to establish
the algebraizability or non-algebraizability of a number of different dedue-
tive systems. In particular we settle all the specific questions concerning the
algebraizability of systems of non-normal modal logic and of relevance and
entailment logic raised in the Imtroduction. The algebraizability of predicate
logic is discussed in Appendix C. In the first part of the chapter we discuss
the connection between algebraic and matrix semantics.

Theorem 4.7 seems to be the most useful tool for showing a particular
system is algebraizable. Establishing non-algebraizability presents more prob-
lems. By Theorem 4.2 a necessary condition for algebraizability is that the
Leibniz operator be one-one and order-preserving on the lattice of theories.
The theory lattice is usually too complex for this to be usefully applied in
practice, at least directly. Presently we show that this property of the Leibniz
operator applies to the theory lattices of arbitrary algebras. When the deduc-
tive system under consideration has small, finite matrix models this gives a
very useful tool for showing non-algebraizability.

5.1 Matrix Semantics and Algebraic Semantics

Let K be a quasivariety over £, and A an arbitrary £-algebra. A congruence
© on A is called a K-congruence if A/® € K. The K-congruences can be
characterized in terms of closure with respect to the equational consequence
relation |=k. A congruence relation © on an algebra A is said to be closed
under a quasi-identity

N &)= w(p) — oF)= $(5)

i<n
if, for all @ € A™, (¢2(a), v2(@)) € O whenever (€A (@), n(a)) € © for all
i < n. ©is a K-congruence iff it is closed under each quasi-identity of K, or,
equivalently, under each quasi-identity of some base for K. The K-congruences
of the formula algebra Fmyg coincide with the equational theories of K (when

@ = 1 is identified with (,%)). The set of K-congruences on an L-algebra
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forms an algebraic lattice. The following theorem may be viewed as a matrix
version of the two characterization theorems 3.7 and 4.2.

Theorem 5.1 Let § be a deductive system and K a gquasivariety.
(1) The following are equivalent.

(i') S is algebraizable with equivalent semantics K.
(i") For every algebra A the Leibniz operator Q, is an isomorphism
between the lattices of S-filters and K-congruences of A.

(ii) Assume S is algebraizable with equivalent quasivariety semantics K.

Let §(p) = e(p) be a set of defining equations for K. For each algebra A and
congruence © of A define

Hp0 ={ac A:(6%(a), A(a)) € 0.
Then Hp restricted fo the K-congruences of A is the inverse of €14.

By taking the algebra A of (i") to be Fm we see that the implication from
(i”) to (') is an immediate consequence of Theorem 3.7, together with Lemma
4.6.

To get the implication in the opposite direction we need the following
matrix version of 4.1.

Lemma 5.2 Let § be an algebraizable deductive system over the language L,
and let Alp,q) be a system of eguivalence formulas. Then

QaF ={(a,b) :aaPbe F}
for every L-algebra A and every S-filter F of A.

Proof. The proof is the matrix-model analogue of the proof of 4.1. Let
© = {(a,b) : a AN b e F}. From the definition of a S-filter and the derived
inference rule p A g, g ArFs p Ar we get that a A% b, b A% ¢ € F implies
aABee Fforalla,be A Hence © is transitive. In a similar way we get that
© is reflexive, symmetric, and has the substitution property: {(a;,b;} € © for
i=0,...,n— 1 implies (pA (@), p™ (b)) € © for every @(po,-..,pn-1) € Fmc.

By the rule of detachment p, pAg tgs ¢ (Theorem 2.14) we have a, aAMbe
F implies b € F for all a,b € A. Thus © is compatible with F, and hence
O C QpF. And since it is clearly elementarily definable over the matrix
(A, F) it must coincide with 24 F by Theorem 1.6. 8

Proof of 5.1. We have already observed that (i) implies (). The implica-
tion in the opposite direction can be obtained as a corollary of Theorems 3.7
and 4.2, but a direct proof is conceptually simpler and not much longer.
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-Assume (i') holds. Let A be any algebra and F a S-filter on A. We show
that Q4 F is a K-congruence. Suppose E |=g ¢ = ¢ and {(£4(a), na(@)) €
QA F for every £ = n € F. Then by the lemma

£a(@) AR np(@)e F for every éx n€ E. (1)

But by hypothesis K is an equivalent algebraic semantics for . Hence by
29(1) E |=k v = v is equivalent to {{ An:€=xn} Fg ¢ Ay. So from
(1), and the assumption F is a S-filter, we get p™(a) AA ¢A(@) € F, ie,
(gt (@), ¥2(@) € NAF. Hence U F is closed under K-consequence, and so
is a K-congruence.

