
[11:33 30/7/2014 Sysbio-syu030.tex] Page: 685 685–697

Syst. Biol. 63(5):685–697, 2014
© The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved.
For Permissions, please email: journals.permissions@oup.com
DOI:10.1093/sysbio/syu030
Advance Access publication April 30, 2014

A Generalized K Statistic for Estimating Phylogenetic Signal from Shape and Other
High-Dimensional Multivariate Data

DEAN C. ADAMS∗

Department of Ecology, Evolution, and Organismal Biology, and Department of Statistics, Iowa State University, Ames IA, 50011, USA;
∗Correspondence to be sent to: Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA;

E-mail: dcadams@iastate.edu.

Received 28 October 2013; reviews returned 5 March 2014; accepted 21 April 2014
Associate Editor: Richard Glor

Abstract.—Phylogenetic signal is the tendency for closely related species to display similar trait values due to their common
ancestry. Several methods have been developed for quantifying phylogenetic signal in univariate traits and for sets of
traits treated simultaneously, and the statistical properties of these approaches have been extensively studied. However,
methods for assessing phylogenetic signal in high-dimensional multivariate traits like shape are less well developed,
and their statistical performance is not well characterized. In this article, I describe a generalization of the K statistic of
Blomberg et al. that is useful for quantifying and evaluating phylogenetic signal in highly dimensional multivariate data.
The method (Kmult) is found from the equivalency between statistical methods based on covariance matrices and those
based on distance matrices. Using computer simulations based on Brownian motion, I demonstrate that the expected value
of Kmult remains at 1.0 as trait variation among species is increased or decreased, and as the number of trait dimensions is
increased. By contrast, estimates of phylogenetic signal found with a squared-change parsimony procedure for multivariate
data change with increasing trait variation among species and with increasing numbers of trait dimensions, confounding
biological interpretations. I also evaluate the statistical performance of hypothesis testing procedures based on Kmult and
find that the method displays appropriate Type I error and high statistical power for detecting phylogenetic signal in high-
dimensional data. Statistical properties of Kmult were consistent for simulations using bifurcating and random phylogenies,
for simulations using different numbers of species, for simulations that varied the number of trait dimensions, and for
different underlying models of trait covariance structure. Overall these findings demonstrate that Kmult provides a useful
means of evaluating phylogenetic signal in high-dimensional multivariate traits. Finally, I illustrate the utility of the new
approach by evaluating the strength of phylogenetic signal for head shape in a lineage of Plethodon salamanders. [Geometric
morphometrics; macroevolution; morphological evolution; phylogenetic comparative method.]

Phylogenetic comparative biology is predicated on the
notion that species are not independent due to their
shared evolutionary history (Felsenstein 1985; Revell
et al. 2008). This insight is derived largely from the
observation that closely related species tend to be
similar in their trait values; a pattern termed phylogenetic
signal (Blomberg et al. 2003; Munkemuller et al. 2012).
Indeed, simply having knowledge of the evolutionary
relationships among species, and an expected model
of trait evolution, is sufficient to analytically derive
the expected degree of covariation between taxa under
the evolutionary model specified (see Felsenstein 1985;
Grafen 1989; Harvey and Pagel 1991; Martins and
Hansen 1997; Garland and Ives 2000; Rohlf 2001;
Rezende and Diniz-Filho 2012). Importantly, because this
covariation is not zero, species are not evolutionarily
independent, and as such statistical procedures that
assess patterns in cross-species data must account
for this nonindependence by including the expected
covariation among taxa in the analysis (Revell 2010).

In macroevolutionary studies, one often examines
the consequences of shared evolutionary history by
determining the degree to which phylogenetic signal is
displayed in phenotypic traits. For instance, estimating
levels of phylogenetic signal in phenotypic data has
been used as a guide to determine whether statistical
analyses of cross-species data must take phylogeny
into consideration (e.g., Abouheif 1999; Rheindt et al.
2004; Møller et al. 2008), although this practice has
been questioned on theoretical grounds (Rohlf 2006;

Revell 2010). Likewise, identifying differences in the
degree of phylogenetic signal exhibited across classes
of traits can provide insights into which aspects of the
phenotype are more evolutionarily labile than others
(e.g., Blomberg et al. 2003; see also Gittleman et al.
1996). On the other hand, it is well recognized that
phylogenetic signal alone is not a direct means of
elucidating the evolutionary processes responsible for
phenotypic diversification, because multiple processes
can produce similar patterns of phylogenetic signal (see
Blomberg et al. 2003; Revell et al. 2008; Ackerly 2009;
(Pennell and Harmon, 2013)). Nevertheless, examining
the degree to which traits exhibit phylogenetic signal
is an important step in understanding how phenotypic
variation is distributed across species (Klingenberg and
Gidaszewski 2010; Rezende and Diniz-Filho 2012), and
how such patterns associate with patterns of species
diversification (Cardini and Elton 2008).

Over the past two decades, several approaches have
been developed to estimate phylogenetic signal in
phenotypic data sets. These methods differ primarily
in how they characterize the dependency between trait
covariation among species and the evolutionary
relationships of those taxa. For instance, some
approaches measure the fit of the phenotypic data to
the phylogeny under a particular model of evolutionary
change using likelihood. A parameter that scales
elements of the phylogenetic covariance matrix is
included during this optimization, and this parameter is
then treated as an estimate of phylogenetic signal (e.g.,
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Pagel 1999; Freckleton et al. 2002; Blomberg et al. 2003;
Zheng et al. 2009). Other methods utilize the association
between phenotypic variation among species and their
phylogenetic relationships, which can be estimated from
matrix correlation methods or through autoregressive
and related procedures (e.g., Abouheif 1999; Cubo et al.
2005; Pavoine et al. 2008). Another common approach
estimates phylogenetic signal as the ratio of observed
to expected phenotypic variation, given a phylogeny
and a Brownian motion model of evolution (Blomberg
et al. 2003). Several studies have examined the statistical
attributes of different methods, and have identified
common analytical elements across procedures (see
Harmon and Glor 2010; Hardy and Pavoine 2012;
Munkemuller et al. 2012; Pavoine and Ricotta 2012).

