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Abstract
Measurement error is present in all quantitative studies, and ensuring proper biological inference requires that the effects of 
measurement error are fully scrutinized, understood, and to the extent possible, minimized. For morphometric data, measure-
ment error is often evaluated from descriptive statistics that find ratios of subject or within-subject variance to total variance 
for a set of data comprising repeated measurements on the same research subjects. These descriptive statistics do not typically 
distinguish between random and systematic components of measurement error, even though the presence of the latter (even 
in small proportions) can have consequences for downstream biological inferences. Furthermore, merely sampling from 
subjects that are quite morphologically dissimilar can give the incorrect impression that measurement error (and its negative 
effects) are unimportant. We argue that a formal hypothesis-testing framework for measurement error in morphometric data 
is lacking. We propose a suite of new analytical methods and graphical tools that more fully interrogate measurement error, 
by disentangling its random and systematic components, and evaluating any group-specific systematic effects. Through the 
analysis of simulated and empirical data sets we demonstrate that our procedures properly parse components of measure-
ment error, and characterize the extent to which they permeate variation in a sample of observations. We further confirm 
that traditional approaches with repeatability statistics are unable to discern these patterns, improperly assuaging potential 
concerns. We recommend that the approaches developed here become part of the current analytical paradigm in geometric 
morphometric studies. The new methods are made available in the RRPP and geomorph R-packages.
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Introduction

Quantitative inferences in evolutionary biology are made by 
estimating biological signal from empirical observations, 
and evaluating that signal relative to expectation under a 
particular hypothesis (Houle et al., 2011). However, this 
seemingly straightforward endeavor is compromised by the 
fact that our observations are impacted by measurement 
error (Fleiss & Shrout, 1977; Kreutz et al., 2013). Measure-
ment error affects one’s ability to distinguish signal from 
noise, and is a pervasive problem in all quantitative disci-
plines. The field of morphometrics is no exception. Here, 

the biometer quantifies anatomical shapes from sets of linear 
measurements, or increasingly, from landmark points repre-
senting discrete anatomical locations, curves and surfaces of 
structures, as commonly found in geometric morphometric 
data (Adams et al., 2013; Bookstein, 1991; Mitterœcker & 
Schæfer, 2022). From these measurements, one may charac-
terize the shape of anatomical objects, summarize patterns 
of shape variation for a sample of observations, and describe 
the covariation of shape with other explanatory variables. 
Yet our morphometric data contain uncertainty associ-
ated with the values assigned to each landmark, which can 
inflate the inter-specimen variation in a sample (Arnqvist & 
Mårtensson, 1998; Bailey & Byrnes, 1990; Yezerinac et al., 
1992). This can have potentially serious consequences for 
making downstream statistical and biological inferences, 
and thus it is incumbent upon the biometer to ensure that 
the effects of measurement error are minimized, as much 
as possible.
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To do so first requires an understanding of the major com-
ponents of measurement error, and how they manifest in a 
sample of observations. In the field of measurement the-
ory, measurement error is defined as the deviation between 
a measured quantity and its true value (sensu Rabinovich 
2005). This deviation exists in part because the actual value 
of any physical attribute is unknown, and thus quantitative 
values assigned to it are inexact estimates (Hand, 1996; 
Krantz et al., 1971; Kyburg, 1984; Luce et al., 1990; Rabi-
novich, 2005; Suppes et al., 1989). Additionally, imprecision 
in these estimates—due to instrumentation inaccuracies, 
how observers take readings, or inconsistencies in experi-
mental procedure—further contribute to these deviations. 
Collectively, these deviations result in measurement error 
(ME). Importantly, measurement error may occur randomly 
across observations, or it may deviate systematically in some 
manner (Hand, 1996; Rabinovich, 2005). Random ME cor-
responds to stochastic variation in the magnitude or direc-
tion of deviations from observation to observation. Statisti-
cally, random ME has a well-known and obvious effect; it 
increases the variance in a sample, and thus increases the 
potential for type II errors in hypothesis tests (Yezerinac 
et al., 1992). In other words, random ME impinges on the 
biometer’s ability to detect a signal when it is present in a 
sample. By contrast, systematic ME corresponds to differ-
ences that vary in regular fashion in repeated measurements 
of the same observations. Because these deviations are non-
randomly distributed, systematic ME can result in estimation 
bias of model coefficients and can manifest as a measurable 
signal, thereby altering the actual biological signal present 
in the dataset. Thus, from a statistical standpoint, systematic 
ME is a far more insidious problem, as it has the potential to 
lead biological inferences astray.

That measurement error exists in morphometric data is 
not in dispute. Rather, for the biometer, the concerns are: 
(1) How to detect it? and (2) How to minimize it? With 
respect to the former, deviations from the true value cannot 
typically be used to estimate ME, because the true value 
cannot be known precisely (Rabinovich, 2005). Instead, 
ME is most commonly characterized by taking repeated 
measurements of the same observations, and summarizing 
the within-subject (i.e., among-replicate) variation. Here, 
smaller within-subject variation implies less ME, and thus 
greater repeatability of the estimated measurements (Bailey 
& Byrnes, 1990). To assess this, a repeated measures analy-
sis of variance (ANOVA) model may be used to attribute 
variance to model effects, and to isolate the within-subject 
variance component (Arnqvist & Mårtensson, 1998; see 
Fleiss & Shrout, 1977). The latter may be conveyed as the 
intra-class correlation, or ICC (Bartko, 1966; Fisher, 1950; 
Haggard, 1958; Liljequist et al., 2019), which describes the 
among-subject variance relative to the total variation in the 
sample. The ICC expresses the degree to which repeated 

measurements are similar, and thus, higher values imply 
lower ME. Multivariate analogs have been proposed for ICC 
using canonical correlation analyses between covariance 
matrices (e.g., Konishi et al., 1991), but these approaches 
compare the covariance matrices of inherently related sub-
jects (like parents and offspring) rather than repeated meas-
urements of the same subjects. Similarly, the within-subject 
variance component itself, or its associated coefficient of 
determination ( R2 ), may be used as a heuristic to describe 
the percentage of variation attributable to ME in a dataset 
(Galimberti et al., 2019; Klingenberg et al., 2002). Taken 
together, these summary measures ( ICC , R2 ) are relatively 
straightforward to calculate, and not surprisingly, are used 
in a wide variety of disciplines. However, it should be rec-
ognized that they are agnostic to the type of ME present 
in a sample. As typically implemented, they characterize 
the overall magnitude of ME, but are generally incapable of 
disentangling any random and systematic components that 
may be present.

In 1998, Arnqvist and Mårtensson brought the topic of 
measurement error to the attention of practitioners of geo-
metric morphometrics (GM), and highlighted the impor-
tance of investigating measurement error in landmark data. 
Their seminal review described in detail how ME permeates 
the various steps of our digitization and analytical pipelines, 
proposed strategies for minimizing ME, and advocated that 
summary measures such as the ICC be regularly used to 
gauge the extent of ME in a morphometric sample. Since 
then, an increasing number of GM studies have incorporated 
an evaluation of ME as part of their data analytic procedures. 
Typically, these studies leverage repeated measurements 
of observations, and utilize one or more of the summary 
measures mentioned above. In fact, a survey of the recent 
literature reveals a rather diverse set of publications, which 
includes studies that assess the overall level of ME in a sam-
ple (e.g., Fox et al., 2020; Vrdoljak et al., 2020), studies 
that evaluate the precision of particular landmarks (Barbeito-
Andrés et al., 2012; Cramon-Taubadel et al., 2007), and stud-
ies that evaluate inter-observer error and device-specific dif-
ferences (e.g., Fruciano et al., 2017; Giacomini et al., 2019; 
Marcy et al., 2018; Menéndez, 2016; Robinson & Terhune, 
2017; Shearer et al., 2017). Thus, it appears that Arnqvist 
and Mårtensson’s (1998) call to arms has been heeded by 
the morphometric community, and evaluations of measure-
ment error are now much more routine. We view this to be 
a positive development.

Since the publication of Arnqvist and Mårtensson’s trea-
tise 25 years ago, the field of geometric morphometrics has 
witnessed a veritable explosion of analytical advances in 
many topical areas, developed to address a wide array of 
biological hypotheses (Adams, 2014; Adams & Collyer, 
2019; Bookstein, 2015; Bookstein et al., 2003; Collyer & 
Adams, 2013; Conaway & Adams, 2022; Gunz et al., 2005; 
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Klingenberg & Gidaszewski, 2010; Mitterœcker & Book-
stein, 2009; Mitterœcker et al., 2004; Rohlf & Corti, 2000, 
to name a few). Yet curiously, little has changed in terms of 
the recommendations regarding how one should evaluate 
measurement error in GM studies. For instance, a current 
review of the topic (Fruciano, 2016) offers: (1) a careful 
scrutiny of one’s digitizing procedures, (2) visual inspec-
tion of one’s data to identify problematic landmarks and 
dispersion among within-subject replicates, (3) the use of 
summary measures as heuristics to evaluate the extent to 
which ME may be present, and (4) evaluation of differences 
between observers or devices when such data are avail-
able. Yet this is essentially the same advice as advocated 
by Arnqvist and Mårtensson in 1998, with a modern focus 
on available software. Other reviews of the subject (Daboul 
et al., 2018; Fruciano et al., 2017) proffer similar suggestions 
without alteration. In fact, apart from an alternative permuta-
tion scheme for testing inter-observer or inter-device differ-
ences (Fruciano et al., 2017), no new analytical procedures 
have been forwarded that explore aspects of ME from a new 
perspective. In short, the analytical machinery for investi-
gating ME in geometric morphometric data has remained 
rather static for two and a half decades, and has not kept 
pace with analytical advances achieved in other areas of the 
field. We feel it is imperative to reacquaint the field of GM 
with analysis of ME, utilizing some of the statistical tools 
that have been developed in the last decade.

We contend that interrogating measurement error in GM 
studies should have the same degree of quantitative rigor 
as is currently attained in other areas of the field. To do 
so requires a more synthetic view of ME that is capable of 
decomposing it into its constituent components, and simul-
taneously evaluating the attributes of ME in terms of their 
magnitude, and their direction. By relating trends in ME 
to patterns present in one’s data, the biometer can properly 
discern how ME influences their statistical, and thus biologi-
cal conclusions.

In this article, we develop a novel set of analytical proce-
dures and graphical tools that establish a new paradigm for 
how empiricists should investigate patterns of measurement 
error in multivariate data. Our approach dissects the ran-
dom and systematic components of ME from one another, 
and extracts any group-specific systematic ME that may be 
present. Multivariate test measures are proposed to charac-
terize these patterns, which are evaluated with appropriate 
permutation procedures. A set of graphical tools accompa-
nies these procedures to provide additional insights. First we 
formalize the algebra of our approach. Then, through a series 
of motivating examples, we illustrate how different aspects 
of ME manifest in GM data, and demonstrate how our new 
analytical paradigm detects these patterns. Computer simu-
lations are then used to verify that associated permutation 
tests display appropriate statistical properties. An important 

outcome of these simulations is the observation that Pro-
crustes superimposition buffers against the negative impacts 
of systematic ME, rather than enhancing them. Next, a rea-
nalysis of an empirical dataset illustrates the dissection of 
ME into its random and systematic components, and reveals 
that the main direction of systematic ME in this example 
coincides with the direction of biological signal; obfuscating 
interpretation of the latter. This highlights the importance 
of performing a more comprehensive interrogation of ME 
in morphometric datasets, which our analytical and visual 
tools provide. Finally, all methods developed in this article 
are available in the R-packages geomorph (Adams et al., 
2023; Baken et al., 2021) and RRPP (Collyer & Adams, 
2018, 2023) libraries.

Methods and Results

We present updated and novel methods for the analysis of 
ME by first introducing the conceptual basis for the methods, 
explaining what systematic and random components of ME 
mean, and how they manifest in GM data. We introduce 
examples for simulation experiments, which create plausible 
contexts for varied amounts of systematic and random ME, 
based on repeated digitizations of the same landmark config-
uration. The examples covered in the simulation experiments 
help ground the conceptual basis for the methods we propose 
in a realistic way by syncing graphical patterns to statistical 
results. Statistical methods include a novel resampling pro-
cedure used to create empirical sampling distributions of test 
statistics for Procrustes ANOVA and multivariate ANOVA 
(MANOVA), plus a graphical tool to assist in assessing and 
interpreting the amounts and patterns of systematic and ran-
dom ME in a GM-ME experiment. In the work below, a 
GM-ME experiment is any study that selects specimens for 
digitizing and uses a systematic method of repeated digitiza-
tions of the same landmark configuration on each specimen, 
resulting in GM data.