Now let © be an arbitrary K-congruence of A, and let H5 © be the sub-
set of A defined in part (i) of the theorem. By the dual of the above ar-
gument, with 2.8(1) in place of 2.9(i), we get that H, @ is a S-filter. We
show that QA H Q@ = O. For all a,b € A we have {(a,b} ¢ A HL0O iff
(6A(a A2 B), A (a A2 b)) € ©. But by the equational inference rules 2.8(ii):

p=g=l=ké(pAg)=e(pAg)

we have (68(a A% b), eA(a AR D)) € O iff (a,b) € ©. Thus Ny H, O = © and
2 4 is a mapping of the §-filters of A onto the set of all K-congruences.

It only remains to show £24 is one-one and order-preserving. From the de-
rived inference rules 2.9(ii): p -5 §(p)Ae(p) weget a € Fiff 64(a)AAeA(a) €
F iff (6A(a), eX(a)) € Q4 F. So for any S-filters F and G we have F C G iff
NAFC N1,G.

We have seen that, under the hypothesis of (ii), 24 H5 ® = O for every K-
congruence ©. The dual result, H 5 25 F = F for every S-filter F, is similarly
established with 2.8(ii) in the role of 2.9(ii). &

The function Hp from K-congruences to S-filters is in a natural sense the
dual of the Leibniz operator. But observe that, while the Leibniz equivalence
relation §25 F is intrinsically defined in terms of A and the filter set F, the
definition of H 4 © is given in terms of a set §(p) = ¢(p) of defining equations
for K. This is an inherent difference between the two notions; see section 5.2.4
below, especially the introductory remarks.

Theorem 5.1 gives some insight into the precise connection between equiv-
alent algebraic semantics and matrix semantics. One particularly useful way
of describing this connection involves the notion of a reduced matrix. An ar-
bitrary matrix A = (A, F) is reduced if 25 F' = I, the identity relation on A.
The class of all reduced §-matrices 1s easily seen to form a matrix semantics
for & in the sense of Definition 1.3.
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Corollary 5.3 Assume S is algebraizable. Let K be the equivalent quasivariety
semantics and M the class of all reduced S-matrices. Then K is the class of
all algebra reducts of M, i.e.,

K={A:{(A F) ¢ M for some S-filter F' }.

Proof. Let (A, F) € M. Q4 F is a K-congruence by 5.1(i). Thus A/Q F ¢
K. On the other hand, 24 F = I, since {A, F) is reduced. Thus A ¢ K.

Now let A € K. Then I, is a K-congruence, and hence, by 5.1(i), I =
QA F for a (uniquely defined) S-filter F. Thus (A, F) € M. 1 :

Corollary 5.4 Assume S is algebraizable. Then S has the G-rule, ie., v, +s
i At (where A is any system of equivalence formulas of S,) iff every reduced
S-matriz has ezactly one designated element.

Proof. Let K be the equivalent quasivariety semantics for S, and let & = ¢
be a system of defining equations. Assume the G-rule holds and (A, F) is a
reduced S-matrix. Then 24 F = I4 and hence

F=HpAQ F ={ac A:6%a) = e*(a)}.
Suppose a,b € F. Then by the G-rule ¢ A®* b € F. Thus 6A(a AA b) =
eA(a A% b). But A K by 5.3 and

bpAg)=elpAg)l=kp= g

Thus ¢ = b. So F contains exactly one element.

Assume now that every S-matrix has exactly one designated element. Con-
sider any ¢,% € Fm and let T = Cng{¢,¥}. T/QT is the smallest S-filter
on the quotient algebra Fm/QT. For suppose a smaller one exists. Taking
its inverse image under the natural homomorphism we would get a S-theory
S such that § C T and QT is compatible with S. But this is impossible since
Q15 C QT and QS is the largest congruence compatible with §.

By assumption T/02T contains exactly one element. Thus ¢ =~ 1 € QT
and hence ¢ Ay € T (by 3.8 and 4.1). Therefore, ¢,9 Fs ¢ A1 and S has
the G-rule. 1

According to 5.4, if the G-rule holds, then the class of reduced §-matrices
forms an algebraic semantics for § in the sense of Czelakowski [11].
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5.2 Applications and Examples

A somewhat less general algebraic theory of propositional logics has been de-
veloped by Rasiowa [36) and Rasiowa and Sikorski [37]. According to [36]
a standard system of implicative extensional propositional calculus (SIC for
short) is a deductive system & in our sense satisfying the following additional
conditions: (i) The language £ of S contains only a finite number of connec-
tives of rank 0, 1, or 2, and none of higher rank; (ii) £ contains a special
binary connective — for which the following theorems and derived inference
rules hold.