Many empirical studies have estimated the strength
of phylogenetic signal in single, univariate traits such
as morphological measurements (e.g., Ackerly 2009;
Blankers et al. 2012; Roncal et al. 2012) or behavioral
variables (e.g., Gingras et al. 2013; Kamilar and Cooper
2013; see also Blomberg et al. 2003). However, organismal
phenotypes are often characterized multivariately, either
by a set of traits treated simultaneously or by complex,
multidimensional traits such as shape. For sets of
traits treated simultaneously, Pagel’s � can be used to
estimate the degree of phylogenetic signal displayed in
the data set (Freckleton et al. 2002; for a conceptually
related approach see Zheng et al. 2009). However,
an unappreciated limitation of this approach is that
when the number of trait dimensions equals or exceeds
the number of taxa in the phylogeny (p ≥ N),
Pagel’s � cannot be estimated, because the matrix
computations used to obtain the likelihood of the model
are singular. Alternatively, the degree of phylogenetic
signal can be estimated for multivariate data using the
Mantel correlation between phylogenetic distances and
phenotypic distances (e.g., Polly 2001; Cardini and Elton
2008; Ivanovic et al. 2009; Perez et al. 2009). However,
Mantel tests often display inflated Type I error rates
and low statistical power when used for this purpose
(Harmon and Glor 2010). Therefore, these procedures
may not be optimal for assessing phylogenetic signal in
high-dimensional multivariate data.

Recently, an approach was proposed for estimating
the degree of phylogenetic signal in multidimensional
phenotypic traits like shape (Klingenberg and
Gidaszewski 2010). Multidimensional traits are
phenotypic attributes that require more than one
number to encode. Examples of multidimensional
traits include function-valued traits that characterize
ontogenetic trajectories, growth curves, and reaction
norms (sensu Kirkpatrick and Heckman 1989;
Kirkpatrick and Meyer 2004), or the shapes of
anatomical objects as quantified from geometric
morphometric methods (Klingenberg and Gidaszewski
2010; Adams 2014; see also McPeek et al. 2008). As
with sets of univariate traits treated simultaneously,
evolutionary changes in multidimensional traits
correspond to shifts in the position of a species in a
high-dimensional trait space whose axes correspond

to trait dimensions (Klingenberg and Gidaszewski
2010; Adams 2014). However, unlike sets of traits,
the values that describe multidimensional traits (i.e.,
trait dimensions) are mathematically interrelated,
and cannot be assessed independently of one another
(Adams and Rosenberg 1998; Rohlf 1998; Klingenberg
and Gidaszewski 2010; Adams 2011). Thus, because
each trait dimension does not have independent
biological meaning, phenotypic patterns across species
must be characterized using all dimensions of the
multidimensional trait simultaneously, rather than
being estimated from each trait dimension individually.
This distinction is important, as conceptually it
implies that while a set of phenotypic traits should
have multiple estimates of phylogenetic signal (one
per trait), a complex multidimensional trait has but
one phylogenetic signal. Put simply, a single trait
has a single phylogenetic signal, even if that trait is
multidimensional.

To estimate phylogenetic signal for multidimensional
traits, Klingenberg and Gidaszewski (2010) proposed
fitting the phenotypic data to the phylogeny using
squared-change parsimony. They then estimated the
sum of squared changes (SSCs) of the trait across
all branches of the phylogeny to obtain a single
estimate of phylogenetic signal in the multidimensional
trait (Klingenberg and Gidaszewski 2010). Under this
formulation, smaller values of SSC correspond to a better
fit of the data to the phylogeny, and thus represent a
higher degree of phylogenetic signal. However, while the
approach is intuitive and conceptually straightforward,
a number of complications limit its utility. First, the
method relies on ancestral state estimation; a procedure
known to have large standard errors (see Losos [2011]
and references therein). Thus, uncertainty in ancestral
states can lead to less reliable estimates of phylogenetic
signal. Second, the statistical properties of the approach
have not been investigated under known (simulation)
conditions. Third, SSC has no a priori expected value,
and as such estimates of SSC cannot be compared among
phenotypic traits as there is no relative scale on which
those comparisons can be made. Finally, as I demonstrate
below, estimates of SSC change in proportion with
increasing levels of trait variation among species, and
as the number of trait dimensions is increased. These
patterns complicate biological interpretations based on
SSC. Thus, for high-dimensional phenotypic data like
shape, an alternative estimate of phylogenetic signal is
desired.

In this article, I describe a multivariate generalization
of the K statistic of Blomberg et al. (2003) that is useful
for quantifying and evaluating phylogenetic signal in
high-dimensional multivariate traits like shape. The
method (Kmult) is derived from the equivalency between
statistical methods based on covariance matrices and
those based on distance matrices. Consistent with
this equivalency, the distance-based approach (Kmult)
provides estimates of phylogenetic signal for univariate
data that are numerically identical to those obtained
using the standard covariance-based equation for K.
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When used on multivariate data, I show that under
Brownian motion, the expected value of Kmult is
1.0 across a range of trait dimensions, and remains
constant as trait variation among species increases or
decreases. Using computer simulations I then show that
hypothesis testing procedures based on Kmult display
acceptable Type I error and appropriate statistical power
for detecting phylogenetic signal in high-dimensional
multivariate traits like shape. Finally, a biological
example is presented which demonstrates the utility
of the approach. Computer code written in R for
implementing the procedure is also provided.

