Notes on Boolean semilattices
May 9, 1995

1. PRELIMINARIES

1. SEMILATTICES
A (meet) semilattice is an algebra S = (S, ) satisfying

t-r=2, zy=y-z, z-(y2)=( Y- 2

As usual, we define an ordering on S by z <y <= z-y = z. We will also
think of the semilattice S as a ternary relational structure (S, Rg), in which Rg =
{ (z,9,2) €S2 :z-y=2 } When absolutely necessary, we can write SY for this
relational structure. We will reserve the letter R for these ternary relations. The
least and greatest elements (if any) of a semilattice will be denoted L and T.

Finally, we define S to be the class of all semilattices. Generally, we think of this
as a class of relational structures.

2. THE COMPLEX ALGEBRA OF A SEMILATTICE
Let S be a semilattice. The complezx algebra of S is the algebra

S+ = (P(S)auanalagﬂsa'):

where, for X, Y C S, we define X - Y ={z-y:z€ X,y € Y }. St is, of course, a
Boolean algebra with a normal binary operator—a structure we shall call a Boolean
groupoid. We denote the natural ordering on any bao by ‘<’.

We define St to be the class of all algebras (isomorphic to??) ST for S € S, and

BSI = V(S*) to be the variety generated by S*. BSlis called the variety of Boolean
semilattices.?

3. BOUNDED MORPHISMS AND INNER SUBSTRUCTURES
Let S and T be relational structures, and h: S — T a function. h is called a bounded

morphism if, for each n-ary relational parameter R, the following two conditions
hold:

(Ve S™")5§€ Rg => hi€ Ry
(1) (Vs € S) (Ve T™Y) (7,h(s)) € Ry =
(FFe S Hrt=7 & (7,s) € Rs.

LThis is maybe not such a good name. The convention would seem to imply that a Boolean
semilattice is one in which the compler operation - is a semilattice operation.
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In the special case n = 1, these two conditions are equivalent to
(Vse S)se Rs < h(s) € Rr.

S is called an inner substructure of T if the inclusion map is a bounded morphism.
The conditions in (1) can be rephrased as

Rs=RrNnS"

2
@) (Vs € S)(VF €T (§,5) € Ry => €8
When n = 1, the second condition becomes redundant.

We note for the record the following Proposition whose proof is routine.

PROPOSITION 1. Let h: S — T be a bounded morphism, and let T’ be an inner
substructure of T. Then h™'(T') becomes an inner substructure of S when the
relations are defined as in (2).

4. A VERSION OF THE SEMILATTICE LAWS FOR TERNARY RELATIONAL STRUC-
TURES
Let R denote a ternary relational symbol. Consider the three laws:

(c) (Vzyz) Rxyz — Ryzz
(i (Vz) Rrzx
(a) (Vzyzw) (3u) (Rzyu & Ruzw) < (Iv) (Ryzv & Rzvw)

A groupoid S is commutative, idempotent or associative if and only if the asso-
ciated relational structure SP satisfies (c), (i) and (a) respectively. Each of the
three conditions is preserved by inner substructures and by bounded homomorphic
images.

Semilattices

5. REPRESENTABILITY
By a Boolean groupoid we mean a Boolean algebra with a single binary operator

that is normal and additive. We say that a Boolean groupoid B is semailattice-
representable if B € ISP(ST).

6. DOWNSETS

Let B be a Boolean groupoid and z € B. We define |z to be z - 1. If S is a
semilattice and X € S¥ then it follows that | X = {s€S:3z€ X s<z}, in
other words, the downset of S generated by X.
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7. BOUNDED HOMOMORPHISMS OF A SEMILATTICE

Let S € S and h: SY — (U, Ry) a surjective, bounded homomorphism. Let § =
ker h. Then

(1) Ry = {(hm,hy,hz) : (.’E,y,Z) € Rg }) and
(2) For all a,b € S, the image of the map a/f x b/6 — S given by (z,y) — z -y
is a union of #-classes.

