Chapter 2

Equational Consequence and
Algebraic Semantics

Let £ be a propositional language. By an £-equation, or simply an equation,
we mean a formal expression ¢ ~ ¢ where ¢,1) € Fm,. We denote the set of
all £-equations by Fgq,.

Let K be any class of £-algebras. Let |=k be the relation that holds between
a set I' of equations and a single equation ¢ =~ %, in symbols T =k o= 4, if
every interpretation of ¢ = 1 in a member of K holds provided each equation
in I holds under the same interpretation. Thus T |=k ¢ = ¢ iff, for every
A ¢ K and every interpretation a of the variables of T' U {y = %} as elements
of A,

(@) =72@) foreveryExnel = 2@ =v2@. (1)

In this case we say that ¢ ~ ¥ is a K-consequence of I'. The relation =K is
called the (semantic) equational comsequence relation determined by K.

The K-consequence relation satisfies conditions (1)~(3) of Chapter 1 mutatis
mutandis, and it is always structural in the sense of (5) (see Lemma 2.1 below).
But it need not be finitary. Specifically we say that |=k is finitary if T i=g
¢ & v implies I' |= ¢ =~ ¢ for some finite I' C T. KT = {&(p) =
M0(P)s - &n-1(F) = m_1(P)} (we write p for the sequence po, ...,p._1), then
I |=k w(P) = ¥(p) iff K satisfies the quasi-identities

V5 (6o(P) = (B A - A bnos(B) = o1 (B) > 0(F) = B(F)).  (2)

Thus, if [=k is finitary, then |=k coincides with '=ku where KQ is the quasi-
variety generated by K. Conversely, if K is a quasivariety, then it is easy to
show that = is finitary. Thus, for any class K, |= is finitary iff |=k and =
coincide.

The relation |=k is structural if T' |=g ¢ = 1 implies o(T') |=¢ op = o9
for every substitution o. (o(F) ={cf xon:ExneT} ).

Lemma 2.1 |= is structural for every class K of algebras.
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14 W. J. BLOK AND D. PIGOZZI

Proof. For any formula 4, substitution ¢, and assignment & of the variables
to elements of A we have (¢9)™(2) = 9A(((cp)*(a) : p a variable)). Thus if
(1) holds, then so does the implication

(o€)A (@) = (on)A(a) forevery Ex €D =  (opYA(a) = (c0)A(a).0

2.1 Algebraic Semantics

Definition 2.2 Let § = {L,Fs) be a deductive system and K a class of alge-
bras. K is called an algebraic semantics for S if Fs can be inferpreted in
|=k in the following sense. there exisis a finite system &;(p) = ¢;(p), fori < n,
of equations with a single variable p such that, for all TU{p} C Fm and each
1<mn,

() Trs e o {&[¥/p]~ «[/p] :i <n,¥ € T} =k &lp/p] = €lp/p)
The §; =~ ¢, for i < m, are called defining equations for & and K.

In order to simplify notation we shall use §(p) = €(p) as an abbreviation
for a system of defining equations & (p) = € (p), ¢ < n. Related abbreviations
suchaséxe€ [for{f; = ¢g:1<n} CT, and I' |=k 6(¢) = €(¢) in place
of T'|=k &le/p] = & lp/p] for all i < n, will also be used (when no confusion
is likely) without further explanation. For example, using this abbreviation
convention condition 2.2(i) can be written in the more concise form

() Trsp & {6(6) = e(¥) v € T} l=x 6(¢) = ().

Since & is always assumed to be finitary, we can also assume without loss
of further generality that the set I' of in 2.2(i') is always finite.

Assume K is an algebraic semantics for S, and let K? be the quasivariety
generated by K. As previously observed the relation of K-consequence on the
right hand side of 2.2(i') holds iff K satisfies the quasi-identity

/\ §(¢) = e(¢) — 8(p) =~ €(p).

yel

Consequently, 2.2(i') holds for |=k iff it holds with |=kq in place of |=k. This
gives the following corollary of Definition 2.2.