ESTIMATING PHYLOGENETIC SIGNAL WITH KAPPA

The K statistic of Blomberg et al. (2003) estimates the
strength of phylogenetic signal in a data set relative
to what is expected given a Brownian motion model
of evolution. Under Brownian motion, evolutionary
changes in a single trait along the phylogeny have an
expected value of zero and a variance among species
(�2) that accumulates proportional to time (Edwards and
Cavalli-Sforza 1964; Felsenstein 1973, 1981, 1985, 2004).
For multivariate data, the Brownian process is described
by a covariance matrix (R) whose diagonal elements
represent the evolutionary rate for each trait dimension
(�2), and whose off-diagonal elements express the
covariation in changes between trait dimensions (see
Felsenstein 1988; Revell and Harmon 2008). Analytically,
K is obtained as the function of two ratios (see Blomberg
et al. 2003; Revell and Harmon 2008). The numerator of K
is a ratio of observed variation in the data relative to the
observed variation while accounting for phylogenetic
covariance. The denominator of K is the ratio of variation
expected under Brownian motion relative to the number
of taxa in the phylogeny. Thus, the numerator of K is
computed from the observed data, the phylogeny, and
the evolutionary model (Brownian motion), whereas
the denominator is obtained solely as a function of the
phylogeny and the evolutionary model.

For a univariate trait, K may be computed as:

K =
(
Y−E

(
Y

))t (Y−E
(
Y

))(
Y−E

(
Y

))t C−1
(
Y−E

(
Y

))
/

tr(C)−N(1tC−11)−1

N−1
,

(1)
where Y is a N×1 vector of phenotypic values for N
species, E(Y) is a N×1 vector containing the phylogenetic
mean at the root of the phylogeny: â= (1tC−11)t(1tC−1Y),
1 is a N×1 vector of ones, and C−1 is the inverse of the
N×N phylogenetic covariance matrix. Under Brownian
motion, the diagonal elements of the phylogenetic
covariance matrix (C) contain the phylogenetic distances
from each tip to the root of the phylogeny, whereas the
off-diagonal elements contain the phylogenetic distances
from the root of the tree to the most recent common
ancestor for each pair of species (Martins and Hansen
1997; Garland and Ives 2000; Rohlf 2001). In Equation (1),
t represents the matrix transpose operation, tr designates

the trace of the matrix, and −1 is the matrix inverse
operation. Values of K range from 0→∞, with an
expected value of 1.0 under Brownian motion. Values
of K <1.0 describe data with less phylogenetic signal
than expected, and values of K >1.0 describe data with
greater phylogenetic signal than expected. Typically,
the observed value (Kobs) is evaluated statistically via
permutation, where data at the tips of the phylogeny are
randomized relative to the tree, and values of Krand are
obtained for each permutation of the data which are then
compared with Kobs (described in Blomberg et al. 2003).

A MULTIVARIATE GENERALIZATION OF KAPPA

The K statistic provides a statistical measure of
phylogenetic signal relative to expectations under
Brownian motion. However, this measure is only
suitable for univariate traits (Hardy and Pavoine
2012). To obtain a comparable measure for high-
dimensional multivariate data, I propose a distance-
based equation for Kmult that is found from the
statistical equivalency between covariance-based and
distance-based approaches for Euclidean data. From
a statistical perspective, analytical procedures often
summarize data matrices by their variances and
covariances. The K statistic is an example of such
an approach, as its numerator is a ratio of variances
for Y given the phylogeny (Equation (1)). However,
one can also summarize information in data using
the matrix of pairwise distances among specimens,
and it has been shown that covariance-based and
distance-based approaches often produce equivalent
results. For example, both principal components analysis
(covariance-based) and principal coordinates analysis
(distance-based) yield identical ordinations for the same
Euclidean data set (Gower 1966; see also Krzanowksi
1993; Legendre and Legendre 1998). Further, sums of
squares obtained from covariance-based methods such
as analysis of variance (ANOVA) and regression are
numerically identical to those obtained from distance-
based procedures such as permutational-ANOVA, when
applied to a Euclidean data vector (for a mathematical
derivation of this property, see Anderson [2001];
McArdle and Anderson [2001]). Thus, in many cases,
statistical summaries based on distances are equivalent
to those obtained from the more common covariance-
based procedures.

Here, I develop a multivariate generalization of K
that can be used to quantify phylogenetic signal in
multivariate traits. A worked example outlining all
of the computations described in this section may be
found in Appendix 1. To accomplish this generalization,
several elements of the covariance-based equation must
be reformulated. Specifically, those components that
describe the ratio of observed variation in the data given
the phylogeny (i.e., the numerator of K) must be adjusted
mathematically to account for the fact that multivariate
data are now being considered. First, we require an
alternative characterization of the observed multivariate
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variation relative to the phylogenetic mean. This may be
achieved by re-expressing the difference between species
means and the root of the phylogeny in terms of the
Euclidean distance between them:

Di,̂a =
√(

Yi−E
(
Y

))(
Yi−E

(
Y

))t
. (2)

In Equation (2), Yi is a row vector containing the p-
phenotypic values for the ith species and E(Y) is a row
vector containing the multivariate phylogenetic mean
(â). Using Equation (2), the Euclidean distances between
all species and the root of the phylogeny are obtained.
These are then concatenated into a N×1 column vector
(DY,̂a), and the observed variation (mean-squared error,
MSEobs) for the N species relative to the phylogenetic
mean is found as:

MSEobs =Dt
Y,̂aDY,̂a. (3)

Note that Equation (3) is similar to that used to obtain
sums of squares for linear models when variation is
expressed using distances (see Anderson 2001).

Next, the observed variation in the data while
accounting for phylogenetic nonindependence must be
calculated. This is accomplished using phylogenetic
transformation (Blomberg et al. 2003). First, the
phylogenetic covariance matrix (C) is re-expressed via an
eigen-decomposition (Garland and Ives 2000; Blomberg
et al. 2003). Here, the eigenvectors (U) and eigenvalues
(W) of C are obtained from C=UWU−1, and used to
construct the matrix E as:

E=
(

UW1/2Ut
)−1

. (4)

Next, the multivariate phenotypic data for all species
are transformed by the phylogeny as:

UY =E
(
Y−E(Y)

)
. (5)

where Y is a N×p matrix of phenotypic trait values
(N species by p dimensions), E(Y) is a N×p matrix
containing the multivariate phylogenetic mean, and
E represents the phylogenetic transformation matrix
described in Equation (4). Here, UY represent the
phenotypic data transformed by the phylogeny such
that they no longer contain phylogenetic covariances.
Note that Equation (5) differs from Equation (2) in
Blomberg et al. 2003 by including the phylogenetic
mean (̂a). The reason is that Equations (2) and (3) of
Blomberg et al. 2003 contain an error. Specifically, the
phylogenetic mean (̂a) should be in the phylogenetic
transformation step as shown above, rather than in
subsequent calculations as was originally presented
(Ives A.R., personal communication).

