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Using randomization techniques to analyse behavioural data
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Abstract. Data from behavioural studies are frequently non-normally distributed and cannot be
analysed with traditional parametric statistics. Instead, behaviourists must rely on rank-transformation
tests, which lose potentially valuable information present in the data. Recently, however, biologists in
other disciplines have resolved similar statistical difficulties by using resampling methods. Results from
Kruskal–Wallis non-parametric ANOVA and randomization tests were compared for two behavioural
data sets. It was found that randomization tests were more powerful than Kruskal–Wallis, and could
thus detect smaller effect sizes present in the data. In addition, the variance was calculated around
the P-value at eight levels of replication ranging from 500 to 10 000, to determine the optimal number
of replications for the randomization test. The variance around the P-value decreased as the number of
replications increased. The P-value stabilized at 5000 replications, and thus it is recommended that at
least 5000 replications be used for randomization tests on behavioural data.
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Animal behaviourists frequently use non-
parametric statistical methods when their data
are not normally distributed (Martin & Bateson
1986). Most of these methods involve ranking the
data sequentially and performing statistics on the
ranks (Sokal & Rohlf 1995). Although non-
parametric approaches do not require data to be
normally distributed, they usually assume that the
distributions being compared are symmetrical
(Day & Quinn 1989). One drawback of these
methods, however, is that some information is
invariably lost in the rank-transformation stage,
thus making non-parametric approaches less
powerful and less desirable than traditional para-
metric statistics. In recent years, alternative tests
have become available which are based on re-
sampling methods. These tests do not make
distributional assumptions, and are often more
powerful than other non-parametric approaches
(Manly 1991). Here we briefly describe resampling
approaches and apply randomization tests and

non-parametric analysis of variance (Kruskal–
Wallis) to two behavioural data sets for
comparison.
Resampling statistical techniques are computer-

intensive methods that take many samples from
the original data and analyse the data based on
these samples (Crowley 1992). They can be used to
determine confidence intervals for a given statistic
(e.g. bootstrap, jackknife and permutation tests),
for determining the effect of a stochastic process
(Monte Carlo) or even for hypothesis testing
(permutation and Monte Carlo). As micro-
computers have become faster and less expensive,
resampling techniques have been used more and
more frequently in biology (for a complete review,
see Crowley 1992). All of these techniques can be
used by running simple computer programs, many
of which have routines that are readily available
(see Manly 1991).
For biologists, probably the most widely

known of the resampling methods is the boot-
strap, which generates a confidence interval for a
given statistic by taking N samples (of size N)
with replacement from a data set, and calculates
an estimate of the statistic. This procedure
allows for the possibility that some values will be
sampled more than once, but that others are not
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sampled at all (Manly 1991; Crowley 1992). This
resampling is done many times to generate
multiple estimates of the statistic to provide a
variance for that statistic.
The jackknife also generates an estimate of the

test statistic, but it first removes one observation
from the data and then calculates the statistic
(Crowley 1992). This process is repeated, each
time removing a different observation from the
data set. From these, a mean value and variance
are calculated which are used as the estimate of
the test statistic (Manly 1991).
In Monte Carlo methods, a confidence interval

is generated based on a particular random or
stochastic process (Crowley 1992). A sample
statistic is then calculated based on this under-
lying process (Manly 1991). This process is
sampled multiple times to generate a distribution
of statistics. If the goal of the researcher is
hypothesis testing, the actual test statistic from
the raw data is compared to the distribution of
sample statistics generated from the Monte Carlo
simulation (Crowley 1992).
The permutation test creates a distribution of

possible outcomes by reshuffling and sampling
one’s own data (Edgington 1987; Manly 1991).
First, a test statistic is calculated from the raw
data. The data are then randomly re-assigned to
treatments and another test statistic is calculated
(Edgington 1987). By performing this procedure
many times, a distribution of possible outcomes is
generated (Manly 1991). The test statistic calcu-
lated from the raw data is then compared to the
frequency distribution of possible outcomes to
determine the likelihood that the pattern observed
in the data could be found by chance, which yields
a probability for the test from which biological
inferences can be drawn (Edgington 1987). If the
number of possible permutations is small, all
permutations can be calculated. This is called an
exact permutation test (Sokal & Rohlf 1995). If
the number of possible permutations is large,
however, a subset is used (Manly 1991). This
test is called a randomization test (Manly 1991).
Similar inferences can be drawn from both tests.
Although some of the statistical properties of

