On $K - P$ sub-Riemannian Problems and their Cut-Locus

Domenico D’Alessandro and Ben Sheller

Iowa State University

ECC 2019, June 28, 2019
Outline

1. $K - P$ sub-Riemannian problems
2. Symmetry Reduction
3. Geometry of the Quotient Space
4. Application: Determination of the cut locus
5. Conclusions
$K - P$ sub-Riemannian problems
K – P Decomposition

Let G be a (real, connected, finite-dimensional) semisimple Lie group with Lie algebra \mathfrak{g}, and let $B(\cdot, \cdot)$ denote the Killing form on \mathfrak{g}.
Let G be a (real, connected, finite-dimensional) semisimple Lie group with Lie algebra \mathfrak{g}, and let $B(\cdot, \cdot)$ denote the Killing form on \mathfrak{g}.

Definition

A $K - P$ decomposition of \mathfrak{g}, is a decomposition $\mathfrak{g} = \mathcal{K} \oplus \mathcal{P}$ into subspaces orthogonal with respect to the Killing form and with:

1. $[\mathcal{K}, \mathcal{K}] \subseteq \mathcal{K}$
2. $[\mathcal{K}, \mathcal{P}] \subseteq \mathcal{P}$
3. $[\mathcal{P}, \mathcal{P}] \subseteq \mathcal{K}$
K – P Decomposition

Let G be a (real, connected, finite-dimensional) semisimple Lie group with Lie algebra \mathfrak{g}, and let $B(\cdot, \cdot)$ denote the Killing form on \mathfrak{g}.

Definition

A *$K – P$ decomposition of \mathfrak{g}*, is a decomposition $\mathfrak{g} = \mathcal{K} \oplus \mathcal{P}$ into subspaces orthogonal with respect to the Killing form and with:

\[[\mathcal{K}, \mathcal{K}] \subseteq \mathcal{K} \]
$K - P$ Decomposition

Let G be a (real, connected, finite-dimensional) semisimple Lie group with Lie algebra \mathfrak{g}, and let $B(\cdot, \cdot)$ denote the Killing form on \mathfrak{g}.

Definition

A $K - P$ decomposition of \mathfrak{g}, is a decomposition $\mathfrak{g} = \mathcal{K} \oplus \mathcal{P}$ into subspaces orthogonal with respect to the Killing form and with:

1. $[\mathcal{K}, \mathcal{K}] \subseteq \mathcal{K}$
2. $[\mathcal{K}, \mathcal{P}] \subseteq \mathcal{P}$
K – P Decomposition

Let G be a (real, connected, finite-dimensional) semisimple Lie group with Lie algebra \mathfrak{g}, and let $B(\cdot, \cdot)$ denote the Killing form on \mathfrak{g}.

Definition

A *K – P decomposition of* \mathfrak{g}, is a decomposition $\mathfrak{g} = \mathcal{K} \oplus \mathcal{P}$ into subspaces orthogonal with respect to the Killing form and with:

1. $[\mathcal{K}, \mathcal{K}] \subseteq \mathcal{K}$
2. $[\mathcal{K}, \mathcal{P}] \subseteq \mathcal{P}$
3. $[\mathcal{P}, \mathcal{P}] \subseteq \mathcal{K}$
Example of $K - P$ Decomposition

Let \mathfrak{g} be the Lie algebra $\mathfrak{su}(n)$ with Killing form $B(A, C) := \frac{1}{n} \text{Tr}(AC^\dagger)$ and choose two positive integers p and q such that $p + q = n$.
Example of $K - P$ Decomposition

Let \mathfrak{g} be the Lie algebra $su(n)$ with Killing form $B(A, C) := \frac{1}{n} \text{Tr}(AC^\dagger)$ and choose two positive integers p and q such that $p + q = n$. Let

$$K := \{\text{block diagonal matrices with blocks of dimension } p \text{ and } q \text{ in } su(n)\}$$
Example of $K - P$ Decomposition