Fsp—p, (2)

p.p—gksyq (3)
p—gqorkspo, ) (4)

_ prsg—p (5)
p—g,¢q—prs Pp— Pg for every unary P € L, (6)

p—o g, g p,r— s s—rts Qpr— Qgs  for every binary Q € £. (T7)

Take A(p,q)} = {p — ¢,9 — p}. Then (2),(4),(6), and (7) give conditions
4.7(i)-(iv). (3) gives the rule of detachment (4.8(v)}, and (5) the G-rule
(4.8(vi)). Thus by Corollary 4.8, every SIC § is algebraizable with equiva-
lence system A and defining equations px~ p & p.

The class of SIC logics contains the classical and intuitionistic propositional
calculi PC and IPC, together with almost all their various fragments and
extensions that have been considered in the literature. It also contains the
normal modal logics and multiple-valued logics. In the remaining part of the
section we consider various logics that do not in general fall into this category.

5.2.1 Modal Logics

Let £ = {V,A,3,~,0}. Various deductive systems have appeared in the
literature whose theorems coincide with those of Lewis’ original §5: Cf. Porte
[33).

S5% (“Godel style” - this is the standard system)

Al all tautologies

A2 O(p>g¢)> (Op>0Og)

A3 DOpop

A4 Op D> OOp, where Op =44 ~0O-p
Rl p,pD gt g

R2 pt Op.

$5€ is a normal modal logic, and therefore algebraizable.
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Figure 5.1: A

§5C {“Carnap style™)

Axiom A3 and
Al" D, for any tautology ¢
A2 O(O(p > 4¢)D (Bp > Og))
A3 D(@pDOp)
A4 O(Op D> COp)
Rl p,pDgtaq

S5% (“Wajsberg style”)

Axioms Al', A%, A4, and
A2 D(D(p>g¢)>0(0p D q))
R3 p,p— gt g, wherep— ¢=as0(pD q).

The compound connective — is intended to represent the strict implication
of Lewis. $3% is closest in spirit to the original §5. In particular R3, detach-
ment with respect to strict implication, was also the only rule of inference

in Lewis’ system. Porte [33] shows that these three systems have the same
theorems.

Theorem 5.5 S5€ and S5V are not algebraizable.

Proof. Let A be the 4-element modal algebra on A = {L,a,b, T}, with
Lt <ab<T,agfbbgLa,and0L =0g =0b =1 and OT =T. See
Figure 5.1. Let Fy ={a,T}, F; = {b,T}. Fy and F, are closed under R1 and
R3. Furthermore, all axioms of S5 and S5% universally evaluate to T in A.
Hence Fy, F; are filters with respect to both S5 and S5W. 1t is easy to see
that A is a simple algebra, i.e., it has no congruence relations other than the
identity 4 and the universal relation A X A. Thus Qs F; = Q4 Fs = I4. So
2, is not injective on either the $5%- or §5W -filters of A. Consequently, S5€
and $5% cannot be algebraized. §
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The modal system K is defined by the axioms Al and A2 and the inference
rules R1 and R2. Let K’ be the system whose axioms are the set of theorems of
K but with R1 (detachment for material implication) as the only inference rule.
The axiomatic extensions of K' are called the quasi-normal modal systems.
S5% is quasi-normal. (See Rautenberg [38], Segerberg [39], or Blok and Kéhler

6]).

Corollary 5.6 Every quasi-normal subsystem of S5V fails to be algebraiz-
able. In particular, K' and the Lewis systems S1, S2, and S3 are not alge-
braizable. 1

5.2.2 Entailment and Relevance Logics :

In the system E of entailment the connectives V, A, and - are joined to an
entailment connective — that, roughly speaking, combines the properties of
the strict implication of modal logic with the requirements of relevance. An
axiomatization is given in [2, pp.339ff.]. The system R of relevance logic is
an axiomatic extension of E. It is obtained by adding the axiom p — {(p —
r) — p). RM is the axiomatic extension of R by the so-called mingle axiom:

p— (p— p)
Corollary 5.7 E is not algebraizable.