Conceptual Basis for the Analysis of ME

In the purest sense, ME is a quantifiable divergence from a 
true value or suite of values made by a process intended to 
replicate the true value. An example that might be easy to 
appreciate for researchers who use landmark-based GM data 
involves several machines in a factory that are used to drill 
holes in wood planks for assembling furniture. Machines 
are programmed to drill a specific configuration of holes. 
There is, therefore, a known “true” configuration from 
which departures can be measured for each of the machines. 
ME is the measured result of any tendency for machines 
to misplace holes in the locations they were programmed 
to be placed. The amount of ME is directly related to the 
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imprecision of hole-placement in the drilling process. How-
ever, the imprecision can be defined in different ways. One 
could measure the displacement of a particular hole from 
its target, both in the distance from the true location and 
the direction in which it was displaced. Alternatively, and 
more relevant for GM data, one could attempt to measure 
the mismatch of the entire configuration to the true configu-
ration. Even if the reason for any ME is localized to one 
hole (landmark), the difference between true and replicated 
configurations can be observed at every hole, after the con-
figurations have been aligned to best match all correspond-
ing holes to each other.

If the drilling of configurations was replicated several 
times, per machine, ME might be consistent, for example, as 
a displacement of a specific hole to the left of its true loca-
tion. This would be indicative of a systematic bias or preju-
dice of the machine. Because there is some repeatability 
of this type of error, the resulting displacement of the hole 
is referred to as systematic ME. This is an obvious trend, 
unlike random ME, a tendency for misplacement of one or 
more holes, but not in a predictable way. Both systematic 
and random ME could be measured, provided replication 
in measurements is made on sample planks, for multiple 
individual machines.

The practicality of the machine example breaks down per-
haps with the realization that in just about any GM study, the 
true configuration is not known. However, as presented, this 
example is not the only way to assess ME. It can be implied 
from the example that machines are research subjects and 
replication of the wood-drilling process occurs for multiple 
configuration-drillings by each research subject. This might 
seem practical if there is only one configuration of points to 
consider. If, however, various different configurations could 
be programmed into each machine, a GM-ME experimental 
design like the one above, repeated for every configuration, 
would require many observations (which might be costly), 
and would allow inference only to be made, configuration 
by configuration, and machine by machine. Rather, if the 
configurations were considered research subjects and the 
machines replications of the process applied to each subject, 
the tendency of any one machine to misplace holes could 
be assessed, irrespective of configurations. Furthermore, 
knowing the true configuration that is programmed into 
each machine would not be as necessary as understanding 
the tendency for machines to drill the same configurations, 
especially if evaluating the consistency of machines to per-
form the same process—regardless of configuration—was 
the purpose of the study1

This alternative design draws more parallels to GM stud-
ies. Research subjects are specimens on which landmark 
configurations are placed, and replications are repeated digi-
tizations, that are distinct in some way. For example, two 
or more researchers digitize the same photos; a researcher 
digitizes the same configuration on separate photos of the 
same specimen; a researcher and automated digitizer digitize 
the same configuration on research specimens; two different 
scanners are used to collect 3D surface points on the same 
object; and other scenarios are certainly possible. Assess-
ment of ME is consistent with an assessment of the repeat-
ability of digitizing a landmark configuration on the same 
specimen and getting the same results. There is no need to 
have a “true” configuration. Rather, an assessment of the 
tendency for repeated digitizations on the same specimens to 
produce shapes in a shape space that are in close proximity, 
compared to the shapes of disparately shaped specimens, 
is the goal. ME is the measurable disparity among repli-
cated measures of the same research subjects. Quantifying 
ME is challenging, because there is no appreciable range of 
expectation without relativizing the variation among repli-
cated measurements to some other source of shape varia-
tion. Regardless, a design that has the same configuration 
digitized multiple times on the same specimen—the meas-
urements nested within a research subject—also repeated 
for multiple specimens, allows assessment of ME in GM 
studies.

Unfortunately, the data of landmark-based GM—the Pro-
crustes coordinates2 from generalized Procrustes analysis 
(GPA) (Adams et al., 2013; Rohlf & Slice, 1990)—involve 
transformation that can obfuscate specific digitizing phe-
nomena. ME most typically will be measured on Procrustes 
coordinates, as the elements of configuration size, orien-
tation, and position would make an analysis on the raw 
coordinates of digitized landmarks impractical. However, 
it is the impact that a digitizing prejudice—the tendency 
of a digitizing process to impose a consistent change in the 
location of one or more landmarks in a configuration com-
pared to another—has on the estimation of the shape of spe-
cific research subjects or the groups that contain them that 
is probably of most interest. For example, if a researcher 
digitizes a landmark configuration on 2D photos of research 
specimens (first replicate) and an automated digitizer places 
the same landmarks on the same photos, and it is revealed 
that the landmarks of the automated digitizer are misplaced 
in the same direction by the same amount (accounting for 

1 If only one machine was the cause of inconsistency, it would 
be clear which machine it was, regardless of the exactness of any 
machine to produce the true configuration.

2 Often the terms, “Procrustes residuals” and “Procrustes coor-
dinates” are used almost interchangeably. Procrustes coordinates 
are the mean configuration after GPA, plus the Procrustes residu-
als, which are the deviations of configuration-specific coordinates 
from the mean. Either can be used in most analyses, producing the 
same results, as the mean shape would be constant for every research 
observation.
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specimen orientation), then there might be little concern. If 
every landmark was perfectly displaced, the resulting con-
figurations would have the same size and there would be no 
difference between the coordinates after GPA.3 However, if 
the displacement occurs for one or few landmarks, only, the 
configurations would have different size and mismatched 
coordinates after GPA, but not only for the landmarks where 
the mistake occurred. Even though the digitizing prejudice is 
an attribute of the process that places raw landmarks, it is in 
most cases the change in Procrustes coordinates that result 
from that process that is a concern. Procrustes coordinates 
are the data from which ME is measured.

Digitizing prejudice should translate to systematic ME 
that can be quantified in an analysis of ME performed on 
Procrustes coordinates. If the effect of systematic ME can 
be measured, the shape change associated with this effect 
can be envisioned by mapping the mean configuration of 
Procrustes coordinates onto a configuration changed by the 
effect, which might reveal which landmarks are most likely 
changed as a result of a digitizing prejudice. Alternatively, 
random ME has no specific directional shape change but 
signifies that different shapes are observed among digitiz-
ing replicates of the same subject. For example, if the same 
research specimens are digitized by two researchers, one 
who is meticulous and one who is sloppy, pairs of shapes 
for research subjects might appear displaced in a principal 
component (PC) plot, but in no consistent way. This is in 
contrast to systematic ME, which would be revealed more 
so as a tendency for consistent displacement. Greater ME, 
whether systematic or random, will be revealed by greater 
disparity between corresponding points of subject replicates 
in a PC plot. Random ME might not be of much concern, if 
small, as it might not have much impact on the estimation 
of subject shapes. Systematic ME can be of great concern, 
however, even if small, as it could lead to biased shape esti-
mates for some but not all research subjects, which would 
have implications for analyses that target estimation of shape 
change among groups. An analysis of ME ideally evaluates 
the impact of systematic ME, in addition to measuring the 
amount of ME, whether random or systematic. As we show 
below, systematic and random ME can be partitioned, and 
systematic ME tested, with an appropriate analytical para-
digm. First we outline a few hypothetical examples for the 
types of systematic ME one might wish to detect.

Motivating Examples (and Simulation Experiment 
Set‑Up)

In this paper, we use simulation experiments to assess type 
I error rates and statistical power for testing for systematic 
ME, based on six examples of varied but realistic system-
atic and random ME. In each case, random landmark con-
figurations were simulated (more detail below) that were 
practically invariant to positional and rotational differences 
(except if simulated by chance, in which case they would be 
slight). As is typical with most GM-ME experiments, we 
eventually perform statistical analysis on Procrustes coor-
dinates, following generalized Procrustes analysis (GPA) 
(Rohlf & Slice, 1990). However, because our simulation 
experiments did not vary position and rotation of configu-
rations, it was also possible to perform statistical tests on raw 
landmarks for comparison.

The six experiments (Table 1) sought to evaluate the 
efficacy of ME tests for scenarios that varied the amounts 
of systematic and random ME, whether research subjects 
were sampled from different groups with specific shape dif-
ferences (like sampling individuals from different species), 
whether a digitizing prejudice was applied to all specimens 
or specific groups of specimens, and varied how the digitiz-
ing prejudice might be applied to different groups.

Random subjects were simulated via the distortion of a 
landmark configuration template,

where Y0 was the p × 2 template (resembling a fish) and Hi 
was a 2 × 2 symmetric transformation matrix for the p points 
in k = 2 dimensions ( x and y Cartesian coordinates) found 
in Y0 . Hi was randomly sampled for subject i , by modify-
ing a 2 × 2 identity matrix by adding values sampled from a 
normal distribution ( � ) with a mean of 0 to elements of the 
identity matrix; i.e.,

where �x ∼ N
(
� = 0, �x

)
 , �y ∼ N

(
� = 0, �y = 0.5�x

)
 , and 

�xy ∼ N
(
� = 0, �xy = 0.25�x

)
 . This approach allowed more 

shape change in the x-direction (lengthening) than in the y
-direction (deepening), and allowed the covariance between 
x and y coordinates to remain consistent and comparatively 
muted to the lengthening or deepening of the configura-
tion. By randomly sampling Hi in Eq. (2) for each simu-
lated research subject, initial (first replicate) inter-subject 
variation in shape among subjects was simulated. We varied 
the amount of inter-subject variation by simply changing 
the value of �x . Figure 1 demonstrates how variation in fish 
shapes could be generated.

(1)Yi = Y0Hi,

(2)Hi =

[
1 0

0 1

]
+

[
�x �xy
�xy �y

]
,

3 Despite the imprecision of the automated digitizer compared to the 
researcher, the configurations it produces are accurate with respect to 
the researcher’s.
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To simulate inherent group differences (for example, 
by sampling research subjects from different species), an 
update to Eq. (1) was performed for the first replicate as,

where Gj was a p × 2 matrix comprising mostly 0s (no dis-
placement) except for the elements found at (p − 1, 1) and 
(p, 1) to allow shifting of two tail landmarks, consistently, 
only along x Cartesian directions, pertaining to expected 
group shape difference for groups. For group a ( j = 1 ), 
these values were 0. A predefined group difference ( d ) was 
assigned for (p − 1, 1) and (p, 1) for group b ( j = 2 ), and 2d 
was assigned for group c ( j = 3 ). In other words, if group 
differences were included ( d > 0 ), differences in shape were 
attained by shifting x Cartesian coordinates for two land-
marks by an amount, d , for group b and 2d for group c. If 
no group differences were assigned, Gj was a matrix of 0s, 
meaning the simulated Yi was unchanged. An example of 
the outcome of this simulation protocol, based on �x = 0.20 
is shown in Fig. 2.

To simulate random ME, an update to Eq. (3) was per-
formed for the second replicate as,

where Rj was a p × 2 matrix comprising 2p random values 
sampled from a normal distribution, N

(
� = 0, �r

)
 , where 

�r defined how variable random digitizing error could be. 
These values were simulated independently (isotropic scat-
ter). The parentheses around Y0Hi +Gj indicate the fixed 
value for the first replicate, changed for the second replicate 
by the addition of Rj . Figure 3 shows how random ME as 
digitizing error can be simulated.

A digitizing prejudice (systematic ME) could also be 
added to Eq. (4) with an additional update,

where Sj resembles Gj but with different displacement of 
the x or y Cartesian coordinates for the same landmarks that 
are shifted for group differences. In our simulations, either 
all of Sj were 0, if not simulating systematic ME, contained 
consistent displacements for the p − 1 and p landmarks 
(in either x or y directions) to simulate the same digitizing 
prejudice applied to all research subjects, or contained dis-
placements only for group a (0 values for groups b and c) 
to simulate a digitizing prejudice applied only to one group 
(e.g., species). Figure 4 illustrates how digitizing prejudice 
in the second replicate can manifest as shape changes (with-
out group differences).