Conversely, if 8 is an equivalence relation on S satisfying (2), then by setting U =
5/6 and defining Ry asin (1), the natural map S — U is a bounded homomorphism.

The proof is a straightforward verification. More generally, if S is only an inner
substructure of a semilattice, the above characterization still holds if we replace
condition (2) with

2") For all (a,b,¢) € Rg, the image of the partial map a/8 x b/8 — S given by
g g
(z,y) ~ x -y is a union of #-classes.

We shall call an equivalence relation bounded if it satisfies the condition in (2).
We will also be interested in semilattices with an additional contant symbol c.
According to §3, h must also satisfy, for each z € S, z = ¢ <= h(z) € cy. (Here,
cy denotes the unary relation on U corresponding to the addtional constant.) In
terms of § we have
c/f = {c}.

8. CORE EXAMPLE OF A BOUNDED HOMOMORPHIC IMAGE OF A SEMILATTICE
Let S be the semilattice with universe {a, b1, b2} and a = by-by. (The free semilattice
on two generators, as it happens.) Let 6 be the equivalence relation that identifies
by and by. Then 6 is a bounded equivalence on S (see §7). Thus the mapping
S — S/6 is a bounded homomorphism. But the object S/ is not a semilattice.
(Nor is it a disjoint union, nor an inner substructure of a semilattice.)

9. BOUNDED HOMOMORPHISMS BETWEEN SEMILATTICES
A bounded homomorphism from one semilattice onto another is a semilattice ho-
momorphism.

10. THE INNER SUBSTRUCTURES OF A SEMILATTICE
Let S € S. The inner substructures of SY are precisely the upsets of S. That is:
(U, Rly) is an inner substructure of (S, R) if and only if

U=1U={seS:FuelUs>u}.

PRroOF: Let U be an inner substructure of S. We wish to show U is an upset. So
let w € U and u = s. Then u - s = u, in other words, (u, s,u) € R. By [Goldblatt,
3.2.2], this implies that s € U.

Conversely, suppose U is an upset. If (z,y,2) € Rand z € U, then z = z-y < z,y
implies that z,y € U since U is an upset. Thus U is an inner substructure.



11. AN AXIOMATIZATION OF UPSETS
Let ¢~ be a partial binary operation on a set T' satisfying:

trz=x, z-y=y-x, z-(y-2)=(x -y 2

where, for any z,v, z € T one side is defined if and only if the other side is defined.
Then (T, -) is an upset of a meet semilattice.

PRrOOF: It is easy to check that the relation z <y <= -y = z is a partial
ordering of T. Let § = T'U {l}, and extend the ordering so that L =< z for all
z € T. Then (S, X) becomes a semilattice, and T is an upset.

12. DISJOINT UNIONS OF SEMILATTICES
Let S; € S for 4 € I. Then the relational structure (J);; ST is an inner substructure
of a member of S.

Proor: This is a special case of the construction in §11. Just adjoin a new least
element to the disjoint union.

13. THE CANONICAL EXTENSION OF A BOOLEAN GROUPOID

Let B be a Boolean groupoid. The canonical extension of B is the Boolean algebra
B¢ as defined by Jénsson and Tarski. B is a complete and atomic Boolean algebra
with atom structure BS. B can be thought of as the set of ultrafilters of B. The
extension is made into a Boolean groupoid by defining, for a,b € BY

a.b:/\{x'ylagxa bﬁy, CL',yEB}

14. THE CANONICAL EXTENSION OF A BSL

Let S be a semilattice. Then the canonical extension of ST is an algebra T*. What
is the structure T = (T, Rr)? (In Goldblatt’s terminology, T is called the canonical
extension, and T is the canonical embedding algebra.)