Proof. If we define ¢ — % to be O D %), and O and ¢ O ¥ to
be (p — ) — ¢ and - V ¥, respectively, then S5% turns out to be an
axiomatic extension of E. All the axioms of E are provable in $5%. E has two
rules of inference, R3 and the rule of conjunction introduction: p,q - pAg. The
first is a primitive rule of $5%, and the second is easily seen to be derivable
in S5%. 1

An alternative proof would be to verify directly that the sets F, and F,
defined in the proof of Theorem 5.5 are actually E-filters of A, where ¢ — 1
is defined in terms of O and » as above.

Theorem 5.8 R and RM are both algebraizable with equivalence formulas
{r — 9,9 — p} and the single defining equation pA (p — p) =~ p— p.

Proof. Let A(p,q) = {p — ¢, ¢ — p}. It is known that A satisfies
4.7(i)~(iv). (See [2, pp.352f], or the proof of Theorem 5.10 below.) Now
let 8(p) = pA (p — p) and €(p) = p — p. We only need to check 4.7(v):
p4 g 6(p) Aclp), ic.

ptr pA(p—p)A{p—p)

P
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We use the axioms and rules of inference for R from (2, p.340}:

Al p—p

A2 phg—p

A3 pANg—o ¢

A4 (p—q) ’\(P"*T)—’(P—’(g/\r))
As (p—=(p—p)—p)

Rl p,p—gqbtg

R2 pgtphg.

We have the following derivation in R.

(1) kR P (P~ p)—p) . A5

(2) p Fr (p—p)—p - (1) R1

(3) R (p—p)— (P—p) Al

(4) p br (p—p)= A (lp—p)— (P—p) (2), (3), R2
p Fr (p—p)—=pA(p—p) (4), A4, RL

Thus, since g pA{p — p)— (p— p) by A3, weget pFr pA (p — p) Ap.
For the inference in the other direction observe that

(p—p)>prlp—p)rrPA (P p)
by Al (and modus ponens), and pA (p — p) g p by A6. Thus
pAlp—p)ApFRP

So R is algebraizable. Since RM is an extension of R it is algebraizable also.
|

5.2.3 Pure Implicational Logics

The pure calculus of entailment E_, is a deductive system with — as the only
connective and whose theorems coincide with those of the {— }-fragment of E.
It is axiomatized as follows (see [2, p.79]):

1 p—p tdentity

B (p—oq-(g—r)- (p—> r)) transitivity

¢ o= (e~ =a) = (=)= (P 0) Bion
E p—(—g)}—(—q) contraction
MP p,p—oghg modus ponens.

We also consider a number of other pure implicational logics that have ap-
peared in the literature. They are based on various combinations of the above
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Symbol Definition Axioms Name

E. IB,CE pure entadment

R.. ILB,C.E relevant implication
RMO_, ILB,C.EM

RM._, {-+}-fragment of RM

BCK B,CK B-C-K logic

BCI ILB,C B-C-I logic

S5 {—}-fragment of S5%

IPC_, | {—}-fragment of IPC | DK Hilbert logic

Table 5.1: Pure Implicational Logics

axioms together with the following:

C pm@g—=r))=(g—{—r)) commutation
D p—=(g—r))=((p—q)— (p—r)) distributivity
K p—(qg—0p)

M p—(p—p) : mingle

In Table 5.1 we list for each logic its symbolic designation, its definition (if
other than by its axiomatization), its axiomatization (if known), and its com-
monly used name (if any). The theorems of R_, coincide with those of the
{—}-fragment of R. Modus ponens (MP) is the only rule of inference in all
cases. Observe that the mingle axiom is a substitution instance of K, and
hence a theorem of B-C-K logic. Substituting in K we get

Feck p— ((p— (p— p)) — p)s

and then, by commutation and MP, Fgex (p — (@ — p)) - (p — p).
Detaching p — (p — p) gives I. Thus BCK is an extension of BCI.

The logics listed in Table 5.1 are all distinct from one another. B-C-I logic
is the smallest, in the sense that all the others are extensions of it. The known
extension relationships between them are given in Figure 5.2. The systems E_,
and R_, correspond to the systems of weak implication considered respectively
by Ackermann [1] and Church [10]. The B-C-K and B-C-I logics are presented
in Prior [34, p.316]; he attributes them both to C. A. Meredith. They arise
naturally in connection with combinatory logic. Axiomatizations of S5 are
given by C. A. Meredith and Prior in [29].

Theorem 5.9 None of BCIL, E_,, S5%, or R_, is algebraizable.