From the phylogenetically transformed data, the
Euclidean distance between each species value (the
rows of UY) and the origin is calculated, and these
are concatenated into a N×1 vector containing the
Euclidean distances from each species mean to the origin
(PDU,0). Finally, the variation for the N species given the

phylogeny (MSE) is found as:

MSE=PDt
U,0PDU,0. (6)

The remaining components of the covariance-based
equation of K represent the ratio of expected variation
given the phylogeny (i.e., the denominator of K).
Because these are obtained solely from the phylogeny,
no alteration is required for multivariate data. Thus,
combining Equations (1), (3), and (6) provides the
multivariate generalization of K as:

Kmult =
Dt

Y,̂aDY,̂a

PDt
U,0PDU,0

/
tr(C)−N(1tC−11)−1

N−1
. (7)

Finally, like the K statistic of Blomberg et al. (2003),
Kmult may be evaluated statistically via permutation,
where data at the tips of the phylogeny are randomized
relative to the tree, and values of Krand are obtained for
each permutation of the data which are then compared
with Kmult.

It is important to realize that for univariate data,
estimates of phylogenetic signal obtained using Equation
(7) are numerically identical to those obtained from
the variance-based methods typically used (Equation
(1)). A demonstration of this property is found in
Appendix 1. Thus, for univariate data, the distance–
covariance equivalency has been preserved for estimates
of phylogenetic signal, because values of K and Kmult
are numerically identical. However, when used on
multivariate data, Kmult provides a measure of the
strength of phylogenetic signal for multivariate traits
quantified in high-dimensional phenotypic spaces. Also,
like K, values of Kmult <1 imply that taxa resemble
each other phenotypically less than expected under
Brownian motion whereas values of Kmult >1 imply
that close relatives are more similar to one another
phenotypically than expected under Brownian motion.
Further, because this approach does not rely on the
inversion of covariance matrices, it is not restricted to
cases where the number of trait dimensions is less than
the number of species in the phylogeny (as is Pagel’s �).
This is particularly important for traits such as shape,
where the number of trait dimensions frequently exceeds
the number of species in a phylogeny (e.g., McPeek
et al. 2008; Klingenberg and Gidaszewski 2010). Thus,
the distance-based approach proposed here provides a
means of quantifying phylogenetic signal in phenotypic
traits that is not possible with alternative procedures
based on likelihood (e.g., Freckleton et al. 2002).

EXPECTED VALUE OF K mult UNDER BROWNIAN MOTION

Under Brownian motion, it has been shown that Khas
an expected value of 1.0 for univariate data (Blomberg
et al. 2003). Here, I show that for multidimensional
data, Kmult also exhibits this property. To evaluate
the expected value of Kmult, multivariate data were
generated by simulating data on the phylogeny under
a Brownian motion model of evolution. For these
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simulations, two distinct patterns of input covariance
structure were utilized to generate the multivariate data,
as described by the Brownian motion rate parameter,
�2. For the first case, the input variance for each
trait dimension was identical (e.g., �2

1 =�2
2), thereby

describing an isotropic model. For the second, variation
in each trait dimension was allowed to differ (e.g., �2

1 �=
�2

2), thus representing a nonisotropic model. Simulations
were conducted on a balanced phylogeny containing
32 species. For each simulation, the number of trait
dimensions was first selected (p=2, 4, 6, 8, 10, 20, 30).
Next, the initial level of input variance was selected
(�2 =0.01, 0.05, 0.1, 0.2, 0.4, 0.6, 1.0, 2.0), and from this
a p×p input covariance matrix was constructed. For
simulations assuming isotropic error, �2 was identical
for all trait dimensions as described above, whereas
for simulations assuming nonisotropic error, the input
�2 for each trait dimension was drawn from a normal
distribution following: �=�2

initial;std=0.2∗�2
initial. From

these initial covariance matrices, 100 phenotypic data
sets were obtained by simulating multidimensional
traits along the phylogeny following a Brownian motion
model of evolution. For each data set, phylogenetic signal
was estimated using Kmult as described above, and the
mean of the 100 values of Kmult was treated as the
expected value of the statistic under Brownian motion
(for a similar procedure see Blomberg et al. [2003]).
Additionally, for each data set I obtained estimates of
SSC to evaluate its expected value, because the statistical
properties of this measure have not previously been
determined.

Results
For all simulation conditions, Kmult displayed an

expected value near 1.0, and remained consistent as
the level of trait variation among species increased or
decreased. This finding was the case when data were
simulated under both isotropic (Fig. 1a) and nonisotropic
conditions (Fig. 1b). By contrast, the expected value of
SSC increased when input levels of variation among
species increased. When the number of trait dimensions
was increased, expected values of Kmult remained
near 1.0 for all conditions examined (Fig. 1c,d). However,
the expected value of SSC increased as the number of
trait dimensions increased. Overall these simulations
reveal that the expected value of SSC changes with
both increasing levels of trait variation among species
and with increasing numbers of trait dimensions. Thus,
there is no consistent value of SSC that is expected
under a Brownian motion model of evolution, because
values of SSC depend strongly on the degree of input
variation across species at the tips of the phylogeny.
Therefore, even under Brownian motion, it is not known
whether smaller values of SSC correspond to higher
levels of phylogenetic signal or lower levels of trait
variation. These properties greatly confound biological

interpretations based on SSC. By contrast, Kmult exhibits
an expected value of 1.0 under Brownian motion whether
trait variation among species is increased or decreased,
and remains consistent as the number of trait dimensions
is increased. Indeed, these are desirable properties, as
they imply that Kmult describes phylogenetic signal on
a relative scale that does not change across phenotypic
data sets, even if those data sets differ in their levels of
variation and number of trait dimensions.