The set T is the set of all ultrafilters over the set S. Now in the embedding
¢: ST < T*, the image of a complex A (of S) is the join of all of the atoms of T
that lie below it. But if U is an ultrafilter over S, then {U} < p(A) if and only
if A € U. In other words, p(A) can be identified with the set of ultrafilters that
contain A.

Now let U and V be ultrafilters over S (that is to say, atoms of TT). The
definition of the groupoid operation on T+ and the above considerations imply
that

{U}-{V}=(){@A-B):AcU & BeV}.

Finally, we can describe the ternary relation Ry as follows. For any three ultrafilters
U, V,W over §,

(UV,W) € Ry <= {W}<{U}-{V} — W2{(A-B):AcU & BeV}.
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Note that the set { (A-B): A€ U & B €V} always has the finite intersection
property. For consider any intersection X = (A; - By)N--- N (A, - By,). Let
A=A4A;Nn---NA, €U,and B=ByN---NB, € V. Then, A and B are nonempty,
and, since they are complexes of a semilattice, A + B is nonempty as well. But by
monotonicity, A- B C X, s0 X # @. ‘

[Here is another way to look at the above paragraph. ST is integral, and the
sentence t #0 & y#0 — z-y3# 0 is preserved by canonical extensions.]

15. A QUICK REVIEW OF THE DUALITY BETWEEN FRAMES AND BAOs

Let (S, Rg) and (T, Rr) be frames (i.e., sets with a ternary relation), and h: S — T
a bounded morphism. Then there is an induced bao-homomorphism A*: T+ — S+
given by A*(X) = h~1(X). If h is injective, then h™ is surjective, and if A is
surjective, then ht is injective.

Now let B and C be Boolean groupoids. We define Bs to be the frame on B%.. Let
k: B — C be a homomorphism. Then there is a bounded morphism ks: Cs5 — Bs
given by ks(c) = A{be€ B? : ¢ < k%(b) }. Once again, we have that if k is injective
(surjective), then ks is surjective (injective).

16. FUNCTIONALITY IN RELATIONAL STRUCTURES

Call a n + 1-ary relation functional if it is the graph of an n-ary function. Function-
ality is not preserved by bounded homomorphic images. However injectiveness is
preserved. That is, each of these properties is preserved by bounded homomorphic
images:

Injl. Rzy & Rz'y — z =1
Inj2. Rzyz & Ri'yz — z =12’

Several properties, in conjunction with functionality, imply injectivity. For ex-
ample

(Vz) Rzz & R functional == Injl
(Vz,y) (Rzy — Ryz) & R functional == Injl
(Vz,y,2) (Rzyz — Rzyz) & R functional == Inj2

The first two of these imply that the class of all reflexive, and of all symmetric binary
relational structures can not be obtained as the bounded homomorphic images of
a class of mono-unary algebras. (Which is pretty easy to see directly.) From the
third implication we conclude that there are ternary relational structures satisfying
Rxyz — Rzyx that are can not be represented as the bounded homomorphic
image of a groupoid.

For some reason that I can no longer remember, I thought that complex algebras
of squags might be relevant here.



17. SOME GENERAL REMARKS ABOUT FRAMES BUILT FROM ALGEBRAS

Suppose A is a partial algebra, say a partial groupoid. Create the groupoid A with
A = AU {oo} and define -y = co in A if it is undefined in A. Then it is easy to
check that A is an inner substructure of A. (The construction in §11 is a special
case of this.) What properties of A are preserved when passing to A?

Let M be the class of mono-unary algebras, and B the class of structures with
one binary relation. Then it is not hard to show that every member of B is a
bounded homomorphic image of an inner substructure of a member of M. Therefore
V(BT) = V(M™).

There is an analogous argument for the classes of all groupoids and of all ternary
relational structures.