Proof. Let A = (A4,—) be the algebra with domain A = {T,¢,f, L}
and with — defined in the table of Figure 5.3. Note that ({T,L}, —) is
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S5W
. E ~
-~ TSNR.— RMO.— RM.
BCI
. ™~
BCK IPC,, -
Figure 5.2: Extension relationships
T
- T ¢t f L.
TITjL| L1
i
t Tl 7L f
FITTL[e[L
LTy T|T|T 1

Figure 5.3: A

the two-element Hilbert algebra, ({T},—) and ({¢},—) are both one-element
subalgebras, and A is generated by the element f.

If p is an R, axiom, then ¢A(@) € {T,t} for every interpretation & of
the variables of . This can be verified directly, and also follows from Meyer
[30]. Let Fy = {7,t}. Then F is closed under MP and hence is an R._,-
filter. Since T — T =T and T — t = L, (T,L) € ©(T,t) (the congruence
on A generated by (T,t)). Similarly, (T, L) € O(L, f). Thus the identity
relation I4 is the only congruence compatible with Fiy, i.e, 4 F; = I4. Next
let Fp = {T,t, f}. F2is closed under MP as well, and again Q5 F, = I
since {T,1) € @(T,t)n &(T,f)n 6(t, f). Hence R_, is not algebraizable by
Corollary 5.3. The same applies to BCI and E_, since R_, is an extension
of both systems. It does not apply to S5 however since this system is not
an extension of R_,. But the proof of non-algebraizability in this case is a
straightforward modification of the proof for the full system S5%.

Let B be the {—}-reduct of the 4-element modal algebra defined in the
proof of Theorem 5.5 (see Figure 5.1), and let F} = {T,a}, Fp = {T,b}. We
observed in that proof that F) and F, are $5W-filters; thus they are a fortiors
S5V filters. But B, like A, is simple. Because, ifz £ y,then L = y—» z =
z — z = T modulo ©(z,y) where O(z,y) is the congruence generated by
{z,y). So QpF; = NRF,, and Np is not one-one on the S5 -filters of B. 1

The non-algebraizability of R_, shows that the role of conjunction in the
defining equation for the equivalent quasivariety semantics of R is essential.
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With regard to the non-algebraizability of BCI see Kabzifiski [19].

Theorem 5.10 RMO_,, RM_,, and BCK are all algebraizable with equiv-
alence formulas {p — q,q — p} and defining equation p=~ p — p.

Proof. Let & be the deductive system defined by the axioms I,B,C,M and
MP. RMO_ , RM_,, and BCK are all extensions of &, so it suffices to prove
&S is algebraizable,

Let A(p,q) ={p — ¢, ¢ = p}. The derived inference rules s p A p and
pAg, g Arts p Ar are immediate consequences of I and B, respectively, and
pAg-s gApis trivial. Thus 4.7(1)-(iii) all hold. By substitution in B we get
(= 9)— (9= 1) = (p— 1)) and (g — p) = ((p— 7) — (g — 7)). Thus

pAgrs (p—r)Alg—r). (8)

Another substitution in B gives (¢ — r}) - ((r — s) — (¢ — s)). Permuting
the premisses (i.e., using C and MP) we have

| (v 6)= (g = )= (g o))
and substitution in this theorem gives {s —» r) — ((g — s) — (g — r)). Thus
rAsts(g—r)Afg—s) (9)
From (8) and (9) and the transitivity of A we get
PAg gAprs (P r) A (g~ 3)

So 4.7(iv) also holds.
Let §(p) = p and ¢(p) = p — p. To establish p 15 6(p) A e(p) we must

verify

pFsp— (p— p) (10)
prs(p—p)—p, (11)
p—p—p)(p—p)—ptsep (12)

The first follows trivially from the mingle axiom. Permuting the two premisses
in{(p - p)— (p— p) (by C) weget b5 p = {(p — p) — p). Hence (11)
holds. Permutation of the premisses in ((p — p) — p) = ((p — p) — p) and
detachment of p — p gives 5 ((p — p) — p) — p. So (12) holds. #

Iseki [16] introduced the notion of BCK-algebra with a single binary op-
eration * and constant 0. The algebras were intended to provide an abstract

R L
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algebraic model for both the set-theoretical difference operation, and the impli-

cation connective of B-C-X logic (actually the dual connective). The following
set of axioms is dual to the one given in Iseki and Tanaka [17].

p=g)=(g—r)=pom)) =T, - (13)

po(pP—g)—g) =T, ()
p—p=T, (15)
p—=T=T, o (18)
p—gxTandg—pxT = pxgq. (17)

It is known that the class of BCK algebras forms an algebraic semantics -
for BCK, in fact it is the smallest quasivariety with this property (Kabzinski
[20]).