By simulating configurations with Eq. (5) it was possible 
to obtain landmarks and Procrustes coordinates for the con-
sideration of every scenario in Table 1. Tests of systematic 

(3)Yi = Y0Hi,+Gj,

(4)Yi =
(
Y0Hi +Gj

)
+ Ri,

(5)Yi =
(
Y0Hi +Gj

)
+ Ri + Sj,

ME for these scenarios involve both univariate-like (Pro-
crustes) ANOVA, based on the dispersion of shapes, or 
multivariate-ANOVA (MANOVA) statistics, based on lin-
ear model covariance matrices (using principal component 
scores). We describe these in more detail in the next four 
sections.

A Resampling Procedure to Test Systematic 
Measurement Error

An analysis of ME foremost is a test of systematic ME. 
A null hypothesis of no systematic ME is not exactly the 
same as a null hypothesis of no difference in shape between 
replicated measurements of shape from the same research 
subject; it is a null hypothesis of no consistent shape change 
between replicates, among research subjects. This distinc-
tion is important as it distinguishes systematic ME from 
total ME. For a test of systematic ME, it is imperative that 
an evaluation of within-subject variation in shape can be 
assessed, despite variation among subjects. This might seem 
counter-intuitive, as the variation in shape among subjects 
is often used a basis for measuring ME in a relative way (as 
a percentage of subject or total variation). Although under-
standing subject variation might be important, the point 
made here is that a test that generates a sampling distribu-
tion of a statistic should not introduce changes in subject 
variation.

Randomization of residuals in a permutation proce-
dure (RRPP) has become a common method for ANOVA 
in research using GM data (Collyer et al., 2015; Collyer & 
Adams, 2018), especially because of its ability to handle 
high-dimensional data (number of shape variables exceed 
the number of observations). RRPP generates empirical dis-
tributions of various ANOVA or pairwise test statistics, and 
its statistical properties (parameter estimates, empirical sam-
pling distributions, type I error rates and statistical power) 
have been extensively vetted (Adams & Collyer, 2018, 2022; 
Collyer et al., 2022). The assertion that subject variation 
should remain constant in the analysis means that a sampling 
distribution of a statistic for systematic ME is developed for 
a process that produces the same subject variance in every 
random RRPP permutation. This is possible by restricting 
the randomization of residuals within subjects.

For example, for an n × (pk) matrix, Z , containing n vec-
tors, zT

i
 for the i = 1, 2, ..., n observations of Procrustes coor-

dinates containing p points in k dimensions ( k = 2 or 3 ), a 
linear model to estimate the overall mean takes the form, 
𝛽null = z̄

T =
(
X

T

null
Xnull

)−1
X

T

null
Z , where T means vector or 

matrix transposition, and −1 means matrix inversion. The 
linear model design matrix, Xnull , is a vector of 1s. The mean 
is a vector of coefficients ( 𝛽null ) that if multiplied times the 
linear model design matrix produces an n × p matrix of mean 
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values; i.e., Z̄ = Xnull𝛽null . To estimate subject means, Xnull 
can be updated by concatenating s − 1 columns of dummy 
variables for the s subjects represented in the data. (Dummy 
variables comprise 0s and 1s, with 1s indicating subject 
match.) We assume that this resulting matrix, Xsubject is bal-
anced,4 meaning there are an equal number of replicated 
observations within subjects; i.e., n = sr , where r is the 
number of replicates. In this way, the column sums except 
the first of Xsubject equal r (the first equals n ). We can esti-
m a t e  c o e f f i c i e n t s  fo r  s u b j e c t  m e a n s  a s 

𝛽subject =
(
X

T

subject
Xsubject

)−1

X
T

subject
Z , and subject means as 

Ẑsubject = Xsubject𝛽subject . The difference between subject 
means and the overall mean, Ẑ − Z̄ is the basis for the sub-
ject variance. The covariance matrix is found as, 

�̂subject = (s − 1)−1
(
Ẑ − Z̄

)T(
Ẑ − Z̄

)
 , and its trace (sum of 

diagonal elements equal to the sum of variable variances) is 

the variance based on dispersion, the summed squared dif-
ferences between the points of subject means and the overall 
mean. The (s − 1) degrees of freedom represent the addi-
tional parameters in Xsubject required to estimate subject 
means compared to the overall mean.

RRPP applied to the null model has first- and second 
moment exchangeability (Adams & Collyer, 2018; Com-
menges, 2003), meaning if residuals of the null model, 
Z − Z̄ , are randomly shuffled to produce random pseudodata, 
Z = Z̄ +

(
Z − Z̄

)∗ , where ∗ represents a randomized form 
of the residuals, the mean (first moment) and variance (sec-
ond moment) of the pseudodata, Z , will be the same as for 
the real data, Z , in any random permutation. The same is not 
true with respect to the subjects model, if it is applied to Z . 
Indeed, this is the basis for ANOVA, and how one might test 
for subject effects, if this would be of interest. The many 
permutations of Z makes it possible to generate sampling 
distributions of ANOVA statistics, so it is possible to 
evlauate a null hypothesis for subject variance. Rather, an 
analysis of ME seeks to preserve subject effects, not explic-
itly test for them. It might seem intuitive to randomize the 
residuals of the subjects model in a similar way; i.e., 

Fig. 1  Example of simulated research subjects, with different inter-
subject variation, based on �

x
 . Top row: small variation, �

x
= 0.02 . 

Bottom row: large variation, �
x
= 0.16 . Left column: raw landmarks. 

Middle column: Procrustes coordinates, following GPA. Right col-
umn: plot of principal component scores. There are 60 subjects in 
each case

4 There is not a strict need for replicate balance in the research 
design (see “Discussion”). However, issues like heterogeneity of vari-
ance among subjects might be more difficult to interpret with repli-
cate imbalance.
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Z = Ẑsubjects +
(
Z − Ẑsubjects

)∗

 , but RRPP this way would 
not have exact first- and second-moment exchangeability, 
even if approximately the same means and variance are 
found across permutations. However, a slight alteration 
makes it possible to achieve first- and second-moment 
exchangeability. If RRPP is restricted within subjects, sub-
ject means and subject variance will remain constant across 
permutations, for either model. This should be obvious. 
Changing the order of replicates within one subject will not 
change the subject mean or variance among observations for 
that subject. However, RRPP that randomizes the order of 
replicates many times for every subject makes it possible to 
evaluate the consistency of replicate changes in shape among 
all subjects. Thus, restricted (within-subject) RRPP makes 
it possible to test for systematic ME.

A test of systematic ME involves comparison of sums of 
squares and cross-products between two models: one that 
includes coefficients for subject means, and one that includes 
coefficients to estimate replicate means in addition to subject 
means. The latter model involves adding r − 1 parameters 

(dummy variables) to Xsubject to form Xsubject+replicate . (We 
henceforth use Xs to mean Xsubject and Xsr to mean 
Xsubject+replicate , for simplicity.) Coefficients can be estimated 
with a least-squares criterion, as before, and the fitted values 
compared between the two models, i.e.,

where Sr is a pk × pk symmetric sums of squares and cross-
products ( SSCP ) matrix, with variable (coordinate) sums of 
squares along the diagonal and cross-products between vari-
ables in the off-diagonal elements. In every subject-restricted 
RRPP permutation, Ẑ

T

s
Ẑs will be constant. If test statistics 

require inverting Sr (more on this below), a problem arises 
because Sr will be singular if using Procrustes coordinates, 
due to invariance in size, orientation, and position of con-
figurations imposed by GPA (and potential redundancies due 
to use of sliding semi-landmarks). In such cases, finding 
vectors of principal component scores ( P ) of Z (explaining 

(6)
Sr =

(
Ẑsr − Ẑs

)T(
Ẑsr − Ẑs

)

=
(
Xsr𝛽sr − Xs𝛽s

)T(
Xsr𝛽sr − Xs𝛽s

)

Fig. 2  Example of simulated research subjects, with group differ-
ences. Top row: no group differences for 60 research subjects. Bot-
tom row: group differences simulated for three groups of 20 subjects, 
via tail-lengthing. Left column: raw landmarks. Middle column: Pro-

crustes coordinates, following GPA. Right column: plot of principal 
component scores, with different symbols corresponding to different 
groups
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either 100% of the shape variation, or as close to 100% as 
is reasonable) and using these in place of Z in all equations 
above, would be required. The calculation of Sr in Eq. (6) 
with subject-restricted RRPP makes it possible to test for 
systematic ME via univariate-like (Procrustes) ANOVA or 
multivariate-ANOVA (MANOVA). These are discussed in 
more detail below.

Procrustes ANOVA

Procrustes ANOVA (Goodall, 1991; Klingenberg & McIn-
tyre, 1998) is a term used for analysis that resembles uni-
variate ANOVA, based on the dispersion of linear model 
estimates in either the shape space, or as we will assume for 
our discussion here, an orthogonal projection of values into 
a space tangent to shape space, where Euclidean interpreta-
tions of dispersion are appropriate. Four sums of squares 
( SS ) calculations are required from four SSCP matrices 
for Procrustes ANOVA; SS is the trace (sum of diagonal 

elements) of these matrices, each calculated as in Eq. (6). 
Thus, the four SS calculations are as follows:

(7)
SStotal =trace(Stotal)

=trace
((

Z − Z̄
)T(

Z − Z̄
))

,

(8)
SSsubject =trace(Ssubject)

=trace

((
Ẑ
T

sr|r − Ẑr

)T(
Ẑ
T

sr|r − Ẑr

))
,

(9)
SSreplicate =trace(Sreplicate)

=trace

((
Ẑ
T

sr|s − Ẑs

)T(
Ẑ
T

sr|s − Ẑs

))
,

(10)
SSresiduals =trace(Sresiduals)

=trace

((
Z − Ẑsr

)T(
Z − Ẑsr

))
.

Fig. 3  Example of simulated research subjects with second repli-
cates (60 research subjects), with different levels of random ME. Top 
row: small random ME ( �

r
= 0.06 ). Bottom row: large random ME 

( �
r
= 0.18 ). Left column: raw landmarks. Middle column: Procrustes 

coordinates, following GPA. Right column: plot of principal compo-
nent scores, with black dots representing first replicates and red dots 
representing second replicates
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The notation is important to define, precisely. The sub-
scripts, sr|r and sr|s in Eqs. (8) and (9), respectively, indicate 
that fitted values are obtained for combinations of subjects 
and replicates, but in different ways. The |r or |s indicates 
both the restriction for RRPP and estimates of the appropri-
ate null model, for replicates or subjects, respectively. In the 
formulae above for SSsubject and SSreplicate , Ẑr and Ẑs are con-
stant across RRPP permutations, respectively, because of the 
RRPP restriction. There is no specific need to restrict RRPP 
permutations within replicate to test for subjects, but this 
provides some consistency for tests. Additionally, it is worth 
noting that these SS estimates are obtained from SSCP matri-
ces, estimated with a type II SSCP method of estimation. 
This is important, as it ensures that assessment of systematic 
ME is conditioned on the subjects chosen for investigation. 
As such, the mode of restriction and method of estimation 
are commensurate, even if explicit subject tests are not the 
principal goal. The final formula, for the calculation of 
SSresiduals does not produce unique values within any RRPP 
permutation. Because the estimates of Ẑsr will differ with the 

different null models used for different terms (whether sr|r 
or sr|s ), so too will the residual SS . With respect to random 
ME, it is the version of SSresiduals that holds constant subject 
means that is used in any calculation requiring SSresiduals.

As with typical ANOVA statistics, the SS values could 
also be converted to mean-square ( MS ) values by dividing 
SS by the degrees of freedom, s − 1 or r − 1 for subjects and 
replicates, respectively. SSsubjects and SSreplicates , could also be 
converted to coefficients of determination as,

where effect refers to the effect of adding either s − 1 
subject or r − 1 replicate parameters to their correspond-
ing null models. Henceforth, we replace replicates with 
SystematicME and residuals with RandomME to directly 
associate SS with these types of ME. The R2 statistics are 
helpful for understanding the partitioning of the total SS by 
effects. It is important to realize that with type II SSCP s, 
SSsubjects + SSSystematicME + SSRandomME ≠ SStotal , because of 

(11)R2

effect
=

SSeffect

SStotal
,

Fig. 4  Example of simulated research subjects with second replicates 
(60 research subjects), with digitizing prejudice (systematic ME) and 
a small amount of random ME. Digitizing prejudice shifted tail land-
marks in the second replicate. Top row: small systematic ME. Bot-

tom row: large systematic ME. Left column: raw landmarks. Middle 
column: Procrustes coordinates, following GPA. Right column: plot 
of principal component scores, with black dots representing first rep-
licates and red dots representing second replicates
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the non-sequential addition of model terms. Therefore, the 
sum of the R2 values is not expected to equal 1.