randomization methods are not entirely under-
stood (Crowley 1992), there are several good
reasons to consider them in place of traditional
methods. First, the assumptions of normality and
homoscedasticity are eliminated because random-
ization tests create their own frequency distri-

butions. Thus, when sample sizes are small or
when the underlying distribution is unknown,
randomization techniques are especially useful.
Randomization techniques also permit inferences
on data sets that were not collected completely at
random (Edgington 1987). For example, the goal
of obtaining 50 random samples from a popu-
lation of salamanders in a given area is unlikely to
be met by locating all possible individuals in that
area and then choosing 50; rather, one is more
likely to choose the first 50 individuals found.
Although this example, like most biological
samples, is not of a completely random sample
(Manly 1991), randomization tests can still be
used to analyse these data. Randomization tests
also have higher power than other non-parametric
techniques, because they use the actual data rather
than ranks (Edgington 1987; Manly 1991).
Finally, when there are peculiarities in the data,
such as mixed-distribution data sets (where the
data for one of the treatments are normally dis-
tributed), randomization tests are particularly
powerful (Manly 1991).
Although these methods have been used in

many areas of biology (Elgar & Harvey 1987; Burt
1989; Harvey & Pagel 1991; reviewed in Crowley
1992), their use in behavioural studies has been
surprisingly limited. They have been used to
calculate confidence intervals (Ritchie 1990) and
probabilities of behaviour (Kiepenheuer et al.
1993), but have not been used in hypothesis
testing. Randomization tests were also used by
Cantoni (1993) because of frequent repeated
measures of the same individual. We suggest,
however, that randomization tests should be an
important tool in the behavioural ecologist’s rep-
ertoire, so we demonstrate its use on two behav-
ioural data sets. The first is a mixed distribution
data set, where the data in one treatment are
normally distributed but the other data are not.
The second is a data set that was not significant
using Kruskal–Wallis, and is used to show how
small effect sizes may not be detected when lower
powered, rank-transformation approaches are
used.

METHODS

The two data sets used were taken from a larger
study on the behavioural interactions of two sym-
patric species of salamander (Anthony 1995).
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These data sets were used to determine whether
there were differences in territorial behaviour
between the species. In the first experiment, we
randomly paired 25 adult males of each species
with 25 conspecific and 25 congeneric opponents.
We recorded the number of bites delivered by the
resident salamander during each trial.
In the second experiment, we recorded the time

an individual spent in burrows that had been
marked by (1) a conspecific individual, (2) a
congeneric individual or (3) the individual being
tested. In each trial, the individual had the choice
of spending time in burrows marked by either:
themselves or a conspecific, themselves or a con-
generic, or two burrows marked by themselves
(control). We addressed inferences about inter-
specific territoriality by determining the burrow in
which the individual spent the most time.
We tested the assumption of normality using a

goodness-of-fit test. We could not use parametric
ANOVA because most of the treatments were not
normally distributed. In addition, the data con-
tained outliers and were heteroscedastic, which
further demonstrated that ANOVA was inappro-
priate. We therefore used a non-parametric
ANOVA, the Kruskal–Wallis test, to determine
whether differences between treatments existed.
In addition to performing the Kruskal–Wallis

test, we analysed the data using randomization
tests. We wrote a program in the SAS program-
ming language that calculated the sums-of-
squares treatments (sst) for the data, which was
stored in an output file. The data were randomly
shuffled into the treatment groups, and another
sums-of-squares treatments generated. This pro-
cess was repeated 5000 times to create a frequency
distribution of sst (the command sequence is avail-
able through electronic mail from D. C. Adams).
We compared the sst for the actual data to the
frequency distribution to determine the signifi-
cance of the test. Because the total sums-of-
squares does not change for each iteration,
comparing sst is equivalent to comparisons of
F-ratios from ANOVA.

RESULTS

Bite Data

We found a significant difference between treat-
ments using Kruskal–Wallis (H=49.12, P<0.001).
The frequency distribution of possible sst from the
randomization test ranged from 0.25 to 648.59.

The raw data sst was 648.59, which was larger
than 4999 of the randomly calculated sst, yielding
a P-value of P=0.0002 (Fig. 1). This result sug-
gests that the differences between treatments in
the original data were not likely to have occurred
by chance.