Theorem 5.11 The class of BCK-algebras 1s definitionally equivalent to the
equivalent guasivariety semantics for BCK.

Proof. Let K be the equivalent quasivariety semantics of BCK. By Theo-
rem 5.10 it exists and we can take p Ag = {p — ¢, ¢ — p} for the equivalence
formulas, and é(p} = p, e(p) = p — p for the defining equation.

Substituting in axiom K we get Fpcx p — ({¢g —» ¢) — p), and then
permutation of the premisses gives - gockg (¢ — ¢) — (p — p). Thus

Feck (2 — 2)A (g — g),

and since K is an equivalent semantics, |=x p — p= g — ¢. Let T be a nullary
symbol. For A € K let A’ be the expansion of A by T, with TA=-goa
for some a € A. Let K' = {A" : A ¢ K}. We claim that K’ is the class
of BCK algebras. Observe that {A,—,T} belongs to K' iff (4,—} € K and
TA =a— q, for all a € A. Making use of this fact we see that the axiom
system for K given by Theorem 2.17 gives the following axiom system for K’:

=)= (r—q)= (r—p) = T,

p—=g—=r))=(@—-(p—r)

p—(g—p)=T,

T, (18)

u

pop=T,
pxTandp—geT => ¢g=T,

pogxTandg—px=T = pxg.
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The only thing that remains is to do now is prove that this set of axioms
is equivalent to the axioms (13)-(17) for BCK-algebras. The proof that each
axiom of either set is derivable from those of the other set is straightforward
with one possible exception: the proof that (18) is a consequence of the BCK
axioms; for this see [17, Theorem 1, p4].

Wrontski [49] has shown that the class of BCK-algebras does not form a
variety.

5.2.4 Two Logics with the Same Algebraization

RMO._, is an algebraizable, axiomatic extension of R_,. We now consider two
algebraizable, non-axiomatic extensions of R_, that are interesting because
they are examples of distinct deductive systems with the same equivalent qua-
sivariety semantics. This shows that the dual of Theorem 2.15 fails to hold. It

also shows that the inverse H 4 of the Leibniz operator (see 5.1(i1)} is not an
intrinsic notion of the algebra A.

Let A = ({7,t,f,1},—) be the algebra defined in Figure 5.3. Take
b1(p) =p, aalp)=p—p, (19)
balp) =p—>(p—p)—p ebP)=@E-(F—p)—-(-p). (20

Let §; and S be the two deductive systems over £ = {—} defined as follows
fori=1,2

Ths ¢ © {&®@)=a(@):veT} =5 &)= alp). (21)
Since A is finite, |= 5 is finitary, and hence §1,8; are indeed deductive systems.

Theorern 5.12 §; and §; are distinct algebraizable deductive systems with the
same equivalent quasivariety semantics K = {A}Q. K has the same system of
equivalence formulas p Aq = {p — q, g — p} with respect to both S, and S,
but different defining equations, namely,

b1 =p, e1=p—p,

bp=p—p, e2=¢— (p—p)
respectively, where ¢ = p — (p — p). The two defining equations are not
equivalent with respect to K.

Proof. We use Definition 2.8 to show K is the equivalent algebraic semantics
for both §; and §;. The first condition of 2.8 coincides with the defining
condition for S;, (21). The other condition of 2.8 is

prg ==a lpdg)=e(pAg)

- - e
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"This reduces to showing that

6;(pAp)zé(pAp), i=12 : (22)

are both identities of A, and that

bilpAg)=e(pAg) => pryg, i=12 (23)

are both quasi-identities of A.

These can be verified by direct computation, but the computation is sim-
plified by using the two R, -filters F; = {T,t} and F, = {7 ,t, f} introduced
in the proof of 5.9. From the table of Figure 5.3 we see that §;(T) =T =
ToT=e(T),hit)=t=t—ot=clt),(f)#t=Ff— f=e(f) and
§1{L)=L #T =1L — 1L =¢(L) Thus

§1(a) = €1(a) & a€ Fy. (24)
By a similar direct computation it can be shown that
§2(a) =€2(a) & a€ F,. (25)

That both equations (22) are identities of A follows at once from (24) and
(25), together with the fact that a Aa€ F; C Foforallae A ={T,¢,f,1}.
To see that (23) are both quasi-identities of A it suffices to note that if a # b,
then either a - b = 1L or b — a = L, and hence 6;(a A b) # ¢(a Ab) for
1=12

This shows that 81, Sy are both algebraizable, and that the unique equiv-
alent quasivariety semantics for both of them is the quasivariety generated by
A. Moreover, p A ¢ is the unique (in the sense of Theorem 2.13} equivalence
system for K with respect to both deductive systems, and 6,(p) = €;(p) and
62(p) = €2(p) are the unique defining equations for K with respect to &; and
S5, Tespectively.