2. THE ALGEBRAIC THEORY OF BOOLEAN SEMILATTICES

18. Axioms
One of our objectives is to axiomatize BSI. Let X denote the following set of axioms
in the language of Boolean groupoids (B, V,A,’,0,1,+).

goy-l=(z-HA(y-1)
zA(y-1)<z-y
zy=zVz — Tz <z?V 22

1. Axioms for a Boolean algebra

2. z:0=0

3. z-(yvVz)=(z-y)V(z-2)

4 z-(y-2)=(z-y) 2

5. zry=y-x (2)
6. z<z-x

7.

8.

9.

22 is shorthand for z - x. Observe that axioms 1-8 are identities, while 9 is only
universal Horn. However, it is not hard to show that 9 can be replaced by an
identity (see 919).

THEOREM 2. ST &I,

The proof is a straightforward verification.

19. EQUIVALENT FORMS OF X
Yg (that is, axiom 8 of X, see §18) can be replaced by

. z<y-1 »z<y z
which is useful in practice. There is also a symmetric version of Xg:

8. (z-DA(y- DA (zVy) <z-y.



e

2

Y6 can be replaced by
6. zAy<z-y.
Axiom 9 can be replaced by
9. z-((z-1)—z) <2?V((z-1) —z)?

where z — y is shorthand for z A y'.

ProoOF: Let B be a Boolean groupoid and suppose that B F X. To verify that
Y holds, suppose that z,y € B and z < y-+1. Thenz = z A (y - 1), so by Zg,
z < x-y. To check Y4/, observe that by axioms 1,3,6, y <y -y < y - 1. Therefore
zAy<zA(y-1)<z-ybys.

Now suppose that we replace 8 with 8’ in ¥. To derive Xg, let z =z Ay-1. Then
z<y-1,s0by Xg, 2z <y-2. But 2 < z,s0 z < y-z < y-z (by additivitiy), thus g
holds. g follows easily from Eg by taking z = y. Finally, £g and g~ are easily
seen to be equivalent by applying distributivity and the fact that x < z.-z <z . L.

We see that X+ Xg by taking y =1 and z = (z+1) — z in ¥g. For the converse,

‘suppose that z -y = 2V z. Let

w=(z-y)—z. Thenw < (z-1) —z and

zoz=z-(wV(@EAz)=z-wVz-(zA2)<z-((z-1)-z)Vz-z <2*V(z -1-1)*

the last inequality coming from Y.

COROLLARY 3. BSIE X.

The closure operation

20. A CLOSURE OPERATION

THEOREM 4. If B X, then | is a closure operation on the Boolean algebra B.

Proor: Follows from axioms 3, 4 and 6 of %.

21. A FUNCTOR FROM BSI TO CLOSURE ALGEBRAS

Let B £ £. Define B! = (B,A,V,’,0,1,]) to be the reduct of B obtained by
replacing complex product with |. Then B! is a closure algebra. The assignment
B — B! is a covariant functor from the category BSI to the category of closure
algebras.



22. GENERATING THE VARIETY OF ALL CLOSURE ALGEBRAS
THEOREM 5. V{(S*)!:S € S} is the variety of all closure algebras.

Proor: Let S be a complete, rooted, countably infinite binary tree. The closure

algebra s+l is identical to the complex algebra of the poset S. It is a theorem of
Blok’s, see [77]? that this closure algebra generates the whole variety.

23. AN ATTEMPT TO RETREIVE THE SEMILATTICE ORDER FROM A COMPLEX
ALGEBRA
Let B E . For z,y € B define

zdy <= z-1<y-L
Then ‘<’ is clearly a quasiorder on B. Let us define the induced equivalence relation:
T~y &= x-l=y- 1

Notice that if B = S* for a semilattice S, then the atoms of B correspond to the
points of S, and for any z,y € S, we have ¢ < y iff {z} < {y}. Thus it would be
useful to know if the poset induced on B/~ or on B/~ has any nice properties
for an arbitrary Boolean semilattice.

We do have the following observation. Let B £ X. Then

T~y & yr~ys = T1oy1~T2- Y2 & TV~ TV,
These follow easily from axioms 37, ¥4 and ¥5. Therefore ‘~’ is a congruence
relation on the {V,-,0,1}-reduct of B.