Let \mathfrak{g} be the Lie algebra $\mathfrak{su}(n)$ with Killing form $B(A, C) := \frac{1}{n} \text{Tr}(AC^\dagger)$ and choose two positive integers p and q such that $p + q = n$. Let

$\mathcal{K} := \{\text{block diagonal matrices with blocks of dimension } p \text{ and } q \text{ in } \mathfrak{su}(n)\}$

$\mathcal{P} := \mathcal{K}^\perp$;
Example of $K - P$ Decomposition

Let \mathfrak{g} be the Lie algebra $\mathfrak{su}(n)$ with Killing form $B(A, C) := \frac{1}{n} Tr(AC^\dagger)$ and choose two positive integers p and q such that $p + q = n$.

Let

\[K := \{ \text{block diagonal matrices with blocks of dimension } p \text{ and } q \text{ in } \mathfrak{su}(n) \} \]
\[P := K^\perp; \]

The conditions:

\[[K, K] \subseteq K, \quad [K, P] \subseteq P, \quad [P, P] \subseteq K \]

are verified.
The $K - P$ problem in time-optimal control

• G be a semisimple Lie group with Lie algebra $K - P$-decomposition $\mathfrak{g} = \mathfrak{K} \oplus \mathfrak{P}$
The $K - P$ problem in time-optimal control

- G be a semisimple Lie group with Lie algebra $K - P$-decomposition $\mathfrak{g} = \mathfrak{K} \oplus \mathfrak{P}$
- Let $\{B_j\}$ be an orthonormal basis for \mathfrak{P}.
The $K - P$ problem in time-optimal control

- G be a semisimple Lie group with Lie algebra $K - P$-decomposition $g = \mathcal{K} \oplus \mathcal{P}$
- Let $\{B_j\}$ be an orthonormal basis for \mathcal{P}.
- $\{u_j\}$ real-valued control functions depending upon time with $\sum_j u_j^2(t) \leq 1$.

Let a trajectory $U(t)$ on G evolve according to:

$$\dot{U}(t) = \sum_{j=1}^{\infty} u_j(t) B_j U(t), \quad U(0) = 1_{K}$$

Sub-Riemannian Optimal Control Problem

Given a desired final condition X_f, find the controls and trajectory which reaches X_f in minimum time.
The $K - P$ problem in time-optimal control

- Let G be a semisimple Lie group with Lie algebra $K - P$-decomposition $\mathfrak{g} = \mathfrak{K} \oplus \mathfrak{P}$.
- Let $\{B_j\}$ be an orthonormal basis for \mathfrak{P}.
- Let $\{u_j\}$ real-valued control functions depending upon time with $\sum_j u_j^2(t) \leq 1$.
- Let a trajectory $U(t)$ on G evolve according to:

$$\dot{U}(t) = \sum_{j=1}^{m} u_j(t) B_j U(t), \quad U(0) = 1$$ \hspace{1cm} (1)
The $K - P$ problem in time-optimal control

- G be a semisimple Lie group with Lie algebra $K - P$-decomposition $\mathfrak{g} = \mathcal{K} \oplus \mathcal{P}$
- Let $\{B_j\}$ be an orthonormal basis for \mathcal{P}.
- $\{u_j\}$ real-valued control functions depending upon time with $\sum_j u_j^2(t) \leq 1$.
- Let a trajectory $U(t)$ on G evolve according to:

$$\dot{U}(t) = \sum_{j=1}^{m} u_j(t)B_jU(t), \quad U(0) = 1$$

(1)

$K - P$ sub-Riemannian Optimal Control Problem

Given a desired final condition X_f, find the controls and trajectory which reaches X_f in minimum time
Sub-Riemannian Geometry Interpretation

The time optimal control problem can be interpreted as the problem of finding the length minimizing sub-Riemannian geodesics of G where the sub-Riemannian structure is specified by a set of vector fields $\Delta := \{B_j U, \; j = 1, \ldots, m\}$.
Sub-Riemannian Geometry Interpretation

The time optimal control problem can be interpreted as the problem of finding the length minimizing sub-Riemannian geodesics of G where the sub-Riemannian structure is specified by a set of vector fields $\Delta := \{B_j U, \ j = 1, \ldots, m\}$