STATISTICAL PERFORMANCE OF TESTS OF Kmult

The simulations presented in the previous section
demonstrate that the expected value of Kmult remains
constant across a range of trait variation and trait
dimensions. However, for Kmult to be a useful measure
of phylogenetic signal, statistical tests based on it
must also exhibit appropriate power and Type I
error rates. To evaluate the statistical performance
of hypothesis tests based on Kmult, I executed a
series of computer simulations, following the procedure
outlined in Blomberg et al. (2003). Initial simulations
were conducted on a balanced phylogeny containing
32 species. The multivariate data sets used in these
simulations were generated using three different models
of input covariance: (i) isotropic, where the input
variance for each trait dimension was identical (e.g.,
�2

1 =�2
2) and there was no input covariation between

dimensions; (ii) nonisotropic, where the input variance
in each trait dimension was allowed to differ from one
another (e.g., �2

1 �=�2
2) and there was no input covariance

between trait dimensions; and (iii) nonisotropic with
trait covariance, where the input variance in each trait
dimension was allowed to differ from one another (e.g.,
�2

1 �=�2
2) but where covariation among trait dimensions

was also included. For each simulation, the number
of trait dimensions was first selected (p = 2, 4, 6,
8, 50, 100). Note that the last two values of p (50
and 100) greatly exceed the number of species in
the phylogeny (N =32). Next, an initial p×p input
covariance matrix was constructed. For simulations
under an isotropic model, �2 =1.0 was chosen for all
trait dimensions. For simulations under a nonisotropic
model, the input �2 for each trait dimension was drawn
from a normal distribution following: �=1.0;std=
0.2, and the p×p covariance matrix was constructed
using these values as the diagonal elements. For
simulations under a nonisotropic model with among
trait covariance, a random p×p covariance matrix was
generated in the following manner. First, a lower-
triangular matrix L was generated by drawing values
from the normal distribution (�=0;std=1). Next, the
matrix product LLt was calculated, which produces a
positive semidefinite covariance matrix (following the
Cholesky decomposition: �=LLt). Thus, LLt represents
a random covariance matrix that included differing
amounts of input variation among trait dimensions and
covariation among trait dimensions.

 at Iow
a State U

niversity on A
ugust 18, 2014

http://sysbio.oxfordjournals.org/
D

ow
nloaded from

 

http://sysbio.oxfordjournals.org/


[11:33 30/7/2014 Sysbio-syu030.tex] Page: 690 685–697

690 SYSTEMATIC BIOLOGY VOL. 63

FIGURE 1. Simulation results evaluating the expected value of Kmult and SSC under a Brownian motion model of evolution. Data were
simulated on a balanced phylogeny containing 32 species. a) Expected values for Kmult and SSC found as the mean across 100 simulations for
multidimensional data (p=10) generated under an isotropic covariance structure. b) Expected values of Kmult and SSC for multidimensional data
(p=10) simulated under a nonisotropic covariance structure. In both (a) and (b), expected values are plotted as a function of increasing input
variation among species. c) Expected values for Kmult and SSC found as the mean across 100 simulations for data generated under an isotropic
covariance structure, and d) for data simulated under a nonisotropic covariance structure. In both (c) and (d), data were obtained with an initial
input variance of �2 =0.1, and expected values are plotted as a function of the number of trait dimensions (p).

From these initial covariance matrices, 1000
phenotypic data sets were obtained by simulating
multidimensional traits along the phylogeny following
a Brownian motion model of evolution. Following
Blomberg et al. (2003), tests of Type I error were
obtained by evolving phenotypic data on a star
phylogeny, and testing for phylogenetic signal on a
resolved tree. Likewise, statistical power was evaluated
by evolving data on a resolved phylogeny and testing
for phylogenetic signal on that tree. To obtain a known
range of phylogenetic signal, prior to simulating
phenotypic data the branch lengths of the phylogeny
were transformed by the parameter �, where �=0.0
transforms the tree to a star phylogeny whereas
� = 1.0 represents the original fully resolved tree.

Transformation values used in this study were: � = 0,
0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0 (for a similar procedure
see Blomberg et al. [2003]). Kmult was then estimated
for each data set and statistically evaluated using
the permutation described above. The proportion of
significant results (out of 1000) was then treated as the
Type I error or statistical power of the test, depending
upon initial simulation conditions.

Simulations were also performed across a wider
set of conditions to evaluate the robustness of the
method proposed here. These simulations evaluated
the effect of the number of taxa in the phylogeny
(N =16, 32, 64, 128), as well as the effect of randomly
generated phylogenies on statistical performance (N =
16, 32, 64, 128). Results from all simulations are found
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FIGURE 2. Simulation results evaluating the Type I error and statistical power of hypothesis testing procedures evaluating phylogenetic signal.
Data were simulated on a balanced phylogeny containing 32 taxa. a) Statistical power curves for data generated under an isotropic covariance
structure. Curves for increasing levels of trait dimensionality are shown. b) Statistical power curves for data generated under a nonisotropic
covariance structure. Curves for increasing levels of trait dimensionality are shown.

in the supplementary material available on Dryad
(http://dx.doi.org/10.5061/dryad.8fc86).