In fact, let Idl(B) denote the lattice of congruence ideals of B (which is, of course,
isomorphic to the lattice of congruence relations on B). Define a function from B
to Idi(B) by z — (lz]. Obviously, the kernel of this map is the equivalence relation
‘~’ and the induced map

(B/~, V,,0,1) — IdI(B)

is an injective homomorphism. Thus the structure on the left is isomorphic to
the distributive lattice of principal congruence ideals of B. In particular, B is
subdirectly irreducible if and only if B/~ has least non-zero element under <.

2How about a reference, Wim?



24. HOW MUCH RICHER THAN CLOSURE ALGEBRAS ARE BOOLEAN SEMILAT-
TICES?

We know that the variety generated by the closure-reducts of all Boolean semi-
lattices is the variety of all closure algebras. (Theorem 5.) Is it true that every
closure algebra is the reduct of a BSL? There are also examples of non-isomorphic
Boolean semilattices with the same closure algebra reduct—the algebras A, Aj
and A4 of article 43 have isomorphic closure structure. Nevertheless, it seems to
me that the general complex product does not contain too much more information
than does the closure operation. Let (P, <) be a poset (or even a qoset). Define a
ternary relation

R ={(z,y,2) €P?:z=m,y}.

Let us consider the Boolean groupoid B = (P, R')*. One easily checks that B £ I.
Furthermore, B satisfiess z-y =z -y -1 = |z A ly. ’m not sure what I am getting
at here. One could look at the subvariety defined by this latter identity.

25. A STRONG FORM OF CEP

Let B € BSI, and let C be a subalgebra of B! (that is, C is a closure algebra, and
a subalgebra of the |-reduct of B). Let § € Con C. Verify that there is § € Con B
such that the diagram commutes:

B —2L ., B/§

]

C—C/f

where the top map is a Boolean semilattice homomorphism, the other three are
closure algebra maps.

From this it follows that if V is a variety of Boolean semilattices, then V} =
{B!:B €V} is a variety of closure algebras.

Problem 1. If K C S, does it follow that V(KT)} = V(K*+*)?

Let S be the three element nonlinear semilattice. Can ‘-’ be retrieved from ¢}’ in
V(St)?

26. ‘T’ IS NOT A TERM OF BSL
Let S = {a,b,c,d} ordered by: d < a,b < ¢, and let X = {a}. Then the subalgebra
of ST generated by X is the eight-element algebra with atoms: {a}, {d}, {b,c}.
Since 1X = {a, c} is not a member of that subalgebra, ‘7’ is not a term operation,
even on the class S(S).

We define the interior operation z° := (2’ - 1)’. For a complex X of a semilattice
S, X° will be the largest upset of S contained in X.
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27. AN OBVIOUS FACT ABOUT THE INTERIOR OPERATION
S E(zAy)° =z° Ay°. (See article 26.)

ProOF: (zAy)° = (l{(zAy)) = (L&' Vy) = V1Y) = (&) Ally) =
z° Ay°.
Subdirectly irreducible algebras

28. CONGRUENCE IDEALS

Let B be any bao and 6 a congruence of B. The congruence class 0/ is, of course,
a (Boolean) ideal of B. However, it will generally have other special properties. As
is customary, we make the following definition.

DEFINITION 6. An ideal I of a bao B is called a congruence ideal if there is 0 €
Con(B) such that I = 0/9.

As is well-known, there is a 1-1 correspondence between congruences and con-
gruence ideals in any bao.
29. A CHARACTERIZATION OF CONGRUENCE IDEALS

THEOREM 7. (Jipsen, [??, Lemma 2.1]) Let B be a Boolean groupoid and I an
ideal of B. Then I is a congruence ideal if and only ifz € I = z-1,1-z € I.