Corollary 2.3 If K is an algebraic semantics for a deductive sysiem S, then
so 15 the quasivariety K2. 1

An algebraic semantics for § that is a quasivariety is called a quasivariety
semantics. If a deductive system has an algebraic semantics, then by the
corollary it also has a quasivariety semantics,
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ALGEBRAIZABLE LOGICS 15

The term algebraic semantics has also been used in a very different sense.
For example, Czelakowski [11] defines an algebraic semantics to be a class M
of matrices such that M is a matrix semantics for S in the sense of Definition
1.3 and, in addition, each matrix of M has exactly one designated element.

Let K be an algebraic semantics for § with defining equations §(p) = (p).
For each A€ Klet Fi = {a€ A : 62(a) = ¢A(a)}. It is easy to see that
(A, Fi*) is then a S-matrix. In fact we have

Theorem 2.4 Let § be a deductive system, K a quasivariety, and § (p) = ¢(p)
a system of single variable equations. The following ave eguivalent.
(i) K is an algebraic semantics of S with defining equations & (p) = e(p).
(i) The class M = { (A, F4™) : A € K} is a matriz semantics for S.

Proof. This follows immediately from the fact that, for TU {¢},
{8(¥) = () 4 € T} =k 8(p) = €(p) @ Tl=y &

This equivalence in turn is a straightforward consequence of the definitions of
M and of the consequences relations |=k and j=p. 0

Suppose the language £ has a constant symbol T. As a special cé.se of
the above result we get that K is an algebraic semantics for § with the single
defining equation p~ T iff M = {{A,{TA}) : A € K} is a matrix semantics
for K. In this case M is an algebraic semantics for S in the sense of Czelakowski
[11].

The variety BA of Boolean algebras, or just the two-element Boolean alge-
bra

B= ({T,J.},V,/\,—!,T,L)

alone, is an algebraic semantics for the classical propositional caleutus PC with
the single defining equation p= T. Indeed, (B,{T}) is a matrix semantics for
PC. In this case 2.2(i) becomes

Thpoy & {¥=T:9peT}|=gap~T. (3)

In fact all deductive systems algebraizable by the classical method have an
algebraic semantics with the same defining equation p ~ T; this applies in
particular to the intuitionistic propositional calculus, the normal modal logics,
and the multiple-valued logics.

An algebraic semantics, if it exists, need not be unique, even if we restrict
our attention to quasivarieties. For example, let

A={1l,a,T}V,A,~,L,T)
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withevy=aife #Lory£A L, LV.I=LzAy=aifz L andy £ L,
lAz=zALl=1,-1=a,7T =-a=1. Themap f:{L,a, T} = {L,T}
defined by f(L) =1 and f(a) = f(T) = T is 2 homomorphism from A to B,
and therefore the matrices A = {A,{a,T}) and B = (A,{T}) are equivalent in
the sense that their corresponding consequence relations |= 4 and |=g coincide.
Furthermore, if §;(p) = L Vpand ¢1(p) = L vV T, thenfor all z € {L,a,T}
we have §2(z) = ¢ (z) iff 2 € {a,T}. It follows now from Theorem 2.4 that
AQ (ie., the quasivariety generated by A) is an algebraic semantics for PC
with defining equations §;(p) = €1(p). But AR £ BA; in fact, B ¢ A9 since
A satisfies the quasi-identity

LVTaT - L=aT,

while B does not.!

Even if we fix the system of defining equations, an algebraic semantics, if it
exists, need not be unique. For example, the quasivariety Qpc defined by the
identities Vp(w(p) = 7 ) for each axiom @(p) of PC, together with the single
quasi-identity

VoVg((p= TA(RpV @)= T)— g=T))

corresponding to the rule of modus ponens, is an algebraic semantics for PC
that includes all Boolean algebras but is clearly much larger. In particular,
Qpc contains a 3-element chain. (More precisely, Qpg contains the non-
Boolean algebra {({L,a, T}, A,v,~,T,L) where ({L,a, T}, A,v,T,L) forms a
lattice with L < a < T,and~-L =7T,-T =1, and ~a = 7T.) Qpg is the
largest algebraic semantics for PC with the defining equation p = T in the
sense that it includes all others. This is an instance of a general phenomenon:
If a deductive system & has any algebraic semantics with defining equations
§; = ¢ ,1 < n, then there is a largest one. It is the quasivariety defined by the
identities l
§(p) = e(p)

for all axioms ¢ of &, and the quasi-identities
A es) = elpi) = 6(&) = e(¥)
j<m

for each inference rule ({wo,...,om-1},%) of S. (Recall that these expressions
are abbreviations for the systems of identities and quasi-identities §;(p) =
ei(p), i< n,and