Results
For all simulations, hypothesis tests of phylogenetic

signal displayed appropriate Type I error rates near
the nominal value of � = 0.05. This pattern remained
consistent across the range of trait dimensionality
examined in this study, and was consistent when data
were generated using an isotropic model (Fig. 2a), a
nonisotropic model (Fig. 2b), and a nonisotropic model
containing among trait covariance (supplementary
material). In addition, the statistical power of tests
based on Kmult increased rapidly as the degree of
phylogenetic signal increased, and this pattern was
consistent when data were simulated under both
isotropic (Fig. 2a) and nonisotropic conditions (Fig. 2b
and supplementary material). Statistical power also
increased with increasing trait dimensionality, implying
that the ability to detect phylogenetic signal when it was
present increased as trait dimensionality increased. For
instance, for intermediate levels of input phylogenetic
signal on a 32 species phylogeny, statistical power
increased from 0.75 when p=2 to 0.95 when p=4
(Fig. 2a). A similar increase in statistical power was
observed for tests of phylogenetic signal when several
univariate traits were examined simultaneously (Zheng
et al. 2009), and when comparing phylogenetic rates
of evolution for multidimensional data (Adams 2014).
It should also be noted that Kmult displayed very
high statistical power even in instances when trait
dimensionality (p) greatly exceeded the number of
species on the phylogeny (N). Similar results were also
obtained on phylogenies with different numbers of taxa,
and on random phylogenies (supplementary material).
Overall these simulations reveal that hypothesis tests
based on Kmult have appropriate Type I error and

statistical power, and thus provide a useful means
of detecting phylogenetic signal in high-dimensional
phenotypic traits, regardless of whether those traits
display isotropic or nonisotropic covariance structure.

A BIOLOGICAL EXAMPLE

Here, I provide a biological example where I evaluate
the strength of phylogenetic signal in a high-dimensional
phenotypic trait (head shape) in a lineage of Plethodon
salamanders. Previous ecological work on Plethodon
has demonstrated that interspecific competition is
widespread in this group (e.g., Jaeger 1971; Hairston
1980; Anthony et al. 1997; Deitloff et al. 2009), and in
some instances, interspecific competition has resulted in
the evolution of morphological changes in head shape
(e.g., Adams 2010). Head shape also displays a strong
genetic component (Adams 2011), enabling selection
to generate heritable microevolutionary changes. The
competitive interactions between species are particularly
well studied between members of the monophyletic
Plethodon cinereus species complex, and this group also
displays changes in head shape as a result of these
interactions (Adams and Rohlf 2000; Adams et al. 2007;
Arif et al. 2007; Adams 2010; Deitloff et al. 2013). Thus,
head shape may diversify among species in this lineage
and as such it is of interest to determine whether head
shape exhibits phylogenetic signal in this group.

To test this, I quantified head shape in all species
using geometric morphometric methods (Bookstein
1991; Adams et al. 2013). First, 11 landmarks were
digitized from images of the left-lateral side of each
head (Fig. 3a) from 478 adult specimens from all species
in the P. cinereus species complex (data from Adams
and Rohlf 2000; Adams et al. 2007; Arif et al. 2007;
Myers and Adams 2008; Deitloff et al. 2013). Next, the
position of the jaw was standardized relative to the

 at Iow
a State U

niversity on A
ugust 18, 2014

http://sysbio.oxfordjournals.org/
D

ow
nloaded from

 

http://dx.doi.org/10.5061/dryad.8fc86
http://sysbio.oxfordjournals.org/


[11:33 30/7/2014 Sysbio-syu030.tex] Page: 692 685–697

692 SYSTEMATIC BIOLOGY VOL. 63

FIGURE 3. a) Positions of 11 anatomical landmarks used to quantify head shape in Plethodon salamanders (image from Adams et al. [2007]).
b) Fossil-calibrated molecular phylogeny displaying the estimated phylogenetic relationships among species in the P. cinereus subclade (from
Wiens et al. 2006). c) Histogram of Kmult values obtained from 999 permutations of the head shape data on the tips of the phylogeny, with the
position of observed value of Kmult identified. d) Plot of phylomorphospace viewed as the first two principal component axes of tangent space.

skull by rotating the jaw to a common articulation
angle among specimens. Specimens were then aligned
using a Generalized Procrustes analysis (Rohlf and
Slice 1990), and the set of 22 Procrustes tangent space
coordinates treated as shape variables for each specimen.
The mean head shape was then calculated for each
species. Using these data, the strength of phylogenetic
signal in head shape was then evaluated with Kmult,
calculated on a time-calibrated molecular phylogeny for
Plethodon containing 9 of the 10 members of this subclade
(Wiens et al. 2006; Fig. 3b). Statistical significance of
Kmult was determined using phylogenetic permutation.
In addition, patterns of head shape evolution were
visualized in phylomorphospace (Sidlauskas 2008),
where the extant taxa and the phylogeny were projected
into the morphological trait space, and visualized
along the first two axes of this space using principal
components analysis. All analyses were performed in R
3.0.1 (R Development Core Team 2013) using routines in

the library geomorph 2.0 (Adams and Otárola-Castillo
2013; Adams 2014), and new routines written by the
author (Appendix 2).

Results
Analyses indicated that head shape in Plethodon

exhibited significant phylogenetic signal (Kmult =0.957;
Prand =0.014), indicating that closely related species were
more similar to one another in head shape than was
expected under a Brownian motion model of evolution
(Fig. 3c). Thus, for the species examined here, there
is a significant degree of phylogenetic structure in
patterns of head shape variation among taxa. High levels
of phylogenetic signal such as those displayed here
are often attributed to processes related to ecological
or evolutionary conservatism (e.g., Swenson et al.
2007; Losos 2008). However, the link between levels of
phylogenetic signal and evolutionary processes is far
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from straightforward, as more than one evolutionary
process can produce a particular pattern of phylogenetic
signal (see Blomberg et al. 2003; Revell et al. 2008;
Ackerly 2009). Nevertheless, the trend of phylogenetic
signal in Plethodon head shape was quite evident when
head shape evolution was viewed in phylomorphospace
(Fig. 3d). Here, sister species tended to cluster in similar
regions of shape space, and less closely related taxa
were more morphologically divergent. Further, head
shape variation appeared to diversify and emanate
from a central point in shape space, with extant taxa
occupying more distant regions when compared with
their hypothesized ancestors. Additionally, the lack of
overlapping branches of the phylogeny implied that
there was little evidence of convergent evolution in head
shape in this group. As such it can be inferred that
species diversification in the P. cinereus species complex
is accompanied by similar trends in diversification in
head shape among species.