Generally for ANOVA, an F-statistic would also be cal-
culated, and most likely used as a test statistic, for which an 
empirical sampling distribution could be generated across 
all RRPP permutations. Although an F-statistic would be 
appropriate as a test statistic in this procedure, we recom-
mend against it for two reasons. First, an F-statistic should 
not convey any interpretation that one might have with a 
parametric F-distribution, both because the data are not uni-
variate despite the calculation of statistics based on distances 
(Anderson, 2001; Anderson & Walsh, 2013) and the non-
independence of observations would call for adjustment of 
a typical F-statistic, if a parametric probability distribution 
could be invoked (which is unnecessary). Rather, the non-
independence of observations is handled by the restricted 
RRPP strategy, so at best, the distribution of random F-sta-
tistics could be used to calculate a P-value, even though the 
value of F would not make much sense. Second, a better 
statistic that would be perfectly rank-correlated with ran-
dom F-statistics across RRPP permutations could be used. 
We recommend inclusion of this alternative statistic that has 
appeal as both a descriptive measure and as a test statistic: a 
systematic ME (signal)-to-random ME (noise) ratio (SNR), 
which is calculated for the effect of systematic ME as,

SNR could be calculated likewise for subject SS and in either 
case, is a statistic that describes variation in shape associated 
with a signal relative to variation in random ME (noise). 
As Eq. (12) illustrates, SNR is also no different as a test 
statistic than F in a permutation procedure (because r−1

n−s−r
 

would be constant in every random permutation). However, 
an F-statistic would have a varied expectation based on the 
number of research subjects and replicates, but SNR is a sta-
tistic that could more logically be compared across studies. 
For example, one ME experiment that finds an SNR of 0.5 
for systematic ME would elicit more concern than one that 
finds SNR = 0.1.

It might be of interest to also calculate partial coefficients 
of determination ( �2 ) just for ME , however, we must realize 
t h a t  �2

SystematicME
≠

SSSystematicME

SSSystematicME+SSRandomME

 a n d 

�2
RandomME

≠
SSRandomME

SSSystematicME+SSRandomME

 , because of the type II SS 

estimation. However, this limitation is easily overcome. By 
holding constant the effect of research subjects, the residuals 
from a null model with subjects as the only factor can be 
subjected to analysis with a single-factor linear model that 
contains replicate parameters.  By doing this, 
SS�|subjectsSystematicME

+ SS�|subjectsRandomME
= SS�|subjectstotal , where 

(12)SNR =
SSSystematicME

SSRandomME

= F
r − 1

n − s − r
.

�|subjects corresponds to residuals from the single-factor 
subjects model. Thus,

and

where SS�|Subjectstotal = trace(�T
subjects

�subjects) , for the matrix of 
residuals obtained from the single-factor subjects model, 
�subjects . These descriptive statistics simply convey the por-
tion of systematic and random components of ME in the 
absence of subject variation. This might be practical if, for 
example, R2

SystematicME
 is small but highly significant, because 

R2

subjects
 is large, due to sampling disparately shaped 

subjects.
The SNR and partial �2 statistics might seem unnecessar-

ily redundant. Indeed, we would expect that SNR ≈
�2
SystematicME

�2
RandomME

 . 
Although partial �2 statistics are more commonly associated 
with ANOVA and MANOVA, and SNR statistic might seem 
like a complicated introduction here, a multivariate gener-
alization of the SNR statistic is more consistent with the 
basis for MANOVA statistics, which we discuss in more 
detail, below. Therefore, despite the redundancy, calculating 
both statistics is helpful.

A P-value for the SNR statistic for systematic ME is the 
probability of finding as large or larger SNR , by chance, 
based on the frequency of outcomes that larger SNR is gener-
ated, randomly by RRPP, divided by the number of RRPP 
permutations. It is worth re-iterating that R2

SystematicME
 can be 

misleading as a descriptive statistic. If very great disparity 
in shape is sampled inherently by the subjects chosen for an 
evaluation of ME—something a researcher could augment 
to feel better about the impact of ME in their study—the 
observed R2

SystematicME
 might be deceptively small, but the 

SNR statistic could be large, as it is measured independent 
of subject variation. Nonetheless, as a test statistic, it 
remains difficult to adjudicate an SNR statistic without 
understanding the probability of observing as large of a SNR 
statistic by chance (the P-value). As an effect size, this is a 
bit problematic, since the same SNR could be either signfi-
cant or not significant in two different studies. However, by 
normalizing the distribution of random SNR statistics, so that 
� = f (SNR) , a standardized effect size can be calculated as,

(13)�2
�|subjectsSystematicME

=
SS�|subjectsSystematicME

SS�|subjectstotal
,

(14)�2
�|subjectsRandomME

=
SS�|subjectsRandomME

SS�|subjectstotal
,

(15)Z =
�observed − ��

��
,
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where, � and � are the mean and standard deviation of the 
normalized distribution, respectively. Z-statistics are more 
reliable for comparison of the effect of systematic ME, both 
to other sources of variation (more on this below) and sys-
tematic ME from other ME experiments. For example, a 
test of systematic ME might be performed for different con-
figurations associated with different anatomical structures, 
digitized on the same research specimens, and Z-scores 
compared to ascertain if a digitizing prejudice is found more 
so for one configuration compared to another.

The statistics calculated for ANOVA can also lend them-
selves well to calculations of intraclass correlations (Arn-
qvist & Mårtensson, 1998; Fruciano, 2016), which rather 
than measuring the amount of ME, provide an effect size for 
the reliability of research subjects to represent themselves in 
repeated digitizations, in spite of ME. As will be apparent 
in the subsequent section, however, reliability can be arti-
ficially augmented by simply choosing subjects with quite 
different shapes. However, compared to previous descrip-
tions of the intraclass correlation for shape data, we provide 
methods for the calculation of alternative coefficients, which 
can help reveal systematic ME.

Intraclass Correlation

The intraclass correlation coefficient ( ICC ) has been pro-
posed previously for use with GM data in studies with 
repeated digitizations, as a measure of “repeatability” or 
“reliability”, the consistency of research subjects to resemble 
themselves in repeated digitizations (Arnqvist & Mårtens-
son, 1998; Fruciano, 2016). ICC has been defined for GM 
data as,

where E(MS) is the expected mean squares (variance com-
ponents), and the subscripts A and W refer to among-subject 
and within-subject variance, respectively. Previous descrip-
tions of ICC have asserted that E(MS)A = (MSs −MSW )∕r 
and E(MS)W = MSW . The within-subject variance, MSW , is 
calculated as (SSr + SSresiduals)∕(n − s) , for the n total obser-
vations, which is the cumulative shape variation within sub-
jects, disregarding the effect of replicates; i.e., it only meas-
ures variance among repeated digitizations but is neither 
concerned with the order of the digitizations nor the clas-
sification of digitizations (e.g., unit 1 vs. unit 2). It should 
be clear that a balanced design is required for ICC , as r is 
part of the calculation. Equation (16) can be thus updated to 
define ICC based on MS values rather than E(MS) values as,

(16)ICC =
E(MS)A

E(MS)W + E(MS)A
,

(17)ICC =
MSs −MSW

MSs + (r − 1)MSW
,

as detailed by Liljequist et al. (2019).
By calculating ICC this way, it is clear that if subject 

variation is large (shapes vary greatly among subjects) and 
the variation among digitizations within subjects is small, 
ICC will tend toward a maximum value of 1, indicating good 
repeatability. It should also be clear that if the expected 
within-subject shape variation is somewhat constant, despite 
additional subjects added to the study (adding new subjects 
does not change the expected variation between digitiza-
tions, as a practice), then ICC can be inflated by merely 
sampling a more disparate representation of subject shapes. 
Because the within-subject variance does not focus on rep-
licate assignment, there is no accounting for systematic 
ME, rather, ME, whether systematic or random, is only a 
measurement of imprecision, MSW , with respect to subject 
variation. However, ICC can be updated to better evaluate 
the tendency for systematic ME due to digitizing prejudice.

Liljequist et al. (2019) presented two alternative ICC cal-
culations that would not change from the former ICC if ME 
was 100% random ME. The first calculation is,

which updates ICC if absolute agreement between different 
digitizations is desired. MSr is the estimated variance due to 
replicates (systematic ME) and MSresiduals is the estimated 
residual variance (random ME). The second calculation is,

which updates ICC to focus on the consistency of repeated 
digitizations. Careful examination of the three formulae in 
Eqs. (17), (18), and (19), illustrates that MSW can be parti-
tioned into MSr and MSresiduals but if there is no systematic 
ME, then MSr = 0 , MSW = MSresiduals , and the three ICC val-
ues converge. ICCA calculates a weighted average of MSW in 
the denominator and ICCC excludes variation due to system-
atic ME. If these ICC values diverge, systematic ME can be 
implicated. It would be challenging to associate a particular 
level of disparity between ICC values with an interpretable 
amount of systematic ME. Any ICC value measured this 
way is based on dispersion in perhaps many dimensions, 
and the number of subjects or number of variables might 
affect the ICC values. However, if a test of systematic ME 
finds significant systematic ME, disagreement among the 
ICC values should be apparent.

Both ANOVA and ICC calculations performed this way 
focus on the dispersion of shapes among and within subjects, 
and because distances of vectors are univariate despite the 
number of dimensions in which they are measured, these 
analyses are univariate solutions for multivariate problems. 

(18)

ICCA =
MSs −MSresiduals

MSs + (r − 1)MSresiduals + r∕s(MSr −MSresiduals)
,

(19)ICCC =
MSs −MSresiduals

MSs + (r − 1)MSresiduals
,
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Statistical tests are not a concern if based on RRPP, since 
a parametric probability density function is not required to 
obtain P-values. However, there may be cases where a fully 
multivariate analysis that focuses on the covariances among 
landmarks is desired. The analyses above can be generalized 
with eigenanalysis for such cases.

Multivariate Generalizations and Visualizations

The SNR statistic introduced above is a useful statistic 
because it has a multivariate generalization that is commonly 
used in MANOVA:

where S is an SSCP matrix and � is the multivariate general-
ization of the ratio, SNR . Various MANOVA statistics can be 
calculated from eigenanalysis of S−1

RandomME
SSystematicME , the 

simplest being Roy’s maximum root, the largest eigenvalue 
obtained from eigenanalysis. With respect to MANOVA, a 
null hypothesis for the signal evaluated relative to noise is 
typically tested with an F-distribution proxy, which is not 
appropriate here for the same reasons F-statistics are dis-
couraged with Procrustes ANOVA. Rather, a sampling dis-
tribution of Roy’s maximum root can be generated with the 
same RRPP strategy used for Procrustes ANOVA5 P-values 
for Roy’s maximum root are calculated as the percentile of 
observed statistics in their corresponding sampling distribu-
tions and effect sizes are calculated as in Eq. (15).

With respect to an ordination plot of SNR , mean-cen-
tered Procrustes coordinates can be projected onto the 
eigenvectors of S−1

RandomME
SSystematicME , which have a maxi-

mum number of min(s − 1, r − 1) , to visualize systematic 
ME patterns. For example, if two replicates are used in the 
ME experiment, points will fall on one line. The paired 
points for subjects will indicate if there is a consistent 
left-right pairing, which would be indicative of systematic 
ME. More than two replicates increases the dimensions in 
which systematic ME can manifest, but the principle is the 
same; systematic ME is a consistent divergence of points 
in such a plot. Multivariate SNR plots will reveal, perhaps 
better than PC plots, the pattern of systematic ME, as the 
orientation of the vectors is specific to systematic ME, 
relative to random ME. This could be helpful compared 
to a PC plot, where other factors can influence the rota-
tion of eigenvectors and thus, the dispersion of points is a 

(20)�SNR = S
−1
RandomME

SSystematicME,

space reduced to the first 2–3 vectors. It might be of inter-
est to standardize the systematic error-to-noise ratio as, 
S
−1∕2

RandomME
SSystematicMES

−1∕2

RandomME
 , which yields a symmetric 

matrix that produces orthogonal eigenvectors. Although 
eigenanalysis will produce the same eigenvalues, their dis-
tribution will be different (see Bookstein and Mitteroecker 
(2014) for details), so caution would be needed to assure 
the order of eigenvectors is appropriate. The concern for 
orthogonal vectors is not strongly needed, however, as the 
points in these projections should not be interpreted as 
shape variation in the space tangent to shape space. The 
plots simply reveal the consistency of systematic ME rela-
tive to noise (random ME).