Observe that f € Fo, but §1(f) » er(f) = fF > (f = f)=Ff -t =
L @ F,. Thus, by (24) and (25), 8;(f) = €2(f) while 62(8:(F) — e1(f)) #
e2(6:(f) — e1(f))- So

52(p) = €2(p) [£ 4 62(81(p) = €1(p)) = €2(b1(p) — e1(p))- (26)

From this we conclude by the definition (21) of §; that p /g5 8:(p) — e1(p),
but we do have p kg, 61(p) — €1(p) since the interdeducibility relation

pbs, 61{p) Aei(p) (27)
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is a consequence of the fact that &; has an equivalent algebraic semantics
with equivalence formulas A and defining equation §; = ¢;. So &; and S, are
distinct deductive systems. Finally, observe that from (21) and (27) we get

b1(p) = e1(p) l=a 61(6:1(p) — €1(p)) = e1(62(p) — €1(p)).

Comparing this with {26) we see that the equations §; =~ €; and §; =~ ¢; cannot
be equivalent relative to A. 1l

&1 and Sy can also be characterized as the deductive systems defined by the
matrices { A, F1) and {A, Fy) in the sense that T Fg ¢ iff oA (a) € F; whenever
1,bA( )€ F; for all ¥ € T; this follows immediately from the above proof. Since
both matrices are models of R_,, the systems §1 and S, are (non-axiomatic)

extensions of R_, . Neither is an extension of RMO_, since the mingle axiom
fails to hold in both (A, Fy) and (A, Fy).

5.2.5 Intuitionistic Propositional Logic without Implication

Recall that IPC™ is the {V,A,~,T,L1}-fragment of the intuitionistic propo-
sitional logic IPC. We showed in Chapter 2.1 that the variety of pseudo-
complemented lattices is an algebraic semantics for IPC* with defining equa-
tion p & T. Here we show that IPC” 1s not algebraizable by showing that
the Leibniz operator is not order-preserving on the lattice of IPC*-filters of
a finite algebra. Thus IPC" is not even protoalgebraic. (See Chapter 1.4.1.
By Theorem 4.2 every algebraizable logic is protoalgebraic.) This is the first
example we have given of a non-algebraizable deductive system that is not
protoalgebraic.

Theorem 5.13 IPC” is nol algebraizable. Moreover, it is not even protoal- ;
gebraic.

Proof. Let A ={{T,a,b, L}, V,A,n,T,1) be the 4-element chain pseudo-
complemented lattice: 1 <b<a<7T,-T =-a=-b=1,and-L =7T. Let
F; ={7} and F; = {T,a}. A is the reduct of the 4-element chain Heyting
algebra, and 7, and F, are filters of the Heyting algebra, i.e., Fy and F; are
IPC-filters. Thus they must also be IPC* -filters of A. It is an easy matter to
check that 4 F; identifies only the pair a and b, while Q2 5 Fy identifies only
T and a. Thus, although F) C Fy, we have 2o F) € Q4 Fy. Consequently, o
according to Theorem 5.1(i), IPC* cannot be algebraizable. i ‘
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5.2.6 Equivalential Logic

In contrast to IPC* we consider, as a final example, deductive systems wivhout
implication that are algebraizable. Let PC., be the {«—}-fragment of the
classical propositional calculus, the (classical) eguivalential calculus. PC,, is
algebraizable by Corollary 2.12, and its equivalent quasivariety semantics is
the class of all subalgebras of {+}-reducts of Boolean algebras (here + denotes
Boolean ring addition). This is just the class BG of Boolean groups (i.e.,
groups in which every element is of order 2). Lesniewski was the first to
produce an axiom system for PC.,; it contained two axioms. Single axioms
were subsequently found by a nwmber of authors including Lukasiewicz. As
a final application of Theorem 2.17 we show that Lukasiewicz’s axiom system
does indeed axiomatize PC.,; see [26]. -

Theorem 5.14 PC,, is defined by the single aziom
() peg) = (e g (per))
and the single rule of inference

(ii)p,p— g+ g (detachment).