A A Glp) = alp) = @)~ a(¥), k<n).

i<n j<m

! We are indebted to H. Andréka and I. Németi for the basic idea of this example.
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ALGEBRAIZABLE LOGICS 17

If S has an algebraic semantics, then so does any fragment of & whose
language includes the defining equations for the semantics. We make this more
precise. Let A = (A,wA), er be an L-algebra, and let £’ be any sublanguage
of L. The L'-algebra (4,w®),cr is called the £'-reduct of A. For any class
K of algebras, S K denotes the class of all algebras isomorphic to a subalgebra
of K.

Corollary 2.5 Let K be an algebraic semantics for § with defining equations
6 = ¢, and let L' be a sublanguage that contains all the primitive connectives
occurring wn 6 = ¢. Then the class K of all L'-reducts of members of K is an
algebraic semantics for the L'-fragment 8§’ of §. If K is a quasivariety, then
SK' is a quasivariely semantics for S'.

Proof. Clearly 2.2(I') continues to hold when S is replaced by &', and K
by K'. If K is a quasivariety, then K'® =S K’; see Mal "cev {28, p. 216). 1

It is not true in general that the property of having an algebraic semantics
1s preserved on passing from a deductive system to an extension. Let S be
the trivial system over the language £ = {Q} with a single binary connective,
where I' b5 ¢ iff ¢ € T'. The class of all £-algebras forms an algebraic semantics
for S, but there exist extensions of § that fail to have any algebraic semantics;
see the remarks following Theorem 2.7 below.

Any fragment of PC, of the intuitionistic propositional logic, or of any
modal logic that is based on PC has an algebraic semantics, provided that
it contains the truth symbol T (or that T is definable in it.) In particular,
fragments of these systems m which the implication connective is discarded
can have an algebraic semantics. We look at one example of this kind that is
of some intrinsic interest.

Let IPC denote the intuitionistic propositional calculus over the language
L ={A,V,n,—,T,1}. The variety HA of Heyting algebras (i.e., relatively
pseudo-complemented distributive lattices) is an algebraic semantics for IPC
with defining equation px T. Let IPC* be the deductive system obtained by
deleting — from IPC, i.e., the {A,v,—, T, L1}-fragment of IPC.

For the basic facts about pseudo-complemented and relatively psendo-
complemented distributive lattices used in the following theorem see for in-
stance [5].

Theorem 2.6 The variely PCDL of pseudo-complemented distributive lattices
s an algebraic semantics for IPC* with defining equation p=~ T.

Proof. Let HA™ be the class of {A,v,~,T, L}-reducts of HA. By 2.5 HA*
is an algebraic semantics for IPC” with defining equation p =~ T. Thus it
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suffices to show that PCDL = S HA*. Clearly S HA® C PCDL. We show that
PCDLgr C HA™ where PCDLgy is the class of all subdirectly irreducible members
of PCDL.

Let A € PCDLg. Lakser [24] has shown that A is isomorphic tc B@& T
for some Boolean algebra B, where B @& T is obtained from B by adjoining a
new largest element T and defining ~a tobe L ifa=T,T ifa =1, and the
value of ~a in Bifae B\ {L,T}. A is relatively pseudo-complemented; in
fact, the pseudo-complement a — b of a relative to b is easily seen to be —aV b
if a £ b, and T otherwise. Thus A’ = {4,A,V,~,—,T,L) € HA, and hence
its {A,V,=, T, L}-reduct is in HA*. From PCDLg; C HA" it follows at once by
Birkhoff’s theorem ([14, p. 124]) that PCDL C SHA™. &

Not every deductive system has an algebraic semantics. The next theorem
shows that the consequence relation of any deductive system S that is inter-
pretable in the equational logic of a class of algebras is forced to exhibit some
of the special characteristics of equational consequence.

Theorem 2.7 Let & be a deductive system with algebraic semantics K and
defining equations & = ¢, for i < n. Then p, &{p) s «(p) for every i < n.