Site Occupation Data

We found no differences between treatments
using Kruskal–Wallis (H=10.67, P=0.058). Using
a randomization test, however, we found that the
raw data sst was larger than 4861 of the 5000
randomly calculated sst values (Fig. 2), making
the test significant at P=0.0278. Thus there were
significant differences between treatments.

DISCUSSION

Both the randomization test and the non-
parametric Kruskal–Wallis test detected signifi-
cant differences between treatments in the first
data set. We believe the randomization test is
more appropriate in this case, however, because
the data set was of mixed distribution. Converting
the data in the normally distributed treatment to
ranks certainly loses information. By using a
randomization test, however, such information is
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Figure 1. Frequency distribution of sums-of-squares
treatment for 5000 iterations based on the number of
bite data. The arrow represents the value found from the
raw data.
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not lost, and the test is more sensitive to treatment
effects and thus, more powerful.
In the second data set, randomization tests

detected significant treatment effects but Kruskal–
Wallis did not. This difference may concern some
who believe that using randomization tests will
increase the number of published studies that have
significant results based on small effect sizes.
Although a discussion of effect sizes and the prob-
lems of reporting basic statistics is beyond the scope
of this paper (see Gurevitch et al. 1992), it is import-
ant to realize why non-parametric methods may fail
to detect significance. We used Cohen’s (1988)
power analysis tables to determine the power of
both Kruskal–Wallis and randomization tests for
small, medium and large effect sizes. The power of
the Kruskal–Wallis test was lower than the power
of the randomization test at all effect sizes (Table I).
Thus, the randomization test is better able to detect
differences between treatments, especially when the
effect sizes are small. This result is not unexpected,
because when data are transformed to ranks, small
effects may be masked because of a decrease in
power (Sokal & Rohlf 1995).
Another concern when using randomization

tests is determining the number of iterations of the
randomization procedure. Manly (1991) suggested
that 1000 iterations of the data are sufficient to
test hypotheses at a 5% level of significance, and
5000 iterations are sufficient to test at a 1% level.

Potvin & Roff (1993) also recommend 5000 repli-
cations. Because accurate estimates of probability
values are crucial for drawing meaningful biologi-
cal conclusions from the data, we investigated the
effect of number of iterations on P-values. We
performed 10 randomization tests at each of the
following replication levels (treatments): 500,
1000, 2000, 3000, 4000, 5000, 7500 and 10 000
replications. For each randomization test a prob-
ability value was determined, and a mean and
variance around that value were calculated for
each treatment. As the number of replications
increased, the variance first dropped rapidly and
then decreased more slowly (Fig. 3). Because there
is so little variance remaining around the P-value
by 5000 replications, we recommend that at least
5000 iterations be used in randomization tests.
One final concern with using randomization

tests is that the frequency distributions used for
hypothesis testing are created with the data being
tested. This concern is irrelevant for several
reasons. First, if the null hypothesis states that
there are no differences between treatment means,
then random assignment of values to treatments is
perfectly valid (Edgington 1987). In fact, this
procedure was first proposed by Fisher (1935)
who assigned values to treatments in all possible
ways and used these values to determine the
significance of the test. Second, if one assumes
that their sample represents the population in
some way (as is always the case), then multiple
permutations of the sample data will yield an
approximation of the population distribution
itself (Manly 1991). Therefore, the generated dis-
tribution is one that is theoretically possible for
the population, and testing against it rather than
the defined, normal distribution, is legitimate.
As microcomputers become faster and more

powerful, resampling methods will be used more
and more frequently. In many areas of biology,
such as phylogenetics, resampling methods are
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Figure 2. Frequency distribution of sums-of-squares
treatment for 5000 iterations based on the site occu-
pation data. The arrow represents the value found from
the raw data.