An example of how SNR plots can be used is shown in 
Fig. 5. In these example plots, the same digitizing prejudice is 
applied to two sets of data, the second also applying group dif-
ference shifts (tail lengthening) to the first set. An interesting 
attribute to this example is that systematic ME seems to differ 
between the two data sets, even though the same digitizing 
prejudice was simulated. It is difficult to fully appreciate the 
utility of the SNR plots in this example, but this is because the 
group differences in shape that were also simulated obscure 
interpretation. We will return to this issue after considering 
how ICC statistics can also be generalized.

The equations for ICC can also be generalized and eigena-
nalysis performed in a similar manner. The ICC generaliza-
tions are as follows:

and

where, MS is the covariance matrix form of MS and � is the 
multivariate generalization of a ratio, for ICC . However, as 
a generalization, it is not clear how useful � matrices are, 
since the same covariance matrices ( MS ) are used multi-
ple times in the calculation of these matrix generalizations, 
meaning they are singular (not positive-definite). Eigenana-
lyses of these matrices might be helpful, producing a distri-
bution of eigenvalues that are ICC scores for corresponding 
eigenvectors, with ICC maximized in the first vector, but 
this value will be most likely inflated compared to an ICC 
statistic based on dispersion, making it challenging to use as 
descriptive statistic. A generalized ICC value can be found 
as 
∏

��i� for the distribution of eigenvalues(�i ) (sensu Book-
stein & Mitterœcker 2014), but because the matrices are 

(21)�ICC =(MSs −MSW )
−1(MSs + (r − 1)MSW );

(22)

�ICCA
=(MSs −MSResiduals)

−1(MSs + (r − 1)MSresiduals

+ r∕s(MSr −MSresiduals));

(23)
�ICCC

=(MSs −MSResiduals)
−1(MSs

+ (r − 1)MSresiduals);

5 It is important to realize that the same strategy (within-subject 
RRPP) is used to obtain sampling distributions, whether Roy’s maxi-
mum root or SNR are used as test statistics. Alternative statistics 
could also be used. Generally, P-values and Z-scores will be similar 
in terms of interpretation but not perfectly rank-correlated unless they 
are linear transformations of each other, like SNR and F . However, 
alternative sampling distribution strategies are not needed if different 
statistics are used.



193Evolutionary Biology (2024) 51:179–207 

singular, the generalized statistic is certain to be 0. However, 
we recommend examining the cumulative product by eigen-
vector, i.e., 

∏i=j

i=1
��i� for eigenvalues, �1, �2, ..., �j , allowing 

the generalized ICC statistic to be examined before it attenu-
ates. It will be challenging to garner an appreciation for the 
values, themselves, but it should still be possible to evaluate 
the divergence between agreement and consistency of ICC 
values, at least in the first few vectors. For the concerns we 
addressed with these matrices, we do not recommend pro-
jection of mean-centered Procrustes coordinates on these 
vectors for graphical results. The SNR eigenvectors explicitly 
maximize systematic ME relative to random ME in the first 
vector, so a graphical representation cannot be improved 
with ICC ordination plots.

We have indicated multiple times that ICC values could 
be improved by sampling disparately-shaped subjects, and 
therefore, caution against reliance on these statistics is war-
ranted. However, it is worth considering how sampling 
research subjects from groups with known shape differ-
ences can obfuscate interpretations of ME. Just as dispa-
rately shaped groups of subjects might be separated in a 
PC plot, so too might they be separated in a SNR eigenvec-
tor plot, effectively reducing the length of vectors between 

subject replicates compared to the spread of subject shapes 
in the plot (see Fig. 5, for example). Additionally, sampling 
individuals of both sex from sexually dimorphic species, or 
sampling several individuals from vastly differently shaped 
species can result in rather clustered sets of points in an 
SNR eigenvector plot, making interpretation of systematic 
ME challenging. Although this might seem like a sampling 
problem, it is perhaps one to embrace, because it is possi-
ble that systematic ME as a result of digitizing prejudice is 
not homogeneous across all specimens; digitizing prejudice 
might differ among groups of specimens. Although previ-
ous ME analytical strategies have focused on evaluating the 
amount of ME relative to subject variation, variation in ME 
associated with different groups or strata sampled along with 
subjects have not been explored, to the best of our knowl-
edge. We argue, however, including potential group differ-
ences should be a welcomed analytical consideration, and 
can be accomplished with simply adding a grouping factor 
to analyses and accounting for the grouping factor in calcula-
tion of ICC or generation of SNR eigenvector plots.

Fig. 5  Principal component 
plots (top row) and SNR 
eigenvector plots (bottom row) 
for two examples of systematic 
ME: no group differences in 
shape (left) and obvious group 
differences in shape (right). 
The same, per-subject digitiz-
ing prejudice was simulated 
for both data sets. Points are 
colored by replicates in each 
plot and different symbols cor-
respond to different groups. The 
SNR eigenvector plots contain 
vectors above points, showing 
the connection of subject points 
in the plot. The scale of the SNR 
axes are different, with group 
differences appearing to make 
the amount of systmatic ME 
look smaller than it actually is
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Accounting for Group Differences in the Analysis 
of ME

It is not unreasonable that the subjects used in a GM-ME 
experiment come from groups with different shapes (like 
species). It is also not unreasonable—rather, recom-
mended—that a GM-ME experiment includes disparately-
shaped research subjects, so that any pattern of systematic 
ME that might pertain to research subjects of a particular 
group can be recognized. All the statistics and analysis pre-
sented thus far would not be easily capable of revealing var-
ied systematic ME by groups, unless data are subsetted to 
different groups for analysis, a practice that is neither needed 
nor recommended.

If it is known before analysis that subjects are sampled 
from different groups (as in Fig. 5), a grouping factor can 
be included in all analyses. The subject factor subsumes the 
effect of group, when holding subject variation constant, as 
research subjects are unique to groups. However, it is pos-
sible to test a systematic ME × group interaction as part of 
the analysis. By using type II SSCP , a test of this interac-
tion would hold constant the effects of both subjects and 
replicates, meaning variation that would be normally con-
sidered random ME could be parsed into a systematic ME × 
group component and smaller random ME component. For 
calculating ICC , the group effect can be removed from the 
subject variation by using the residual shapes from groups 
to estimate the subject variation (tantamount to centering 
all group means at the origin). This step can also assist SNR 
eigenvector plots by removing the scatter due to group dif-
ferences from interpretation of paired differences in shape 
among subjects.

For the example in Fig. 5, Table 2 provides most of the 
statistics discussed (excluding multivariate ICC generalized 
values, which would have to be considered by component) 
and Fig. 6 provides an updated SNR plot for the set of data 
that have inherent group differences. These data had a con-
sistent digitizing prejudice (tail lengthening in one replicate) 
applied to all research subjects, so no group-specific digitiz-
ing prejudice was made.

We start by summarizing results for the data set with-
out group structure, in which a consistent digitizing preju-
dice was simulated. The systematic ME R2 was the same, 
regardless of whether a group factor was included in the 
linear model, and it was small ( R2 = 0.0076 ). Random 
ME was also small and together, it might not be alarm-
ing that only R2 ≈ 0.028 of the shape variation was due 
to ME. However, systematic ME was highly significant 
and had a fairly large effect, whether using SNR or Roy’s 
maximum root ( ZSNR = 5.9144 ; ZRoy = 7.9485 , P = 0.001 
in both cases). Approximately 27% of the ME was sys-
tematic, resulting in a SNR of 0.3788, which changed little 
by adding groups (0.3926). Although all ICC values were 

≈ 0.94 or higher, there was a little disparity between ICCA 
and ICCC , perhaps indicative of a systematic ME signal, 
but not as obvious as the ANOVA results. These values 
were little changed by adjusting for groups, meaning the 
ICC values were not excessively augmented by sampling 
subjects from different groups.

By contrast, the same digitizing prejudice simulated for 
subjects that differed much more in shape because they were 
sampled from differently shaped groups resulted in greater 
systematic ME, overall. Without considering group differ-
ences in the analysis, the SNR rose to 1.8600; random ME 
was similar as in the previous data so this value indicates an 
increase in systematic ME. Effect sizes ( Z-scores) decreased 
despite the increase in SNR , but ICC values changed little. 
However, including a group factor in the analysis added a 
highly significant and large Systematic ME × groups effect 
( ZSNR = 5.7285 ; ZRoy = 4.1256 , P = 0.001 in both cases), 
increasing SNR (to 2.1894). Interestingly, adding group 
effects substantially increased the systematic ME effect 
size, just for MANOVA (from 10.4763 to 13.5606) and the 
effect was more pronounced for the systematic ME effect for 
MANOVA, although the systematic ME × groups effect was 
larger for ANOVA.

ICC values were slightly reduced for ICC and ICCA when 
including group effects, reflecting the tendency for dispa-
rately shaped groups to inflate subject variation. The dispar-
ity between ICCA and ICCC was also larger than for the data 
set without group structure, suggesting the systematic ME 
from the same digitizing prejudice was larger, which was 
confirmed with ANOVA and MANOVA.

At first blush, it might be disheartening that an analysis 
would find both strong systematic ME and strong systematic 
ME × group effects for a consistent digitizing prejudice, irre-
spective of group. However, this result is not surprising. The 
digitizing prejudice was made by a shift in tail landmarks, 
regardless of whether subjects were sampled from short-
tailed or long-tailed groups. The same shift in an individual 
from a short-tailed species will more profoundly increase 
the relative tail size than the same shift in an individual 
from a long-tailed species. This example elucidates what 
should be a standard principle: digitizing prejudice does not 
translate to equitable systematic ME; the choice of subjects 
matters. This example also revealed that a digitizing preju-
dice in the direction of group differences can augment or 
retard estimated group shape differences. Not accounting 
for group in the ME analysis might mean overlooking this 
phenomenon. A comprehensive evaluation of the methods in 
the ME analysis in this example is explored with simulation 
experiments for the six scenarios in Table 1.
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Statistical Properties Assessed from Simulation 
Experiments

Simulation experiments were performed for every exam-
ple in the Motivating examples section, above. In every 

experiment, Hi and Ri were randomly simulated for every 
research subject in every run, varied by the amount of 
inter-subject shape variation and random ME, respectively. 
The experiments varied the composition of elements in Gj 
and Sj in a non-random, specific way, based on experiment 

Table 2  Example of results 
obtained from four different 
analyses of ME, for two data 
sets (Fig. 6)

One data set has no inherent group differences in shape (even if there is a presumptive group factor); the 
other data set has inherent difference in shape (like species differences). Table columns correspond to: 
measurement error analysis for data set 1 (no group structure), not including groups as a factor in the analy-
sis (ME1); measurement error analysis for data set 1, including groups as a factor in the analysis (ME1g); 
measurement error analysis for data set 2 (group structure simulated), not including groups as a factor in 
the analysis (ME2); and measurement error analysis for data set 2, including groups as a factor in the analy-
sis (ME2g). Values in bold correspond to significant test results ( � = 0.05 ), based on RRPP with 1000 
random permutations

Statistic ME1 ME1
g

ME2 ME2
g

R
2 , systematic ME 0.0076 0.0076 0.0207 0.0207

R
2 , systematic ME × groups – 7e-04 – 0.0017

R
2 , random ME 0.02 0.0193 0.0112 0.0095

�2 , systematic ME 0.2747 0.2747 0.6503 0.6503
�2 , systematic ME × groups – 0.0254 – 0.0526
�2 , random ME 0.7253 0.6998 0.3497 0.297
SNR, systematic ME 0.3788 0.3926 1.86 2.1894
SNR, systematic ME × groups – 0.0363 – 0.1771
Z
SNR