Proof. Clearly for each i < n we have

5(p) = €(p), 8(8:(p)) = €(b:(p)) I=x 8(ei(p)) = e(ei(p))-

(Recall that 6(i) = €(i) is an abbreviation for the system of equations §; (p) ~
&(e), - . bn-1{) = en_1(p).) Applying 2.2(i') we get the conclusion of the
theorem. I

Let S be a deductive system with a single, unary connective . Assume §
has an algebraic semantics K; let § = € be a system of defining equations. If §
is non-trivial in the sense that /gy for at least one o, then §; and ¢ must be
distinct for some 7. Thus & = ¢ is of the form @Q™p = Q"p with m # n. We
can in fact assume without loss of generality that n = m + 1. Then by 2.7 we
must have p, @Q™pts @ tp. It is easy to construct non-trivial § such that
this consequence relation fails to hold for all m > 0.

It is an open question if any interesting deductive systems fail to have an
algebraic semantics in the sense of Definition 2.2. But we have established a
partial converse of 2.2, which will be presented elsewhere, that suggests this is
unlikely. According to this result every modal logic that includes as theorems
all classical tautologies (but not necessarily the rule of necessitation) has an
algebraic semantics; this includes the systems S1 and S2 of Lewis. The systems
R and E of relevance and entailment and their implicative fragments also turn

s
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ALGEBRAJZABLE LOGICS 19

out to have algebraic semantics. None of these logics is algebraizable in the
classical sense, as described in the Introduction, or, with the exception of R,
in the sense of this paper. See Chapter 5.2 below.

2.2 Equivalent Algebraic Semantics

The variety of Boolean algebras is of course the most important of all the
algebraic semantics for PC. Its most characteristic property in the present
context is that the interpretation of Fpg in |[=gp is invertible in a natural
sense. In fact as a kind of dual to the equivalence (3) we have

I=pav~9¢ & {{on:f{xnel}rpcyeo ¢ (4)

where ¢ & ¢ = (- V ) A (-¥ V p) is the usual biconditional. Furthermore,
the two interpretability conditions (3} and (4) are inverses of one another in
the sense that

pxyl=galp e d)=T, (5)

pirpcee T (6)

for all p,7 € Fm. (We have introduced here I {|=;c A as an abbreviation for
the conjunction of T'|=k A and A |=k T, and similarly for 4-s.)

Definition 2.8 Let § be an deductive sysiem and K an algebraic semantics
for & with defining equations §; ~ ¢, for i < n, i.e.,

() Trs @ & {6(¥) = e(¢) : ¥ € T} [=x b(p) = e(p).

K is said to be equivalent {0 S if there ezxists a finite system A;(p,g), for
J < m, of composite binary connectives (i.e, formulas with two vartables) such
that, for every ¢ =~ ¢ € Egq,

(i) ¢~ 9 ==k Slp AY) = e(p Ap).

The system A;, j < m, of composite binary connectives satisfying (i) s called
a system of equivalence formulas for § and K.

(Note that we write ¢ A ¢ in place of Ay, %). We have also extended our
abbreviation conventions for §; ~ ¢, i < n, to the A;, j < m, in the obvious
way. For instance, 2.8(ii) is shorthand for

pr P A=k {bilp & ¥)x ap A5 9) i <n,j <m}.)

Of the four conditions, 2.2(i') and (4)-(6), that characterize BA among
the algebraic semantics of PC, only the first and third are represented in
Definition 2.8. The reason for this is that the other two conditions are logical
consequences of these two, and vice versa.

e
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Corollary 2.9 Let K be an algebraic semantics for & with defining equations
6 =~ e. If K is equivalent to & with equivalence formulas A, then, for all
T C Eg and each p = ¥ € Eq,

() T=Eke=v o {£An:érneTtksp A4,
and, for each ¥ € Fm,
(ii} 9 ks 8(F) A e(9).

Conversely, if there ezists a system of formulas A satisfying conditions (i)
and (ii), then K is equivalent to & with equivalence formulas A.

Proof. Assume K is equivalent to § with equivalence formulas A. Then

{€An:Ex=neT}rspAY
e {8fAn=e€An):fxneTl} =k blp A¥)=e(p AY)
by 2.8(i)
o {{xn:{~nelll=ge=y¢ by 28(i)
< P|:K W .