Related question

Characterize the cut-locus: Locus of points where the sub-Riemannian geodesics lose optimality.
Example: Time Optimal Control of a Quantum Bit

Consider a two level quantum system with Hamiltonian $H = u_x \sigma_x + u_y \sigma_y$, where σ_x and σ_y are the Pauli matrices subject to a control field u_x, u_y bounded in magnitude, i.e., $u_x^2 + u_y^2 \leq 1$.

$$\sigma_x := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y := \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}, \quad \sigma_z := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$
Example: Time Optimal Control of a Quantum Bit

Consider a two level quantum system with Hamiltonian $H = u_x \sigma_x + u_y \sigma_y$, where σ_x and σ_y are the Pauli matrices subject to a control field u_x, u_y bounded in magnitude, i.e., $u_x^2 + u_y^2 \leq 1$.

$$\sigma_x := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y := \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}, \quad \sigma_z := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Optimal control problem

For the Schrödinger operator equation

$${\dot{U}} = -iu_x \sigma_x U - iu_y \sigma_y U, \quad U(0) = 1,$$

given a final condition $X_f \in SU(2)$, find the time optimal control with $\|u\|^2 \leq 1$ driving the state U from 1 to X_f, in minimum time.
Motivations

This is just one of several instances where $K - P$ problems occur in Quantum Mechanics.
Motivations

This is just one of several instances where $K - P$ problems occur in Quantum Mechanics.

- In applications to Quantum Computation minimum time is a natural requirement.
Motivations

This is just one of several instances where $K - P$ problems occur in Quantum Mechanics.

- In applications to Quantum Computation minimum time is a natural requirement.
- Fast dynamics is a way to counteract the effect of the environment (decoherence)
Motivations

This is just one of several instances where $K - P$ problems occur in Quantum Mechanics.

- In applications to Quantum Computation minimum time is a natural requirement.
- Fast dynamics is a way to counteract the effect of the environment (decoherence)
- The trade-off between energy and time characterizes the Quantum Speed Limit and gives the bound in the time-energy uncertainty relations (cf., e.g., M.M. Taddei Thesis (2014) arxiv.org/pdf/1407.4343).
Symmetry Reduction
Conjugacy Action

Let $K := e^K$ the Lie group associated with the Lie subalgebra \mathcal{K} in the $K - P$ decomposition.
Conjugacy Action

Let $K := e^K$ the Lie group associated with the Lie subalgebra \mathcal{K} in the $K - P$ decomposition.

K acts on G by conjugation ($k \in K$, $U \in G$)

$$U \mapsto kUk^{-1}.$$
Conjugacy Action

Let $K := e^K$ the Lie group associated with the Lie subalgebra \mathcal{K} in the $K - P$ decomposition.

K acts on G by conjugation ($k \in K$, $U \in G$)

$$U \rightarrow kUk^{-1}.$$

The induced action on (right invariant) vector fields BU, $B \in \mathcal{P}$ is

$$BU \rightarrow kBk^{-1}(kUk^{-1}).$$
Conjugacy Action

Let $K := e^K$ the Lie group associated with the Lie subalgebra \mathcal{K} in the $K - P$ decomposition. K acts on G by conjugation ($k \in K$, $U \in G$)

$$U \rightarrow kUk^{-1}.$$

The induced action on (right invariant) vector fields BU, $B \in \mathcal{P}$ is

$$BU \rightarrow kBk^{-1}(kUk^{-1}).$$

As a consequence of $[\mathcal{K}, \mathcal{P}] \subseteq \mathcal{P}$, $kBk^{-1} \in \mathcal{P}$. The action is in fact an isometry.
Consequences for the Optimal Control Problem

\(\gamma\) is an optimal sub-Riemannian geodesic joining 1 to \(X_f\) if and only if \(k\gamma k^{-1}\) is an optimal geodesic joining 1 to \(kX_f k^{-1}\) for every \(k \in \mathcal{K}\).
Consequences for the Optimal Control Problem

\(\gamma \) is an optimal sub-Riemannian geodesic joining \(1 \) to \(X_f \) if and only if
\(k\gamma k^{-1} \) is an optimal geodesic joining \(1 \) to \(kX_f k^{-1} \) for every \(k \in K \).