 , systematic ME 5.9144 5.9 4.0048 4.0274
Z
SNR

 , systematic ME × groups – 0.1779 – 5.7285
Roy’s �

max
 , systematic ME 8.9486 8.9531 11.7138 35.8667

Roy’s �
max

 , systematic ME imes groups – 0.5107 – 2.7862
Z
Roy

 , systematic ME 7.9485 7.6324 10.4763 13.5606
Z
Roy

 , systematic ME × groups – −0.5596 – 4.2156
ICC 0.9457 0.9457 0.9372 0.9372
ICC

A
0.9461 0.9461 0.9385 0.9385

ICC
C

0.9597 0.9597 0.9772 0.9772
ICC, group-adjusted 0.9457 0.9444 0.9372 0.8354
ICC

A
 , group-adjusted 0.9461 0.9448 0.9385 0.8437

ICC
C
 , group-adjusted 0.9597 0.9587 0.9772 0.9382

Fig. 6  For the same data with group difference in Fig. 5, plots of subject scores on the SNR eigenvectors for data that removes group shape dif-
ferences. Three plots are shown for subjects, by groups, to facilitate an understanding that systmatic ME tends to be greater for one group
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objectives. This model allowed us to collectively consider 
the six experiments for the six examples, described above. 
We used 20 research subjects within three groups for all 
experiments (60 research subjects, total). Landmark con-
figurations contained 11 landmarks, but only two of which 
were changed in Gj or Sj . A total of 500 simulation runs 
were performed in all cases, and 1000 RRPP permutations 
were performed for each ME analysis, for both raw land-
marks and Procrustes coordinates, following GPA, within 
every run. The P-value was recorded for the effects, sys-
tematic ME and systematic ME:groups (if appropriate), 
and the portion of cases a null hypothesis of no system-
atic ME was rejected at a significance level of � = 0.05 
(if P < 𝛼 ) was recorded. For evaluation of type I error 
rates, 95% confidence intervals for a true rejection rate 
of � = 0.05 were calculated from a binomial probability 
distribution, sensu Anderson and Walsh (2013; Supple-
mentary Material), using the prop.test function of R 
(R Core Team, 2023).

The results from simulation experiments are too numer-
ous to present comprehensively, but are available in the Sup-
plementary Material, in their entirety. The Table 3 below 
summarizes the results in practical terms. There are also R 
scripts in the Supplementary Material that can be used to 
replicate simulation experiments.

Summarizing across experiments, it is clear that ICC sta-
tistics are not that valuable for detecting the relative portions 
of systematic and random components of ME, and whether 
systematic ME varies among groups; that SNR statistics and 
plots are valuable tools for understanding how ME manifests 
in shape data; that GPA can actually buffer the effects of a 
digitizing prejudice; that ANOVA and MANOVA tend to 
offer consistent interpretation, although the effect sizes can 
vary a little; and finally, one should not assume a consist-
ent digitizing prejudice results in consistent systematic ME, 
especially if there are subjects sampled from disparately 
shaped groups. Type I error rates were universally appropri-
ate, regardless of the amount of random ME or whether there 
were group shape differences, whether GPA was performed, 
and whether using ANOVA or MANOVA. The analytical 
paradigm had good statistical power, regardless of data type, 
for detecting effects that were simulated.

As a more comprehensive demonstration of the methods 
presented in this paper, an empirical example is more prac-
tical. We next re-evaluate a previously published example 
below with the techniques we have outlined, discussing the 
strengths and weaknesses of each approach.

Empirical Example: Reanalysis of Fruciano et al. 
(2017)

To illustrate the utility of the procedures developed here, 
we performed a reanalysis of the empirical dataset found 

in Fruciano et al. (2017). The original study was conducted 
to examine the effects of combining landmark data from 
multiple observers and scanning devices. The dataset con-
sisted of three-dimensional landmark data obtained from 
the crania of 23 marsupial species. Surface scans were 
obtained from each cranium using three different scanning 
technologies (devices), and each scan was digitized by two 
different observers, who recorded the locations of 31 three-
dimensional landmarks on each (seven landmarks were sub-
sequently removed following initial inspection). Thus, the 
final dataset contained 138 landmark configurations, com-
prising six replicates (2 observers × 3 devices) for each of 
23 species, with 24 landmarks digitized on each. Fruciano 
et al. (2017) correctly noted that this experimental design 
had the potential for ME to be introduced at several levels, 
and conducted a series of analyses to inspect this possibility. 
Two of their analyses are most relevant here. First, they used 
an analysis of variance on the Procrustes-aligned coordinates 
to extract variance components (species, side, species × side, 
device, observer), and to calculate R2 values for each model 
effect. The R2 values for device and observer were then 
treated as estimates of ME for comparison with other model 
effects. Second, they conducted tests of ‘bias’ on subsets of 
the data using a series of pairwise comparisons (e.g., among 
devices for the same observer, and between observers for 
the same device). Here they performed separate Procrustes 
alignments for each subset of data, and used a permutation 
test to evaluate pairwise group differences (Fruciano et al., 
2017). Significant differences between groups were treated 
as evidence of systematic digitizing bias between observers 
or devices.

The analytical approach employed by Fruciano et al. 
(2017) was not fully capable of interrogating the effects of 
ME in this dataset. One reason is that they utilized a stand-
ard symmetry-based ANOVA design (as found in Klin-
genberg, 2010), which only described overall ME for each 
specified error term. That is, the procedure implemented by 
Fruciano et al. (2017) identified variation among devices 
and among observers, but did not parse ME into its random 
and systematic components, nor did it consider any group-
specific systematic ME. In addition, the pairwise compari-
sons among groups that they calculated were obtained from 
separate Procrustes alignments on different subsets of the 
data. As such, the resulting summary values were incompa-
rable across tests, rendering any synthetic generalizations 
based on them inconclusive. Our reanalysis below provides 
additional insights regarding the nature of ME in this dataset 
that were not easy to consider prior to the methodological 
development in this paper.

For our reanalysis, we first performed a Procrustes align-
ment of all specimens, and following Fruciano et al. (2017) 
extracted the symmetric component of shape variation 
(Fig. 7A). We then conducted a principal component analysis 
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Table 3  Conclusions from simulation experiments

Experiment Purpose Conclusions

1 Effect of digitizing noise on systematic ME 1. Increasing random ME had no observable effect on ANOVA 
or MANOVA effect sizes or SNR statistics

2. Increasing random ME reduced dispersion-based ICC scores, 
more so for Procrustes coordinates than raw landmarks. ICC, 
ICC

A
 , and ICC

C
 were all consistent, irrespective of the amount 

of random ME or whether GPA was performed
3. Dispersion-based ICC scores could be reassuringly large 

despite a large amount of random ME, provided subjects were 
different in shape

4. Multivariate ICC eigenvector scores were difficult to interpret, 
especially because ICC

C
 could become negative (with large ME 

or GPA performed), owing to singularities imposed by matrix 
products. ICC were nearly all equal to 1 in the first few compo-
nents, regardless of the amount of random ME or whether GPA 
was performed

5. SNR plots did not reveal any patterns
6. Type I error rates were appropriate, regardless of the amount 

of random ME, or whether GPA was performed
2 Effect of sampling from differently shaped groups on system-

atic ME
1. Increasing group differences tended not to induce meaningful 

changes in SNR, or Z-scores for either systematic ME or the 
systematic ME by group interaction of ANOVA, or the Z-scores 
of MANOVA, regardless of the amount of group difference or 
whether GPA was performed

2. Type I error rates were appropriate regardless of the amount 
of group shape difference, whether GPA was performed, or 
whether ANOVA or MANOVA was used

3. Dispersion-based ICC statistics were consistent among the 
three types and increased as group differences increased. These 
stats were mitigated by adjusting for group differences, but 
were still reassuringly (and perhaps, unreasonably) large

4. Multivariate ICC stats were again difficult to interpret. The 
scores were nearly 1 in all cases in the first component. In 
lower components, the same trends as the dispersion stats 
seemed to take place, unless ICC scores were negative

5. ICC
A
 and ICC

C
 stats tended to be consistent, when adjusting 

for groups
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Table 3  (continued)

Experiment Purpose Conclusions

3 Effect of the same digitizing prejudice applied to different 
groups of subjects

1. When there were no group shape differences, small systematic 
ME did not tend to produce a significant systematic ME effect, 
but large systematic ME did. No amount of systematic ME 
tended to induce a significant systematic ME:group effect. This 
was true for both ANOVA and MANOVA

2. When there were group shape differences, the same tenden-
cies were observed for systematic ME effects as with no group 
shape differences, but larger systematic ME also induced sig-
nificant systematic ME:group effects, for Procrustes coordinate 
data (not for raw landmarks)

3. The statistical power associated with detecting systematic ME 
increased fast with increased distizing prejudice, regardless of 
method or data type

4. The statistical power associated with detecting systematic 
ME:group increased more moderately, but only for Procrustes 
coordinate data, and more so for ANOVA than MANOVA

5. ICC stats followed the same trends as before with these excep-
tions: disparity between ICC

A
 and ICC

C
 scores increased with 

the amount of systematic ME (although all scores were large, 
regardless); and, larger group shape differences exacerbated the 
disparity

6. SNR plots revealed that a larger difference between shapes in 
digitizations could be found for one group versus another, for 
Procrustes coordinates, for the same digitizing prejudice.—A 
consistent digitizing prejudice should not be expected to pro-
duce consistent measurement error if speciemns are sampled 
from disparately shaped groups

4 Effect of a digitizing prejudice applied to one group, in the 
direction of group shape differences

1. ANOVA and MANOVA results were consistent with Experi-
ment 3 with one exception: sytematic ME:group effects were 
larger than sytematic ME effects. Nevertheless, a digitizing 
prejudice applied to only one group of subjects induced both 
systematic ME and systematic ME:group effects, both increas-
ing with the size of the digitizing prejudice

2. Increasing group shape difference did not have any appreciable 
change in the statistical power curves, even though applying the 
digitizing prejudice to only one group would impact the shape 
differences among groups, if averaged over replicates

3. The statistical power increased at a slightly faster rate for the 
systematic ME:group effect than the systematic ME effect, also 
more so for raw landmarks than Procrustes coordinates, and 
more so for ANOVA than MANOVA

4. There were no appreciable differences between ICC scores 
from Experiments 3 and 4, despite large differences between 
ANOVA and MANOVA effect sizes. However, the dispar-
ity between ICC

A
 and ICC

C
 scores was reduced, suggesting 

systematic ME was of little concern
5. SNR plots demonstrated a good ability to detect the digitizing 

prejudice localized to one group
6. The ANOVA �2 and SNR statistics remained rather consist-

ent, despite changing group shape differences, and highlighted 
well the tendency for digitizing prejudice to be localized to one 
group.—Collectively, the results in this experiment demon-
strate that GPA can buffer systematic error from a digitizing 
prejudice, and ANOVA or MANOVA can reveal the extent to 
which a digitizing prejudice is varied among different groups of 
organisms
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to inspect patterns of shape variation among species in mor-
phospace, and to visually discern whether device differences 
or observer differences were evident. Next we performed 
a series of measurement error analyses, using the analyti-
cal procedures developed in this paper. Our first analysis 
extracted the overall components of systematic and random 
ME by treating the six repeated observations for each species 
(2 observers × 3 devices) as within-subject replicates. Next 
we performed analyses that included clade as a grouping 
factor, in which different subjects could be assigned to sub-
clade A, subclade B, or a one-species outgroup. (This factor 
was not included in measurement error analyses by Fruciano 
et al. (2017) but was important for evaluating the effect of 
measurement error on estimates of phylogenetic signal.) The 
goal in the second analysis was to consider whether random 
ME as estimated in the first analysis could be cloaked as 
group-specific systematic ME. 10,000 within-subject RRPP 
permutations were used for these analyses. The test of the 
among-subject effect restricted RRPP permutations within 
replicates for consistency.