Thus (i) holds. To verify (ii) consider any ¥ € Fm.

9 ks 6(9) A €(9)
& §(0) = e(F) =k 8(6(0) Ae(?)) = e(6(9) Ae(F)) by 2.8(i)
& §(F) = e(d) =k §(?) = €(7) by 2.8(ii).

Thus (i) also holds. The proof that conditions (i) and (ii} jointly imply
2.8(i),(i1), and hence that K is equivalent to T, is similar and will be omit-
ted.

Thus, if K is an equivalent algebraic semantics for &, 2.8(i) guarantees that
ks can be interpreted in {=y, 2.9(i) that |=k can be interpreted in +g, and
2.8(ii), 2.9(ii) guarantee that these interpretations are, essentially, inverse to
one another. This has led us to propose the following

Definition 2.10 A deductive system S is said to be algebraizable if it has
an equivaleni algebraic semantics.

All the deductive systems that have traditionally formed the subject matter
of algebraic logic are algebraizable. Besides PC this class of systems includes
IPC and all of the intermediate logics, as well as the fragments of these logics
obtained by restricting the set of primitive connectives in various ways. It
also includes the normal modal logics, the multiple-valued logics of Post and

B B N A
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ALGEBRAIZABLE LOGICS 21

Lukasiewicz, and most of the various versions of quantum logic. In Chapter 5
we investigate the algebraizability of a number of different deductive systems
including all those mentioned in the Introduction. We also show that IPC*
fails to be algebraizable (Theorem 5.13), giving an example of a deductive
systemn with an algebraic semantics but no equivalent algebraic semantics. The
algebraizability of predicate logic is discussed in Appendix C.

The duality inherent in the relationship between a deductive system S and
its equivalent algebraic semantics can be viewed as a special case of a general
notion of duality associated with any formalization of definitional equivalence;
cf. the remarks at the end of Appendix A. The duality between the equiva-
lence formulas A and the defining equations § =~ ¢ is just one aspect of this
phenomenon. Most staternents that can be made about the nature of the re-
lationship between & and K have a dual form that is obtained by, roughly
speaking, interchanging A and é = ¢, § and K, and ks and |=. The proof
of a statement of this kind can also be dualized. Conditions 2.9(i),(ii) are the
duals in this sense of 2.8(i),(it}, and the argument that 2.9(i),(ii) jointly imply
2.8(1),(ii), that was omitted in the proof of 2.9, is the dual of the argument that
was actually given. The duality between a deductive system and its equivalent
algebraic semantics is not perfect however. See Chapter 5.2.4.

Condition 2.8(ii) is equivalent to a system of quasi-identities. This obser-
vation together with Corollary 2.3 immediately gives

Corollary 2.11 Let K be an algebraic semantics for a deductive system §.
Then K is equivalent to S iff KQ is. B

In view of this corollary and 2.3 we could restrict ourselves exclusively to
quasivarieties when considering (equivalent) algebraic semantics. For the most
part we will do this; there are certain situations however when it is convenient
to consider more general semantics.

Corollary 2.12 If & is algebraizable, then so is any L'-fragment of 8, where
L' contains all the primitive connectives that occur in a system of equivalence
formulas and defining equations for the equivalenl quasivariety semantics K of
8. Moreover, if K' is the class of L'-reducts of members of K, then SK' is the
equivalent gquasivariely semantics for the L'-fragment of S.

Proof. Clearly 2.9(i),(ii) continue to hold when § is replaced by its £'-
fragment, and K by K'. By a well known result of Mal'cev [27], if K is a
quasivariety, then (K')Q = SK'. 1

It also follows easily from Definition 2.8 that any axiomatic extension of
an algebraizable deductive system is itself algebraizable. Actually, this apples
to all extensions of &; see Chapter 4.2, Corollary 4.9 below.
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2.2.1 Uniqueness

We show that the equivalent quasivariety semantics associated with any fixed
algebraizable deductive system is uniquely determined. To prove this we first
establish some basic properties of its associated equivalence formulas A. The
properties all derive from the fact that A represents within S the relation of
equality in the algebraic models of S {see 2.9(i}). The first lemma is based on
the fact that the equality relation is a congruence, i.e., an equivalence relation
that is preserved by the primitive operations.