DISCUSSION

A common observation in macroevolution is that
closely related species tend to display similar trait
values, a pattern called phylogenetic signal. Although
quantifying phylogenetic signal in univariate traits
is relatively straightforward, methods for high-
dimensional multivariate data have remained
under-developed. In this article, I described a
generalization of the K statistic (Blomberg et al.
2003) that may be used to quantify phylogenetic signal
in high-dimensional multivariate traits. The method
(Kmult) extends existing approaches by quantifying
phylogenetic signal for multivariate data such that
the observed pattern of phylogenetic signal in high-
dimensional traits may be evaluated relative to what
is expected under a Brownian motion model of
evolution. Using simulations, I demonstrated that Kmult
exhibits an expected value of 1.0 for traits evolving
by Brownian motion. I also showed that tests based
on Kmult have appropriate Type I error rates and
high statistical power, for data simulated under both
isotropic and nonisotropic conditions. Further, the
approach is capable of detecting phylogenetic signal in
multidimensional traits whose dimensionality exceeds
the number of species examined. For instance, in the
biological example presented here only nine species of
Plethodon salamanders were examined, yet significant
phylogenetic signal was detected in a complex trait (head
shape) described by 22-dimensional data. Thus, Kmult
provides a useful means of evaluating phylogenetic
signal in high-dimensional traits like shape, even when
the number of trait dimensions greatly exceeds the
number of species in the data set.

One important implication of this work is that Kmult
is the only multivariate measure currently available
for evaluating phylogenetic signal that displays the
full range of statistical properties that allow both a
consistent diagnosis of the presence of phylogenetic

signal, and enables evaluations of the strength of
phylogenetic signal on a comparative scale relative to
expectations under Brownian motion. By contrast, all
other approaches have limitations in one or more of
these arenas. For instance, both Mantel tests and Pagel’s
� describe phylogenetic signal on consistent scales (−1
to 1 and 0 to 1, respectively). So at least in theory,
estimates of phylogenetic signal for different data sets
may be compared using these measures. However,
Mantel tests have low statistical power when used to
evaluate phylogenetic signal (Harmon and Glor 2010),
which limits their utility. Likewise, Pagel’s � can only
be used for multivariate data where the number of
species is greater than the number of trait dimensions.
For the latter approach this is a serious problem, as high-
dimensional multivariate data sets frequently contain
more trait dimensions than the number of species in
a phylogeny (e.g., McPeek et al. 2008; Klingenberg and
Gidaszewski 2010). Alternatively, the SSC measure may
be used to evaluate the significance of phylogenetic
signal in a multivariate data set. However, values of
SSC change in proportion with both the number of
trait dimensions and the amount of variation between
species. This lack of a consistent expected value means
that biological interpretations are challenged, as it is
not known whether lower values of SSC correspond to
greater phylogenetic signal or simply less phenotypic
variation among species. A further implication of this
result is that estimates of SSC cannot be compared
among phenotypic data sets, as there is no relative scale
on which those comparisons can be made.

In contrast to these approaches, values of Kmult are
represented on a common scale, with an expected
value of 1.0 under Brownian motion that remains
consistent across levels of trait variation and across
numbers of trait dimensions. Thus, reliable comparisons
of the strength of phylogenetic signal may be made
across data sets when using Kmult as a measure of
this signal (for an example with univariate data see
Blomberg et al. [2003]). Further, because tests based on
Kmult have appropriate Type I error and high statistical
power across a range of trait dimensionality, Kmult
does not suffer the shortcomings of some of the other
approaches mentioned above. When these observations
are taken together, only Kmult provides a powerful and
comparable means of evaluating phylogenetic signal in
high-dimensional multivariate data.

It is also important to recognize that the formulation
used to derive Kmult was obtained by leveraging
the distance to covariance equivalency common to
many multivariate statistical methods. Beyond enabling
a multivariate measure for estimating phylogenetic
signal, this advance provides a mathematical merger
of two quantitative approaches that are typically
not combined: phylogenetic comparative measures of
trait evolution (which are frequently described using
covariance-based methods), and assessing patterns of
phenotypic variation in high-dimensional trait spaces
(which are often described in terms of among-specimen
distances). Indeed, the insight that distance-based
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approaches can be used to estimate phylogenetic signal
provides a template for generalizing other phylogenetic
comparative approaches for their application to high-
dimensional data sets. Thus, current phylogenetic
approaches that evaluate macroevolutionary trends
using patterns of variation and covariation could be re-
expressed using their distance-based counterparts (e.g.,
Adams 2014). Such analytical advances will be critical to
future studies in macroevolution which are increasingly
characterizing phenotypes using high-dimensional data.
With such a framework, it will thus be possible to
evaluate trends in the tempo and mode of evolution in
all types of phenotypic traits measured on a continuous
scale (univariate, multivariate, and highly dimensional
traits).

SUPPLEMENTARY MATERIAL

Data available from the Dryad Digital Repository:
http://dx.doi.org/10.5061/dryad.8fc86.
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APPENDIX 1

WORKED EXAMPLE DEMONSTRATING THE EQUIVALENCY OF

K AND Kmult FOR UNIVARIATE DATA

In this example, five hypothetical species are related
by the following phylogeny and have the following
phenotypic values (Y):

The phylogenetic covariance matrix (C) representing
these evolutionary relationships under the hypothesis of
Brownian motion is:

C=

A B C D E
A
B
C
D
E

⎡⎢⎢⎢⎣
3 0 0 0 0
0 3 2 1 1
0 2 3 1 1
0 1 1 3 2
0 1 1 2 3

⎤⎥⎥⎥⎦ .