COROLLARY 8. Let B be a Boolean groupoid and B F X.

(1) If I is an ideal of B then I is a congruence ideal if and only if z € I =
lz el
(2) Ifa € B, then the smallest congruence ideal containing a is

(la]={zeB:z< |a}.

An element a such that (a] is a congruence ideal is usually called a congruence
element. It follows from the above Corollary, that the congruence elements are pre-
cisely the closed (under |) elements of B. If S is a semilattice, then the congruence
elements of S* are precisely the downsets of S.

30. SUBDIRECT IRREDUCIBILITY AND CANONICAL EXTENSIONS

THEOREM 9. If A is a subdirectly irreducible model of ¥, then A% is subdirectly
irreducible.

PROOF: A has a smallest nontrivial ideal, which in turn must be generated by a

single closed element a. More precisely, ¢ = a -1 and, for every z > 0, z-1 > a.

Now A is a subalgebra of A” so a -1 = a continues to hold in the larger algebra.
Let y be an atom of A?. By the definition of the canonical extension,

y-lz/\{m-lzygccEA}Za.

Therefore, a generates the monolith of A”.
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31. THE PRODUCT OF CONGRUENCE IDEALS

Let B be a Boolean groupoid, B £ 3. If I and J are congruence ideals of B, then
INJ=(I-J). (Here, I-J={z-y:z €I, y€ J}, which is a bit of an abuse of
notation.)

Proor: fz €INJ,thenz <z-z€I-J,s0z € (I-J]. Conversely, if z € I and
y €J,thenz-y <z-1¢€ I (since I is a congruence ideal). Similarly, z -y € J.
Therefore I - J C INJ. Since I N J is an ideal, we conclude (I-J] C INJ.

32. A CHARACTERIZATION OF SIMPLICITY AND SUDIRECT IRREDUCIBILITY
Let B be a Boolean groupoid. B is integral if z,y #0 = z -y # 0.

THEOREM 10. Let B = X. Then B is simple iff z # 0 => |z = 1. B is finitely
subdirectly irreducible if and only if it is integral.

PROOF: The characterization of simplicity follows from Corollary 8, while that of
finite subdirect irreducibility follows from article 31.

COROLLARY 11. Let S be a semilattice. Then S* is simple iff |S| =1, and S* is
subdirectly irreducible iff S has a least element.

ProOOF: If |S| = 1, then |S*| = 2, so S* is obviously simple. Conversely, if ¢ and
b are distinct elements of S, with, say, a £ b, then a ¢ |b, so that, by Theorem 10,
S¥ is not simple.

If S has a least element L, then [ {1} = {1} in S*, so ({L1}] is the least non-
trivial congruence ideal of ST. Conversely, suppose St has such a least nontrivial
congruence ideal, M. Then there is a complex (of S) X € M, X #&. Let a € X.
If a is not the least element of S, then there is b < a (since S is a meet semilat-

tice). Therefore, (|b] is a congruence ideal properly contained in M, which is a
contradiction.

Notice that any algebra of the form S*(for S € S) is integral. Therefore, for any
S €S, ST is finitely subdirectly irreducible.

33. A REMARK ABOUT SIMPLE ALGEBRAS
Every simple algebra satisfies

z>0& y>0 - z-y>zVy.
This follows immediately from ¥g and Theorem 10.

34. A NECESSARY CONDITION FOR FINITE REPRESENTABILITY

THEOREM 12. Let BE X, r € B. Suppose that r -1 = 1. Then for any homomor-
phism a: B — S¥, for a semilattice S, the complex o(r) must contain all maximal
elements of S.
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PROOF: Let R = a(r) € S. Then 71 = 1 implies that R-S = S in S*. Let u
be a maximal element of S. Then v € R - S implies that u = z - y for some z € R,
y € S. Consequently, v X z. By maximality, u =z € R.