Reduction

This suggests to study the optimal control problem in the quotient space \(G/K \), where the equivalence class of \(x \in G \) is
\(\pi(x) = \{ y \in G | kyk^{-1} = x \text{ for some } k \in K \} \). (Here \(\pi : G \rightarrow G/K \) is the natural projection)
Consequences for the Optimal Control Problem

γ is an optimal sub-Riemannian geodesic joining 1 to X_f if and only if $k\gamma k^{-1}$ is an optimal geodesic joining 1 to $kX_f k^{-1}$ for every $k \in K$.

Reduction

This suggests to study the optimal control problem in the quotient space G/K, where the equivalence class of $x \in G$ is

$$\pi(x) = \{ y \in G | kyk^{-1} = x \text{ for some } k \in K \}.$$

(Here $\pi : G \to G/K$ is the natural projection)

Reduction Theorem (Albertini and D.D. JDCS 2018)

1) sub-Riemannian optimal geodesics are inverse images (under natural projection π) of trajectories in G/K. 2) Reachable sets at any time are inverse images of sets in G/K. 3) The cut locus in G is the inverse image of a set in G/K.

D. D’Alessandro (Iowa State University)
Geometry of the Quotient Space
G/K as a stratified space

G/K has the structure of a Stratified Space
G/K as a stratified space

G/K has the structure of a **Stratified Space**

Stratification is obtained via **Orbit Type Decomposition**
G/K as a stratified space

G/K has the structure of a Stratified Space
Stratification is obtained via Orbit Type Decomposition

Definition
Let K_x be the isotropy group of $x \in G$, and say that $x, y \in G$ have the same orbit type if there exists a $k \in K$ such that $kK_xk^{-1} = K_y$. The set of isotropy groups conjugate to a subgroup H is denoted by (H). The set of elements of G with isotropy group (H) (i.e., with isotropy type (H)) is denoted by $G_{(H)}$.
G/K as a stratified space

G/K has the structure of a **Stratified Space**

Stratification is obtained via **Orbit Type Decomposition**

Definition

Let K_x be the isotropy group of $x \in G$, and say that $x, y \in G$ have the same *orbit type* if there exists a $k \in K$ such that $kK_xk^{-1} = K_y$. The set of isotropy groups conjugate to a subgroup H is denoted by (H). The set of elements of G with isotropy group (H) (i.e., with isotropy type (H)) is denoted by $G_{(H)}$.

Fact

Points in the same orbit belong to the same orbit type $G_{(H)}$. Therefore it makes sense to define the quotients $G_{(H)}/K$.
Fact 1

\(G(H)/K \) induces a stratification of \(G/K \) where the strata are given by the connected components of \(G(H)/K \) for each isotropy type \((H) \).
Fact 1

\(G(H)/K\) induces a stratification of \(G/K\) where the strata are given by the connected components of \(G(H)/K\) for each isotropy type \((H)\).

Fact 2

There exists a minimal isotropy type \(H_{min}\) such that \((H_{min})\) contains a subgroup of a group in \((H)\) for every isotropy type \((H)\). The associated orbit type \(G_{H_{min}}/K\) is an open and dense manifold in \(G/K\). The preimage \(\pi^{-1}(G_{H_{min}}/K)\) is an open and dense submanifold of \(G\). It is called the regular part of \(G\), \(G_{reg} = \pi^{-1}(G_{H_{min}}/K)\). \(G_{reg}/K = G_{(H_{min})}/K\). \(G - G_{reg} = G_{sing}\) is called the singular part of \(G\).
Example: $SU(2)$

For the conjugation action of diagonal matrices K in $SU(2)$ on $SU(2)$, there are only two possible isotropy groups (types) $H_{min} \leq H$:

\[H_{min} = \{ \pm 1 \}, \quad H = K \text{ itself.} \]
Example: $SU(2)$

For the conjugation action of diagonal matrices K in $SU(2)$ on $SU(2)$, there are only two possible isotropy groups (types) $H_{min} \leq H$.