Lemma 2.13 Let A be a system of equivalence formulas for some eguivalent
algebraic semantics for S. Then for all ¢, ¢, ¥ € Fm we have

() rse by
() p Ay Fs ¥ Ap;
i) p Ay, v AD Fg p AD.
Also for any variable p occurring in 9,

(iv) ¢ Ay Fs Ble/p] AS[Y/p)

Proof. By 2.9(i) we have that (ili) holds iff p = ¢, ¥ = ¥ [z ¢ = ¥,
But the latter consequence is trivial. So (iii) holds, and the other parts of the
lemmma are obtained the same way. |

Lemma 2.14 Let A be as in Lemma £2.13. Then for all o, € Fm we have
ppAYks v

Proof. Let § = ¢ be the system of defining equations associated with A. It
follows from the definition of equational consequence that

bp) = elp), px ¥ = §(¥) = e(¥).

But by 2.8(ii) ¢ = % is equivalent in K to (¢ A1) = e(¢ A1) Making this
substitution in the above relation of consequence we get

§(e) = elp), Slp M) = e(p AY) =k §(¥) = (¥).
Now applying 2.8(i) we get p,p A¢pbg 9. 8

This lemma shows that A satisfies a form of the detachment theorem.

Y
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Theorem 2.15 Let S be an algebraizable deductive system, and let K and K’
be two equivalent algebraic semantics for 8. Then KQ = K'Q, e, K and K’
generate the same gquasivariety.
Let A and § = ¢ be equivalence formulas and defining equations for K, and
stmilarly A' and §' =~ ¢ for K'. Then AH-s A and § ~ e Ji=k §' = €.
Proof. We first prove that A 45 A’. Taking ¢ A’ p for ¢ in 2.13(iv) we
get
pAYrs (p A ) B(p A Y)
But Fs ¢ A" ¢. Thus ¢ A Fs ¢ A’ ¥ by detachment, and by symmetry
w A" Ypis o Ay, Hence A -Hbg A,
For any I' C Eq and ¢ = 9 € Eq we have
=k o= ¢
& {EAnéfxnellrsp Ay by 2.9(i)
o {(A'n ExneTrs A"y since A <Fg A’
=4 r l:K{ (P > 1/).
So |=k coincides with |=k, . Let A;., & = % — @ = 1 be any quasi-identity
satisfied by K. Then {§ = 5 :i < n} |=k ¢ ~ 1. Hence

{&=np:i<n}l=k ex ¥

Thus the quasi-identity is also satisfied by K'. Conversely, K satisfies every
quasi-identity K’ does. So KR = K'. Finally, we prove § x e == §' = ¢’. We

have
b(p) = €(p) =k &'(p) = €'(p)
< b(p) Ae(p) dks §'(p) A€ (p) by 2.9(3)
& §(p) Ae(p) s 8'(p) A €(p) since A g A
< pisp;

the last equivalence follows from 2.9(ii) and the corresponding condition with
A replaced by A’. 1

The dual of this result fails to hold. There are distinct deductive systems
with the same equivalent algebraic semantics. See Chapter 5.2.4.

In Chapter 2.1 we gave an example of a quasivariety semantics for PC that
does not include BA. Hence the equivalent algebraic semantics of a deductive
system & need not be its smallest algebraic semantics. However we do have

Theorem 2.16 Let S be an algebraizable deductive system and K the unique
quastvariety equivalent to S. Let K’ be any algebraic semantics for S. Then K
satisfies every identity that K' does. Hence K C K'V where K'V is the variety
generated by K'.
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Proof. Let A be the equivalence formulas associated with K, and let § = ¢’
be the defining equations that go with K’'. (Note that since K’ is not assumed
to be equivalent to §, we cannot conclude from 2.15 that the §' = ¢ are also
defining equations for K.) Let ¢ = 1 be any identity of K'. Applying 2.2(i')
with K' in place of K we get

Fs Ay &=k FlpAp)= é(p Ap),

and hence, since ¢ A p is a S-theorem, =y §(p A ) = €(¢ A ¢). Thus

=k 8¢ A¢) = €(p Ay). We now apply 2.2(¢') again, but in the other
direction, to get ~s ¢ A v, Finally, apply 2.9(i) to get |=k ¢ = ¢. B

2.2.2 Axiomatization

There is a simple algorithm for converting any axiomatization of § into a basis
for the quasi-identities of its unique equivalent algebraic semantics.