Table I. Power analysis of both Kruskal–Wallis and
randomization tests based on small, medium and large
effect sizes

Effect size
Kruskal–Wallis

power
Randomization

power

Small 0.115 0.999
Medium 0.535 0.999
Large 0.897 0.999
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already a standard tool in the biologist’s reper-
toire (Crowley 1992). These methods do not rely
on a knowledge of the underlying distribution of
the data, so they are more versatile than tra-
ditional statistical methods. Because behavioural
data are usually non-normally distributed, re-
sampling methods could be especially useful to the
behavioural ecologist. When effect sizes are small,
the coarseness of rank-transformation tests can
mask effects present in the data. Randomization
tests are able to detect these small effects because
of their high power. Randomization techniques
also test the hypothesis that there are differences
in mean responses between treatments, while non-
parametric Kruskal–Wallis tests the hypothesis
that the distributions of the treatments are the
same (Martin & Bateson 1986). Thus randomiz-
ation techniques allow one to draw stronger infer-
ences from their statistical conclusions by more
directly testing the hypothesis of interest. For
these reasons, we recommend that randomization
techniques be considered as an alternative test to
analyse behavioural data. Also, we recommend
that researchers use at least 5000 iterations in their
randomization tests to reduce variation around
their significance levels.

ACKNOWLEDGMENTS

We thank Paul Leberg for his help in program-
ming SAS to perform the analysis. We also thank

F. James Rohlf, Robert Jaeger and three anony-
mous referees for their comments and suggestions
on versions of the manuscript. This work was
supported in part by NSF grant DEB-9314081 to
Robert Jaeger. This is contribution number 943
from the Program in Ecology and Evolution at the
State University of New York at Stony Brook.

REFERENCES

Anthony, C. D. 1995. Competitive interactions within
and between two species of Plethodon in the Ouachita
Mountains: effects of territoriality and parasitism.
Ph.D. thesis, University of Southwestern Louisiana,
Lafayette.

Burt, A. 1989. Comparative methods using phylogeneti-
cally independent contrasts. Oxf. Surv. evol. Biol., 6,
33–53.

Cantoni, D. 1993. Social and spatial organization of
free-ranging shrews, Sorex coronatus and Neomys
fodiens (Insectivora, Mammalia). Anim. Behav., 45,
975–995.

Cohen, J. 1988. Statistical Power Analysis for the
Behavioral Sciences. 2nd edn. Hillsdale, New Jersey:
Lawrence Erlbaum Associates.

Crowley, P. H. 1992. Resampling methods for com-
putation intensive data analysis in ecology and
evolution. A. Rev. Ecol. Syst., 23, 405–447.

Day, R. W. & Quinn, G. P. 1989. Comparisons of
treatments after an analysis of variance in ecology.
Ecol. Monogr., 59, 433–463.

Edgington, E. S. 1987. Randomization Tests. 2nd edn.
New York: Marcel Dekker.

Elgar, M. A. & Harvey, P. H. 1987. Basal metabolic
rates in mammals: allometry, phylogeny and ecology.
Funct. Ecol., 1, 25–36.

10 000

0.00007

Number of replications

V
ar

ia
n

ce
 a

ro
u

n
d 

P
-v

al
u

e 
(s

ig
n

if
ic

an
ce

 le
ve

l)

5000

0.00005

0.00006

0.00004

0.00003

0.00002

0.00001

2500 75000

Figure 3. Variance around P-values (significance level) based on 10 randomization tests at each level of replication.

Adams & Anthony: Randomization analysis 737



Fisher, R. A. 1935. The Design of Experiments.
Edinburgh: Oliver & Boyd.

Gurevitch, J., Morrow, L. L., Wallace, A. & Walsh, J. S.
1992. A meta-analysis of competition in field exper-
iments. Am. Nat., 140, 539–572.

Harvey, H. P. & Pagel, M. D. 1991. The Comparative
Method in Evolutionary Biology. Oxford: Oxford
University Press.

Kiepenheuer, J., Neumann, M. F. & Wallraff, H. G.
1993. Home-related and home-independent orientation
of displaced pigeons with and without olfactory access
to environmental air. Anim. Behav., 45, 169–182.

Manly, B. F. J. 1991. Randomization and Monte Carlo
Methods in Biology. New York: Chapman & Hall.

Martin, P. & Bateson, P. 1986. Measuring Behavior.
New York: Cambridge University Press.

Potvin, C. & Roff, D. A. 1993. Distribution-free
and robust statistical methods: viable alternatives to
parametric statistics? Ecology, 74, 1617–1628.

Ritchie, M. E. 1990. Optimal foraging and fitness in
Colombian ground squirrels. Oecologia (Berl.), 82,
56–67.

Sokal, R. R. & Rohlf, F. J. 1995. Biometry. 3rd edn.
New York: W. H. Freeman.

Animal Behaviour, 51, 4738