Under this model of evolution, the expected value at
the root of the phylogeny (or phylogenetic mean) is
estimated as: E(Y)= â= (1tC−11)−1(1tC−1Y), where 1 is
a vector of ones, and C and Y are as defined above (Rohlf
2001; Revell and Harmon 2008). In this case, â=3.684211.
An estimate of phylogenetic signal may then be found
using the standard variance-based equation:

K =
(
Y−E

(
Y

))t (Y−E
(
Y

))(
Y−E

(
Y

))t C−1
(
Y−E

(
Y

))
/

tr(C)−N(1tC−11)−1

N−1
,

which for this example, is: K =0.504.
To obtain the distance-based estimate (Kmult), the ratio

of observed trait variation relative to the phylogenetic
mean is re-expressed in terms of distances. First,
the numerator portion is found from the Euclidean
distances between species means and the root of the
phylogeny: Di,̂a =√

(Yi−E(Y))(Yi−E(Y))t. These are then
concatenated into a N×1 column vector (DY,̂a). For this
example, this vector is:

DY,̂a =

⎡⎢⎢⎢⎣
0.3157895
0.6842105
1.3157895
0.3157895
1.6842105

⎤⎥⎥⎥⎦.

The observed variation among species relative to the
phylogenetic mean is then found as:

MSEobs =Dt
Y,̂aDY,̂a =5.235457.

Next, the observed variation while accounting for
phylogenetic covariance is estimated. This is calculated
by first performing an eigen-decomposition on the
phylogenetic covariance matrix: C=UWU−1, and
using the eigenvalues and eigenvectors to obtain the
phylogenetic transformation matrix: E= (UW1/2Ut)−1.
For this example, the eigenvalues, eigenvectors, and E
are:

U=

⎡⎢⎢⎢⎣
0.0 0.0 1 0.0000 0.0000

−0.5 0.5 0 0.0000 −0.7071
−0.5 0.5 0 0.0000 0.7071
−0.5 −0.5 0 −0.7071 0.0000
−0.5 −0.5 0 −0.7071 0.0000

⎤⎥⎥⎥⎦ W=

⎡⎢⎢⎢⎣
7 0 0 0 0
0 3 0 0 0
0 0 3 0 0
0 0 0 1 0
0 0 0 0 1

⎤⎥⎥⎥⎦
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E=

⎡⎢⎢⎢⎣
0.5773 0.0000 0.0000 0.0000 0.0000
0.0000 0.7388 −0.2611 −0.0498 −0.0498
0.0000 −0.2611 0.7388 −0.0498 −0.0498
0.0000 −0.0498 −0.0498 0.7388 −0.2611
0.0000 −0.0498 −0.0498 −0.2611 0.7388

⎤⎥⎥⎥⎦
With the matrix E, the phenotypic data Y are
transformed by the phylogeny as:

UY =E
(
Y−E(Y)

)
.

For this example, this yields the following vector:

UY =

⎡⎢⎢⎢⎣
0.1823211

−0.7809499
1.2190501
0.6416998

−1.3583002

⎤⎥⎥⎥⎦.

The distances between UY and the origin are then
obtained, which for this example are:

PDU,0 =

⎡⎢⎢⎢⎣
0.1823211
0.7809499
1.2190501
0.6416998
1.3583002

⎤⎥⎥⎥⎦.

From this, the variation while accounting for
phylogenetic covariance is found as:

MSE=PDt
U,0PDU,0 =4.385965.

The expected variation given the phylogeny is then
obtained from:

tr(C)−N(1tC−11)−1

N−1
=2.368421.

Finally, Kmult is estimated from MSEobs, MSE, and the
denominator of K:

Kmult =
Dt

Y,̂aDY,̂a

PDt
U,0PDU,0

/
tr(C)−N(1tC−11)−1

N−1

For this example, Kmult = 0.504, which is identical to
the covariance-based estimate of K as found above.

APPENDIX 2

COMPUTER CODE FOR R
The function below estimates phylogenetic signal

(Kmult) for multidimensional traits and under a
Brownian motion model of evolution. The observed
value is statistically assessed using permutation, where
data at the tips of the phylogeny are permuted, and an
estimate of phylogenetic signal for the permuted data is
obtained, and compared with the observed value.

Test.Kmult<-function(x,phy,iter=999){
library(ape)
Kmult<-function(x,phy){

x<-as.matrix(x)
N<-length(phy$tip.label)

ones<-array(1,N)
C<-vcv.phylo(phy)
C<-C[row.names(x),row.names(x)]
a.obs<-colSums(solve(C))%*%x/sum(solve(C))

#evol.vcv code
distmat<-as.matrix(dist(rbind(as.matrix(x),a.obs)))
MSEobs.d<-sum(distmat[(1:N),(N+1)]ˆ2)

#sum distances root vs. tips
eigC <- eigen(C)
D.mat<-solve(eigC$vectors

%*% diag(sqrt(eigC$values))
%*% t(eigC$vectors))

dist.adj<-as.matrix(dist(rbind((D.mat
%*%(x-(ones%*%a.obs))),0)))

MSE.d<-sum(dist.adj[(1:N),(N+1)]ˆ2)
#sum distances for transformed data)

K.denom<-(sum(diag(C))-
N*solve(t(ones)%*%solve(C)%*%ones)) / (N-1)

K.stat<-(MSEobs.d/MSE.d)/K.denom
return(K.stat)

}
K.obs<-Kmult(x,phy)
P.val <- 1
K.val <- rep(0, iter)
for (i in 1:iter){

x.r<-as.matrix(x[sample(nrow(x)),])
rownames(x.r)<-rownames(x)
K.rand<-Kmult(x.r,phy)
P.val<-ifelse(K.rand>=K.obs, P.val+1,P.val)
K.val[i] <- K.rand

}
P.val <- P.val/(iter + 1)
K.val[iter + 1] = K.obs
hist(K.val, 30, freq = TRUE, col = "gray",

xlab = "Phylogenetic Signal")
arrows(K.obs, 50, K.obs, 5, length = 0.1, lwd = 2)
return(list(phy.signal = K.obs, pvalue = P.val))

}
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