Theorem 2.17 Let S be a deductive system given by a set of artoms Az and
a set of inference rules Ir. Assume & 1s algebraizable with eguivalence formu-
las A and defining equations § = e¢. Then the unique eguivalent! gquasivariety
semantics for 8 15 ariomatized by the identities

(i) 6(¢) = €(¢) for each p € Az,
(ii) 6(p Ap) = e(p Ap),
together with the following quasi-identities
(iii) 8(dbo) = (o) A .. A 8(¥n-1) = €(thn-1) — b(p) = €(¢p)
for each ({1, ..., UYn_1},9) € Ir,
(iv)épAg)=elpAg)—p=q.

Proof. Let L be the quasivariety defined by (i}-(iv). We show that L is the
equivalent quasivariety semantics for §. The identity (i) and quasi-identity
(iv) together are equivalent to

prgq F= flpAg)=e(pAyg),

which is the second defining condition 2.8(ii) of an equivalent algebraic seman-
tics. The first condition 2.8(i) is

Thspo pe @ (1)
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where : T
& ={p:{8(¥)= (@) : Y € T} = b(p)~ (o)} -

From (i) we have Az C @, and by (iii) @ is closed under the inference rules of
S, ie., ¢ is a S-theory. Thus T'Fs ¢ implies ¢ € & since ® includes T

To show the converse assume w € ©. Let K be the equivalent quasivariety
semantics for §, which exists by hypothesis. K satisfies (i)-(iv), so K C L,
and hence {§(¢) = e(¥) : ¢ € T} |=k 8(v) = e(p). By 2.8(ii) this equational
consequence relation is equivalent to I' g . Hence ¢ € @ does imply I' s .
[ |

By Corollary 2.12 any fragment of PC, IPC, or modal logic that contains
— Is algebraizable. (In the case of modal logic — here refers to material rather
than strict implication.) IPC_,, the {—}-fragment of the intuitionistic propo-
sitional calculus, is called Hilbert logic, or positive implication logic. Its unique
equivalent quasivariety semantics is definitionally equivalent to the variety Hl
of Hilbert algebras studied by Diego [12]. As an application of Theorem 2.17
we derive a standard axiomatization of HI.

The system IPC_, can be axiomatized by

p—(g— p) )
= (g—r) = (Pog)=(p—r)) (9)

and the rule of modus ponens. Let K be the equivalent quasivariety semantics’
for IPC_, Alp,q) = {p — ¢,¢ — p}, §(p) = p, and €(p) = p — p. The
formulas (p — p) A (g — ¢) are provable in IPC_,, and hence K satisfies the
identity p » p = ¢ — ¢q. Let T be a nullary symbol, and for each A € K
let A’ be the expansion of A by T, with TA =g — g for some a € A. By
the above remark, there is only one such algebra A’ for each A ¢ K. Let
K'={A’ . A€ K}. We claim that K’ is the class of Hilbert algebras. Note
that K' satisfies the identity

p—px=T, (10)

and therefore also ¢(p) = T for every formula ¢. Using this fact, together with
the axiomatization of K obtained by applying Theorem 2.17, we see that K’
satisfies the following identities and quasi-identities:

p—(g—p)=T, | (11)
=g (9= (@-r) =T, (12)
pxT andp—g=T = ¢g= T, (13)
pogxTandg—pxT = pxg. (14)
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Conversely, any algebra (A,—,T) satisfying p —» p = T and (11)-(14)
belongs to K'. Thus (10)-(14) axiomatize K'.

The variety Hi can be defined as the class of algebras (A4, —,7T) satisfying
(11), (12), (14), and the identity

poT =T (15)

this is proved in Rasiowa [36, pp.22{.]. It is also proved there that every Hilbert
algebra satisfies (10). Using this fact it is an easy matter to show that every
Hilbert algebra also satisfies (13). Thus Hl = K'.
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