Finally, we examined the extent to which the direction 
of systematic ME aligned with other aspects of biological 
signal in this dataset, by examining the correlation of prin-
cipal vectors for different effects. The biological signals that 
could be considered were the effects of species or clade, 
which are inherently correlated as clades comprise species 
within them (a species or subject effect inherently includes 
a clade effect). Either a species effect or clade effect is con-
stant across RRPP permutations that sample within subjects, 
as subjects are species, in this case. Therefore, the princi-
pal eigenvector of the sums of squares and cross-products 
(SSCP) matrix for either species or clade is unchanged 

across permutations. Adding parameters for observers, 
devices, or observer × device interactions will result in dif-
ferent principal eigenvectors for each SSCP across RRPP 
permutations, as replicates are randomized within species. 
The same RRPP procedure used to evaluate components of 
systematic and random measurement error allows a permuta-
tion test of vector correlations between biological signal and 
sources of systematic ME. For these tests, a null hypothesis 
of vector independence would be rejected if the correlation 
between vectors—the cross-product between unitized eigen-
vectors—is larger than expected by chance (i.e., the angle 
between vectors, which is the arccosine of the vector cor-
relation, is smaller than expected by chance). We performed 
permutation tests based on the 10,000 RRPP fits used in the 
previous analysis (not including clade as a factor that inter-
acts with replicates), parsing the parameters for replicates 
into operator, device, and interaction parameters, in order 
to calculate separate SSCP matrices, and thus, eigenvectors.

For all tests, a level of significance of � = 0.05 was used. 
The functions, measurement.error and plot.meas-
urement.error from the RRPP R package (Collyer 
& Adams, 2023) were employed, along with gpagen in 
the geomorph R package to perform GPA (Baken et al., 
2021). We also used the functions, focusMEonSub-
jects, interSubVar and plot.interSubVar from 
the RRPP R package to evaluate how ME for specific sub-
jects might cause concerns for estimates of species shapes.

Empirical Results The principal component plot (Fig. 7B) 
was identical to that presented by Fruciano et al. (2017) 
(Fig. S4), and revealed that replicate observations within 
species were generally tightly clustered compared to inter-
species variation. The visual evidence was also supported by 

Table 3  (continued)

Experiment Purpose Conclusions

5 Effect of a digitizing prejudice applied to one group, in the 
direction opposite of group shape differences

1. All conclusions from Experiment 4 are exactly the same for 
Experiment 5.—Collectively, the results in this experiment 
demonstrate that digitizing prejudices in a direction of group 
shape differences—whether increasing or decreasing shape dif-
ferences – have similar analytical results, and can confirm the 
group to which the digitizing prejudice was applied

6 Effect of a digitizing prejudice applied to one group, in a direc-
tion orthogonal to group shape differences

1. Most conclusions in Experiments 4 and 5 were retained in 
Experiment 6 except for three alternative conclusions: the 
systematic ME:group effects were large but only slightly larger 
than systematic ME effects, regardless of data type or method; 
the SNR plot continued to reveal the greater systematic ME 
in one group, despite less ability for digitizing prejudice to 
change shape differences among groups; and, the ICC stats 
became more consistent (between ICC

A
 and ICC

C
 ), suggesting 

digitizing prejudice was not a problem.—Collectively, these 
results elucidate that a digitizing prejudice that does not aug-
ment or retard group shape differences is still detectable, and 
the amount of systematic ME applied to one group was still 
obvious in SNR plots. These results are not available with ICC 
statistics
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traditional Procrustes ANOVA statistics. For instance, 96.6% 
of the total variation was described by among-species differ-
ences, but only 3.4% of the variation was attributable to ME 
(Table 4). Additionally, there was high repeatability across 
replicate observations ( ICC > 0.960 ). (The three ICC sta-
tistics were also consistent, and the multivariate generalized 
ICC statistic was 0.9996 for each of the three statistic types 
in the first component of each generalized matrix.) Neverthe-
less, using the novel statistics and their evaluation, as pre-
sented in this paper, revealed some reason for concern. First, 
15.5% of the ME was systematic ME, which was signifi-
cant and displayed a large effect, whether for the univariate 
analysis of dispersion ( Z = 7.4545;P = 0.0001 ; Table 4) or 
the multivariate analysis ( Z = 7.8823;P = 0.0001 ; Table 5). 
Additionally, the systematic error-to-noise ratio ( SNR ) was 
18.4%, which was only small if compared to the SNR of sub-
jects (3338.4%), illustrating how sampling from disparately 
shaped groups can obfuscate interpretation.

Moreover, adding clade as a grouping factor to the meas-
urement error analysis had an interesting effect. First, the 
subject variation reduced from R2 = 0.9658 to R2 = 0.7082 . 
(This is the shape variation among subjects, accounting for 
clade differences.) The amount of variation explained as 
systematic ME remained the same, R2 = 0.0053 , however, 
the former R2 = 0.0289 for random ME was now parti-
tioned into R2 = 0.0065 and R2 = 0.0224 , for the systematic 
ME:clade interaction and random ME, respectively. Thus, 
18.9% of the total ME could be explained by the system-
atic ME:clade interaction, meaning the SNR statistics for 
systematic ME and systematic ME:clade were 23.7% and 
28.9%, respectively. The effect sizes for systematic ME were 
slightly changed by adding clades (increased for ANOVA 
but decreased for MANOVA). However, the effect of adding 
clades meant that a significant systematic ME:clade effect 
was observed for both dispersion ( Z = 2.8630;P = 0.0014 ) 
and multivariate analysis ( Z = 3.3087;P = 0.0001 ). That 
the systematic ME effect size increased for ANOVA 
but decreased for MANOVA, but the effect size for the 

systematic ME:clade effect was greater in MANOVA, sug-
gests that the group effect was more associated with the 
changes in covariances among Procrustes coordinates; i.e., 
differences between replicates could be more associated with 
the direction of replicate vectors rather than the length of the 
vectors in a PC plot.

ICC statistics were again misleading. Accounting for 
clades reduced ICC dispersion statistics, but only slightly 
( ICC = 0.943−0.949 , for all three types.) ICC statistics were 
all 0.999 in the first component for the multivariate analysis. 
The ICC statistics merely confirmed that subjects were so 
different in shape that even obvious differences from digitiz-
ing could be dismissed. This was not a consistent interpreta-
tion when viewing SNR plots (Fig. 7C:F).

The SNR plots revealed that in three cases, ME was a 
concern for the subjects sampled compared to other subjects: 
Dendrolagus goodfellowi, Setonix brachyurus, and Aep-
yprymnus rufescens. The concerns were not as apparent in 
the PC plot, or were not strongly apparent compared to other 
clusters of points for subjects. For example, in the PC plot, 
point-scatter for Onychogalea fraenata and O. unguifera 
compared to most other subjects might elicit some concern, 
but it was apparent in the PC plot that the scanning devices 
clustered as pairs, meaning the spread of points was compar-
atively reduced for these two species in the SNR plots. The 
three species that stood out tended to have inconsistent pat-
terns compared to other species, which might explain why 
a significant systematic ME:clade interaction was observed. 
For both Dendrolagus goodfellowi and Aepyprymnus rufes-
cens, there was a strong operator difference associated with 
the first SNR eigenvector, but additionally, the most diver-
gent (A. rufescens) or nearly most divergent (D. goodfel-
lowi) estimates of shape came between the two operators 
while using photogrammetry as the method of data acquisi-
tion (even more so than between operators with different 
devices). By contrast, only one operator had a divergent esti-
mate of shape with photogrammetry for Setonix brachyu-
rus, otherwise the estimates of shape were rather clustered 

Table 4  Analysis of variance 
tables evaluating random and 
systematic components of 
measurement error, for the 
empirical example

Df R
2 �2 SNR Z P

A: Analysis without clade effect
 Subjects 22 0.9658 33.3843 20.0540 0.0001
 Systematic ME 5 0.0053 0.1551 0.1835 7.5934 0.0001
 Random ME 110 0.0289 0.8449
 Total 137

B: Analysis with clade effect
 Subjects 22 0.7082 31.5462 23.4077 0.0001
 Systematic ME 5 0.0053 0.1551 0.2365 7.7152 0.0001
 Systematic ME:groups 10 0.0065 0.1892 0.2885 2.0120 0.0216
 Random ME 100 0.0225 0.6557
 Total 137
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(Fig. 7F). Interestingly, these three species were all found in 
a similar portion of the shape space, divergent in shape from 
most other species. These results suggest that systematic ME 
can be localized (appear only for certain subjects) because of 
divergent digitizing prejudices only for certain subjects, and 
as resoundingly suggested already, sampling from a broader 
set of subjects can hide such concerns, if conclusions are 
based on statistics that relativize ME by subject variation.

These results allude to shape estimation concern because 
the choice of operator-scanner combination that can affect 
the estimates of shape differences among subjects. Although 
neither vectors for operator digitizing prejudices nor device 
digitizing prejudices were significantly correlated with either 
species or clade vectors, the interaction between operator 
and device was significantly correlated with both species 
( Z = 3.1220;P = 0.0001 ) and clade ( Z = 2.3068;P = 0.0011 ) 
(Fig. 8A). Furthermore, a heat map of variances (Fig. 8B) 
among inter-species (Euclidean) shape distances revealed 
concern about the estimates of Dendrolagus goodfellowi and 
Aepyprymnus rufescens shapes, as there was greater vari-
ability in shape distances between these and other species, 
meaning choice of an operator-device combination could 
affect estimates of shape, and thus, shape variation. The con-
cern for Setonix brachyurus was not as evident in this plot, 
suggesting that outside of the one aberrant estimate, shape 
estimates were consistent.

Discussion

This article provides a conceptual and mathematical inves-
tigation of the subject of measurement error as it pertains 
to geometric morphometric data. We argued that the cur-
rent state of the field does not arm empiricists with the 
tools required for determining whether ME should be of 
concern in their datasets, largely because of their inabil-
ity to distinguish between systematic and random ME. 
Through several motivating examples we developed a set 
of analytical procedures and graphical tools that dissect 

the random and systematic components of ME from one 
another, and extract any group-specific systematic ME 
that may be present. Through simulation and empirical 
examples we demonstrated that relying on simple sum-
mary measures such as the ICC or R2 is insufficient for 
determining whether ME is a problem, and that inter-
subject variation can obfuscate the effects of systematic 
ME in a sample. By contrast, we illustrated that our new 
procedures are capable of detecting how and where ME 
affects patterns of shape variation, and thus downstream 
biological inferences made from such data. Overall our 
procedures provide a deeper interrogation of ME than is 
currently accessible, thereby formalizing a new paradigm 
for how empiricists should investigate the effects of meas-
urement error in multivariate data.

From the extensive simulations performed here, we 
can conclude that the analytical paradigm we have pro-
posed does not produce spurious results and has appro-
priate statistical properties. We were able to determine 
from the simulation experiments that (1) random ME does 
not produce significant patterns of systematic ME, irre-
spective of the amount of ME, but (2) the same digitizing 
prejudice applied to subjects sampled from groups with 
disparate shapes might not only produce significant sys-
tematic ME in an hypothesis test, but also a significant 
systematic ME by group interaction. This possibility is 
important. It means that as a practice, a consistent digi-
tizing prejudice might not be negligible for GM data, if 
applied to all research specimens. It made sense that with 
the simulation experiments the digitizing prejudice could 
have varied results, as the groups differed in tail shape 
and the prejudice of lengthening or shortening a tail by 
an absolute amount with respect to landmark placement 
would impact short-tailed and long-tailed species differ-
ently. It is perhaps no surprise that a consistent digitiz-
ing prejudice could spur varied types of systematic ME. 
Researchers familiar with generalized Procrustes analysis 
(GPA) are probably universally aware of the “Pinocchio 
effect”, whereby a displacement of a single landmark (e.g., 
tip of Pinocchio’s nose) in one landmark configuration, in 
which all alternative landmarks are in the same location in 
a replicate configuration, will result in different locations 
of every Procrustes coordinate in the configuration, fol-
lowing GPA (Klingenberg, 2021). If a nose tip was shifted 
exactly x units in the same direction for two landmark 
configurations—but the configurations already differed in 
terms of nose length—the changes in relative nose length 
would differ between the configurations and distribution 
of change across all landmarks should not be expected to 
be the same.