Proof. Let S be the deductive system defined by (i) and (ii). Lukasiewicz
establishes the following theorems of S; see [26, pp.258-9].

Fsp+e p, (28)
Fs (p+ g}« (g« p), _ (29)
bsp e (g (g p)) (30)

Take A(p,q) = p « ¢q. From axiom (i), (28), and (29) it follows at once by de-
tachment that conditions 4.7(i)-(iv) held, and (30) together with detachment
gives the G-rule @, ¥ Fs ¢ « ¢ (4.8(vi)). Thus S is algebraizable by 4.8, and
p~= pAp is a single defining equation for its equivalent quasivariety semantics
K. From (28) and the G-rule we get -5 (p — p) A (g - g}. Thus (replacing —
by + in the semantics) we get |=x p+p =~ ¢ + ¢. So p + p defines a constant
in each member of K that we denote by 0. Applying 2.17 we get the following
axiom system for K

Pt+o)+(r+a)+P+r)=0. (31)
p+p=0, (32)
pxO0andp+g=0 = ¢= 0, _ (33)

p+tg~0andg+p=~0=> p=g. (34)
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We show that K coincides with the class of Boolean groups. Clearly each of
the equations (31)-(34) holds identically in every Boolean group. So BG C K.
To prove the opposite inclusion let A = (A, +) € K, and let a,b, ¢ be arbitrary
elements of 4. By (31) we have (a+a)+((b+a)+(a+5)) =0. Sincea+a =0
we get (b+a)+(a +b) = 0 by the detaclunent quasi-identity (33). Similarly
(@+b)+(b+a)=0,and hence a +b = b + a by (34). So A is commutative.
(In the sequel we use commutativity repeatedly without further comment.) It
follows immediately from (32) and (34) that a = b iff a + b = 0. Hence, by
(31),

a+b=(a+c)+(b+c) forallce A. (35)

So a4 c¢ =b+cimplies a = b, and the cancellation law holds in A. Using (35)
we get, for all @,b,c & A,

a+(b+c)=(a+b)+((b+c)+d) (36)

Using (35) again we get (b+¢)+¢ = ((b+¢)+5)+(c +b), and, canceling b+c,
¢ = (b +c)+b. Substituting this in (36) gives the associativity of A. Finally,
a+0=a+(b+b)=(b+a)+b=a. Thus A is a Boolean group, and K= BG.

To complete the proof of the theorem we have only to observe that, since
PC., and § both have the same equivalent algebraic semantics with the same
defining equation p = p A p, they must be equal. I

Let IPC., be the «—-fragment of the intuitionistic propositional calculus,
the tntustionistic equivalential calculus. A finite axiomatization of the theorems
of IPC., was given by Tax in [46]; it contains one axiom and the rules

pp=gbtsq,  pksqge (g p)
An equivalential algebra is an algebra (A, ) satisfying the identities

El (z+z)ey=y,
B2 (keoy)ez)ozx(zoy)o o z)
B3 ((zep)e (2o 2)m 2)) o (@ o 1) D) m oy,

This notion was introduced in [22] by Kabziniski and Wrofski; see [21] for
more details. It follows from their work that every equivalential algebra is a
subalgebra of a « -reduct of a Heyting algebra; conversely, every subalgebra
of the «-reduct of a Heyting algebra is an equivalential algebra. Hence, by
Corollary 2.12, IPC., is algebraizable with equivalent quasivariety semantics
the variety EA of equivalential algebras and defining equation p ~ p « p. We
will now show that Tax’ system & does not only have the same theorems as
IPC.., but actually coincides with it. Take again A(p,q) = p « g¢. Since
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pts ¢+ (g« p), we have p,g s p « ¢ by detachment, that is, S has the
G-rule. Tax [46] shows that conditions (i)-{iv) of Theorem 4.7 hold, and hence,
by Corollary 4.8 S is algebraizable with equivalent quasivariety semantics K
and defining equation p = p « p. Using the fact that the theorems of IPC,,
are also theorems of &, we see that K satisfies E1-E3, and thus that K C EA.
Conversely, from the result that any equivalential algebra is a subalgebra of
a reduct of a Heyting algebra it follows easily that the class of equivalential
algebras satisfies (i)-(iv) of Theorem 2.17 and hence is that EA C K. We have
thus shown that the deductive systems & and IPC,, have the same equivalent
quasivariety semantics; since they also have the same defining equations it
follows that they are identical.