$$H_{min} = \{ \pm 1 \}, \quad H = K \text{ itself.}$$

$G(H) = G_{sing}$ is made up of diagonal matrices.
Example: $SU(2)$

For the conjugation action of diagonal matrices K in $SU(2)$ on $SU(2)$, there are only two possible isotropy groups (types) $H_{min} \leq H$.

\[H_{min} = \{ \pm 1 \}, \quad H = K \text{ itself}. \]

$G(H) = G_{sing}$ is made up of diagonal matrices

$G(H) = G_{reg}$ is made up of non-diagonal matrices
Example: $SU(2)$

For the conjugation action of diagonal matrices K in $SU(2)$ on $SU(2)$, there are only two possible isotropy groups (types) $H_{min} \leq H$.

\[H_{min} = \{ \pm 1 \}, \quad H = K \text{ itself.} \]

$G(H) = G_{sing}$ is made up of diagonal matrices

$G(H) = G_{reg}$ is made up of non-diagonal matrices

Reduction to the Unit Disc in the Complex Plane

For $U \in SU(2)$

\[U := \begin{pmatrix} x & y \\ -y^* & x^* \end{pmatrix}, \quad |x|^2 + |y|^2 = 1 \]

the action of (diagonal) D, $U \rightarrow DUD^\dagger$ only affects the off-diagonal elements. The complex number x (an element of the unit disc in the complex plane) determines the equivalence class (orbit). The interior (boundary) of the disc is the regular (singular) part of G/K.
Metric on the Quotient Space

Question:

We would like to define a metric on G/K so that sub-Riemannian geodesics on G correspond to Riemannian geodesics on G/K, with the same length. Since G/K is not a manifold we will define a metric on G_{reg}/K.

Theorem (D.D. and B. Sheller)

Assume H_{min} is discrete. Then for each $x \in G$ the map $\varpi : \mathfrak{g}_{x} \rightarrow \mathfrak{p}$ is an isomorphism. The metric (for $V, W \in \mathfrak{t}_{\varpi(x)}G_{reg}/K$) $g_{\varpi(x)}(V, W) = B(R_{x}1 \varpi_{1}V, R_{x}1 \varpi_{1}W)$, where B is the Killing form on \mathfrak{g} restricted to \mathfrak{p}, i.e., does not depend on the representative x in the orbit $\varpi_{1}(\varpi(x))$.

D. D’Alessandro (Iowa State University)
Metric on the Quotient Space

Question:

We would like to define a metric on G/K so that sub-Riemannian geodesics on G correspond to Riemannian geodesics on G/K, with the same length. Since G/K is not a manifold we will define a metric on G_{reg}/K.
Metric on the Quotient Space

Question:
We would like to define a metric on G/K so that sub-Riemannian geodesics on G correspond to Riemannian geodesics on G/K, with the same length. Since G/K is not a manifold we will define a metric on G_{reg}/K.

Theorem (D.D. and B. Sheller)
Assume H_{min} is discrete. Then for each $x \in G$ the map

$$\pi_* : R_{x_*} \mathcal{P} \to T_{\pi(x)} G_{reg}/K$$

is an isomorphism. The metric (for $V, W \in T_{\pi(x)} G_{reg}/K$)

$$g_{\pi(x)}(V, W) := B(R_{x^{-1}_*}\pi_*^{-1}V, R_{x^{-1}_*}\pi_*^{-1}W),$$

where B is the Killing form on g restricted to \mathcal{P}, is well defined, i.e., does not depend on the representative x in the orbit $\pi^{-1}(\pi(x))$.
Sub-Riemannian geodesics on G vs Riemannian geodesics on G/K

Theorem (D.D. and B. Sheller)

Assume $\gamma = \gamma(t)$ is a sub-Riemannian geodesic defined in $[0, T]$ optimally connecting 1 and $q \in G_{\text{reg}}$. Then $\pi(\gamma)$ is a Riemannian geodesic from $\pi(\gamma(t_0))$ to $\pi(\gamma(T)) = \pi(q)$, for any $t_0 \in (0, T)$.