However, for GM studies, measurement error should be 
focused on the precise estimate of shapes, and thus, shape 
differences, so a direct link between process and pattern is 

Table 5  Multivariate analysis of variance tables evaluating random 
and systematic components of measurement error, for the empirical 
example

�
max

Z P

A: Analysis without clade effect
 Subjects/random ME 3015.3400 9.0960 0.0001
 Systematic ME/random ME 5.5374 7.8823 0.0001

B: Analysis with clade effect
 Subjects/random ME 1939.6671 2.6229 0.0001
 Systematic ME/random ME 7.7918 6.3449 0.0001
 Systematic ME:groups/random ME 20.6687 3.3087 0.0001



202 Evolutionary Biology (2024) 51:179–207

Fig. 7  A Set of 138 Procrustes-aligned specimens, representing the 
skulls of 23 individuals whose landmarks were digitized by two dif-
ferent observers on each of three separate 3D scans. B Principal com-
ponents plot of 138 shapes, colored by operator and with symbols 
representing different scanning devices. C–F SNR plots of system-
atic ME versus random ME, shown uniquely for different clades and 

focused on problematic specimens. The SNR plots are clade-centered, 
so the origin represents the clade mean. G, H Thin-plate spline (TPS) 
transformation grids (scaled 2 × to facilitate interpretation) for one 
specimen, and one device (photogrammetry), but differing by opera-
tors in the two plots. Both dorsal and ventral grids are shown. The 
reference configuration is the clade-adjusted mean
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not required (so long as it can be ascertained how a process 
produces a pattern). Therefore, that a consistent digitizing 
prejudice can produce varied amounts of systematic ME is 
not a worry, as much as one should be worried that subject-
specific systematic ME can lead to spurious estimates of 

shape. Furthermore, relativizing ME, whether systematic or 
random, by subject variation can minimize concern for ME, 
and (3) relying on statistics that find a ratio of subject vari-
ation and within-subject replicate variation (like ICC statis-
tics) should be avoided. Both our simulated and empirical 
results emphasized this. ICC statistics measure repeatability, 
and strong repeatability might seem to be associated with 
lack of ME, but such interpretations depend on the scale of 
subject variation. A researcher might be comforted to recog-
nize that despite digitizing prejudices and potential (random) 
instrument ME, their ability to measure species differences 
in shape is substantial, as species are much more different 
in shape than replicated measurements on the same species. 
This line of thinking is probably okay, provided the data set 
does not comprise any similarly shaped species. Alterna-
tively, if some species have recent evolutionary divergence 
and are more similar in shape, and these species are com-
pared to other disparately shaped species with longer peri-
ods of divergence, it should be imperative to have precise 
estimates of shape differences between the similar species, 
especially if within-clade rates of evolutionary divergence 
could be measured. Reducing concern for ME in such cases 
based on a more global perspective of shape variation would 
be unfortunate.

Foremost, ME studies should be considered experimen-
tal. They might not sample from all specimens that would 
be used in broader study but understanding the impact of 
using different researchers, different cameras, different scan-
ning devices, etc., would likely be an early-step, exploratory 
procedure (preliminary experiment) rather than a hopeful 
confirmation after all data have been collected, haphazardly. 
Therefore, with a careful, balanced design that employs all 
possible replicate measurements on the same set (or sub-
set) of subjects, a concomitant analytical paradigm with the 
statistical power to detect subtle but meaningful sources of 
shape variation should be desired. The simulated and empiri-
cal results in this paper confirm that (4) large effect sizes can 
be measured for systematic ME, even if the amount of vari-
ation is small compared to subject variation. Furthermore, 
(5) SNR plots can help elucidate the localized problems that 
trigger large systematic ME effect sizes. The SNR plots are 
especially helpful, as they find eigenvectors that maximize 
systematic ME relative to random ME. Both simulated and 
empirical results illustrated how these plots can reveal pat-
terns that might be missed with PCA, alone. If one wishes 
to identify potential sources of systematic ME rather than 
reassure themselves that it is not an issue, then the methods 
we presented appear to facilitate this goal.

One inadvertent suggestion we might have made is that a 
GM-ME experiment needs to be balanced. This implication 
is more so related to the calculation of ICC statistics that 
use the number of replicates in their calculation. Although 
imbalance of replicate sampling does not necessarily 

Fig. 8  A The same PC plot as in the previous figure, however, color 
coded by clade, and with vectors illustrating principal eigenvectors of 
SSCP matrices for different effects. The vectors for operator, device, 
and interaction are appropriately scaled in a relative sense (longer 
vectors mean large effect). These vectors have also been scaled 10× 
with respect to species and clade vectors, to faciliate interpretation. 
Species with substantial measurement error are labeled with abbrevi-
ations: Dendrolagus goodfellowi, Setonix brachyurus, and Aepyprym-
nus rufescens. B A heat map showing the relative amount of variabil-
ity (variance) for inter-species shapae differences, based on the six 
different replicates. Darker colors mean more variable estimates
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preclude ICC calculation, its value as an effect size would 
certainly be compromised without balanced replication. 
Alternatively, the RRPP strategy we have used does not 
require replicate balance. By restricting RRPP permutations 
within subjects, it is possible to generate distributions of 
statistics based on uneven replicate sampling within subject. 
(Even subjects with only one replicate could be technically 
included in the analysis, although any inference about sys-
tematic ME with regard to such subjects would not be pos-
sible.) For GM-ME studies, we do not recommend designs 
that are greatly imbalanced, as it would be difficult to rely 
on the eigenvectors produced for replicate effects if some 
replicates are poorly represented. However, provided all 
replicates are suitably sampled from most subjects, it would 
still be possible to make subject-specific evaluations in SNR 
plots, in spite of missing replicates. Further research would 
be required to develop a better understanding of how sam-
pling problems could cause misinterpretations of system-
atic ME. With the methods we have developed here, such 
research should be possible to explore (in terms of statistical 
properties).

One outcome that we did not anticipate is that GPA 
can mitigate the systematic ME caused by a digitizing 
prejudice. This phenomenon was evidenced by the com-
paratively, substantially lower statistical power to detect 
general or group-specific systematic ME in simulation 
experiments that applied a digitizing prejudice to one 
group. By having simulation experiments where the gen-
eral locations of landmarks were somewhat fixed because 
of invariance to translation and rotation (small random 
displacements, notwithstanding), we could perform ME 
analyses on raw landmarks. Furthermore, because type I 
error rates were appropriate, the larger statistical power 
associated with analysis on landmarks cannot be explained 
by random size, orientation, or location results of configu-
rations. Rather, in the case of using landmarks, systematic 
ME was akin to a Pinocchio effect, and more evident by 
the change in location of just two landmarks between rep-
licates. GPA mitigated this effect. This is an interesting 
result, as recent concerns whether GPA can induce spuri-
ous results in terms of variable covariances (e.g., Cardini, 
2019) could lead one to be concerned whether GPA could 
induce systematic ME. Our results found no evidence of 
this, but just the opposite. A consistent digitizing prejudice 
that misplaces one or few landmarks might not be as pro-
found for Procrustes coordinates as for the raw landmarks. 
Furthermore, GPA cannot induce spatial covariances of 
Procrustes coordinates within configurations that are dif-
ferent than the original configurations, unless a sliding 
algorithm is used for semilandmarks. GPA will necessarily 
alter the covariances among landmarks for a set of con-
figurations. It remains possible that a digitizing prejudice 
applied to just one or few configurations could grossly 

alter the covariance structure of a set of Procrustes coordi-
nates for many specimens, but for such a case in reality, an 
aberrant specimen in terms of shape or extreme systematic 
changes to landmarks only in a few specimens would likely 
be needed to provoke such results. The methods we have 
introduced would probably not be needed to identify the 
inherent problems with such data.

One practical issue we have not considered is what 
might be a plan of action, given results from an analysis of 
data from an GM-ME experiment. For example, with the 
empirical data collected by Fruciano et al. (2017) it could 
be decided that obtaining the means of the six replicates 
for each species is a safe endeavor for further analysis (see 
Arnqvist & Mårtensson, 1998). Alternatively, a research 
team might wish to revisit the operator-device combina-
tions for the few exceptional species, especially to learn 
why photogrammetry produced disparate results. The 
analytical results and plots we produced indicate poten-
tial sources of problems but do not necessarily have to 
alarm researchers that these problems are substantial. By 
contrast, relying on ICC statistics could have the opposite 
problem of assuaging researchers’ concerns when con-
cerns are warranted. The especially useful tool of using 
points in SNR plots to generate thin-plate spline transfor-
mation grids can allow one to decide if shape changes 
associated with systematic ME are minor or major. We 
provided one example of such exploration of shape dif-
ferences between replicates (Fig. 7G, H). Whether this 
warrants re-digitization is a decision the researcher can 
make. Alternatively, one might consider in the empirical 
example which operator and scanning device combinations 
tended to yield the most consistent results. (For example, 
the combination of operator 1 and Solutionix laser scanner 
tended to produce shape estimates nearest to the means 
of replicate measurements for most species, in the SNR 
plots.) The analytical paradigm we propose here makes 
such determinations possible.

Nevertheless, one motion we wish to make in this paper 
is that researchers should not assuage concern for ME by 
focusing strongly on subject variation. The large statistical 
power from our simulation experiments (Supplementary 
Material) is possible by having a statistical method that pre-
serves subject variation across random permutations, allow-
ing a precise, focused test of replicate variation, capable of 
discerning trends independent of and despite subject varia-
tion. This is important. It should be possible to detect these 
trends, even if a PC plot fails to reveal them (because the 
first few principal components are strongly associated with 
inter-subject shape variation). Fruciano et al. (2017) also 
observed significant variation in shape estimates based on 
scanning device but suggested using fewer principal compo-
nents of the data alleviated these concerns. Naturally, using 
a subset of principal components that largely reveal trends in 
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subject shape variation could eliminate concern for ME. But 
this is a biased statistical approach. Our results suggest, by 
contrast, that using a better method of inquiry and evaluation 
pinpoints the concerns that could be addressed rather than 
swept under the rug with data reduction. As a research tool, 
the results of this example indicate a path for addressing 
measurement error. The researchers can (1) identify which 
subjects are of concern, (2) visualize the shape difference 
associated with the first few SNR eigenvectors, (3) ascertain 
whether it is an operator or device digitizing prejudice that is 
a concern, or (4) whether it is an interaction of these preju-
dices that are a concern, and (5) identify whether systematic 
ME is localized to a portion of the sample shapes.

Naturally, there will be an inherent desire for research-
ers to reconcile whether ME (especially systematic ME, but 
random ME, as well) impedes their ability to test hypoth-
eses that address biological questions. There might also be 
a natural inclination to wish to assuage fears about ME, if 
the amount of overall ME variation is small compared to 
subject variation. We have indicated that sampling from a 
diverse population of shapes can mitigate concerns for ME 
using the methods that have been traditionally employed to 
measure ME. We do not wish to suggest that sampling from 
a diverse population of shapes is bad idea; quite the con-
trary, we recommend it! However, if one wishes to evaluate 
whether ME is an attribute that can be disregarded, it is 
imperative that honest assessments of components of ME 
are made independent of subject variation. The analytical 
paradigm we present makes it possible to produce sampling 
distributions of statistics, found independent of the subject 
variation sampled, meaning one need not be concerned with 
how subject variation impacts interpretation of ME.

An interesting juxtaposition arises with these new meth-
ods. We could consider, for example, a research team that 
performs a GM-ME experiment with a small portion of 
the taxa they wish to examine in a full study, to investigate 
whether non-unique digitizing strategies could impact their 
results. Upon obtaining results, they decide to add a few 
more subjects, especially adding representation of more 
divergently shaped taxa, and re-evaluate the data. With tra-
ditional statistics like ICC , results seem to improve. With 
the ME test we introduce here, perhaps the systematic ME 
× groups effect size increases. How would one deal with 
this possible outcome? With the methods we introduce, it 
becomes possible with broad sampling to determine if digi-
tizing prejudices can manifest as localized systematic ME. 
This has not been an easily achievable inference to attain 
with traditional methods. The biometer retains the capac-
ity to decide if ME is negligible but now with methods 
that do not conflate subject and digitizer variation. More 
importantly, the biometer is not dissuaded from investigat-
ing possible sources of digitizing prejudices, even if subtle, 

unlike the false reassurance that might be found from simple 
descriptive statistics.

To the best of our knowledge, there has not been statis-
tical development as rigorous as we have covered in this 
paper, for ME studies with GM data. Although we do not 
expect that the methods we present here represent the pos-
sible panoply of methods that could be developed on this 
subject, we believe the development of appropriate sta-
tistical methods (that test systematic ME, independent of 
subject variation) and graphical tools advance the scientific 
endeavor of measurement error analysis in GM studies con-
siderably more than it has advanced in the last few decades. 
We suspect that a future research direction could be the 
development of better experimental designs for GM-ME 
experiments, another area that has not received strong con-
sideration. Coupled with an appropriate and expandable 
method of analysis (in terms of factorial models), this devel-
opment should be easily achievable.
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