Moreover

$$\lim_{t_0 \to 0^+} d_Q(\pi(\gamma(t_0)), \pi(q)) = d(1, q).$$

where d_Q is the Riemannian distance on G/K and d is the sub-Riemannian distance on G.

Sub-Riemannian geodesics on G vs Riemannian geodesics on G/K

Theorem (D.D. and B. Sheller)

Assume $\gamma = \gamma(t)$ is a sub-Riemannian geodesic defined in $[0, T]$ optimally connecting 1 and $q \in G_{\text{reg}}$. Then $\pi(\gamma)$ is a Riemannian geodesic from $\pi(\gamma(t_0))$ to $\pi(\gamma(T)) = \pi(q)$, for any $t_0 \in (0, T)$.

Moreover

$$\lim_{t_0 \to 0^+} d_Q(\pi(\gamma(t_0)), \pi(q)) = d(1, q).$$

where d_Q is the Riemannian distance on G/K and d is the sub-Riemannian distance on G.

Remark

Notice that since $\pi(q)$ is a regular point, $\pi(\gamma(t))$ is a regular point for every $t \in (0, T)$ because if $\pi(\gamma(t))$ becomes singular for some time t it will lose optimality at t (F. Albertini, D.D. JDCS 2017)
Geodesics for the $SU(2)$ problem
Application to the Cut-Locus
Points on the Cut Locus

Points in the cut locus are of two types: 1) Singular points 2) Regular points where Riemannian geodesics lose optimality.
Points on the Cut Locus

Points in the cut locus are of two types: 1) Singular points 2) Regular points where Riemannian geodesics lose optimality.

Theorem D.D. and B. Sheller

Suppose that the sectional curvature of G_{reg}/K under the given metric is nonpositive and that G_{reg}/K is simply connected. Then the intersection of the cut locus with G_{reg} is empty.
Determination of the cut locus for the $SU(2)$ example

On the disk $SU(2)/K$ the sectional curvature is calculated to be

$$\hat{k} := \frac{-2}{1 - r^2} < 0.$$
Determination of the cut locus for the $SU(2)$ example

On the disk $SU(2)/K$ the sectional curvature is calculated to be

$$\hat{k} := \frac{-2}{1 - r^2} < 0.$$

Therefore there is no cut point in G_{reg}. The cut locus coincide with the singular part (the boundary of the disk).
Determination of the cut locus for the $SU(2)$ example

On the disk $SU(2)/K$ the sectional curvature is calculated to be

$$\hat{k} := \frac{-2}{1 - r^2} < 0.$$

Therefore there is no cut point in G_{reg}. The cut locus coincide with the singular part (the boundary of the disk)
Conclusions
Summary

- $K - P$ problems in particular on $SU(n)$ are of interest in Quantum Mechanics
Summary

1. $K - P$ problems in particular on $SU(n)$ are of interest in Quantum Mechanics.
2. They admit a group of symmetries K which allows us to reduce the problem on a quotient space G/K.
Summary

1. $K - P$ problems in particular on $SU(n)$ are of interest in Quantum Mechanics.
2. They admit a group of symmetries K which allows us to reduce the problem on a quotient space G/K.
3. We have introduced a Riemannian metric on G/K which allows us to study sub-Riemannian geodesics on G as Riemannian geodesics on G/K.

D. D’Alessandro (Iowa State University)

K – P sub-Riemannian Problems

ECC 2019, June 28, 2019 24 / 24
Summary

1. $K - P$ problems in particular on $SU(n)$ are of interest in Quantum Mechanics.
2. They admit a group of symmetries K which allows us to reduce the problem on a quotient space G/K.
3. We have introduced a Riemannian metric on G/K which allows us to study sub-Riemannian geodesics on G as Riemannian geodesics on G/K.
4. As an application we can determine the cut locus as the singular part of the orbit space decomposition associated with the action of K on G. We have done this in the $SU(2)$ case.