COROLLARY 13. Let B F X. Suppose there is an element r € B such that r-1 =
7' .1 = 1. Then there is no homomorphism from B to S* for any semilattice S
with a maximal element. In particular, no semilattice representation of B involves
a finite semilattice.

PrOOF: Let a: B — S* be a homomorphism. By the Theorem, both a(r) and
a(r') must contain every maximal element of S. Since these two sets are disjoint,
S has no maximal elements.

COROLLARY 14. No simple member of Mod(X) is finitely semilattice-representable.

Proor: Follows from Theorem 10 and the previous Corollary.

Let us remark that Theorem 12 also holds when S is an upset of a semilattice.
By €10, these are the inner substructures. Thus the statements in this article apply
more generally to homomorphic images of members of ST.

35. A CONGRUENCE ASSOCIATED WITH AN IDENTITY ELEMENT
Let A E ¥ and assume that T is an identity on A. Then |T = T -1 = 1. But
more interesting: |(T') = T, in other words, it is a congruence element.

The proof is easy. By Zg, TA(T'-1) < T'-T = T’. On the other hand,
TA(T'-1) < T. It follows that T'-1 < T’, and therefore, T’ is closed.

3. SUBVARIETIES OF BOOLEAN SEMIALTTICES

36. EQUATIONALLY DEFINABLE PRINCIPAL CONGRUENCES

THEOREM 15. The variety Mod(X) has equationally definable principal congru-
ences.

PrOOF: From standard facts about Boolean algebras, ¢ = d (mod 6(a, b)) if and
only if c® d = 0 (mod 8(a & b,0)). From Corollary 8, this latter condition is
equivalent to c® d < |[(a @ b).

37. COMPACT CONGRUENCES ON COMPLEX ALGEBRAS
In EDPC I, Blok and Pigozzi prove that, under EDPC:

V(K)si © SHo(K)

for a class K. This suggests that we should look at compact congruences on complex
algebras.
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A congruence 6 on a Boolean algebra B is compact if and only if 0/8 = (a] for
some element a € B. Therefore, B/6 = (a’] when the latter is viewed as a relative
Boolean algebra. If B is complete and atomic, so is (a/]. It follows that if B is a
BAO, then H,(B) consists of complex algebras.

In particular, suppose S is a semilattice, and 6 a compact congruence on S¥.
Then 0/ = (D] for some downset D of S, and S*/8 = (D'] = D'", ie., the
complex algebra of the upset (inner substructure) D’.

38. IMPROVED DISCRIPTION OF THE VARIETY BSI

From €12 and duality, we obtain: P(S*) C H(ST). By item 36, the variety BSI has
EDPC. Consequently, it has the congruence extension property. Combining this
with the above inclusion we have:

BSI = HSP(S*) = HS(S™) = SH(S™).
39. THE QUASIVARIETY GENERATED BY S
Problem 2. Is BSI = ISPP,(S*)?

40. THE FINITE BASIS QUESTION
Problem 3. Is the variety BS! finitely based?

Related Varieties

41. ADJOINING A LARGEST ELEMENT TO S

Let S+ denote the variety of semilattices with a largest element, T. The language
of the complex algebras of St contains a new nullary operation symbol T whose
interpretation in a complex algebra is, of course, {T}.

THEOREM 16. IfT is an equational base for BS| then '+ =T U{z-T =z} is an
equational base for V(S¥).3

ProOF: Certainly V(ST) F I't. Thus it suffices to show that if At is a subdirectly
irreducible Boolean groupoid with an additional constant operation T, and A+ E
I, then A+ € V(S#). We let A denote the reduct of the algebra At obtained by
omiting the name for the constant T.

Since A+ F I't, we certainly have A F T and A F (Jy) =z -y = z. Therefore,
A € BSI| by assumption. Since S is an elementary class, it follows from Golblatt’s
results [?7, 3.6.3] that BSI is a canonical variety. In other words, A € BSI implies
A’ ¢ BSL

Now, by €30, A” is subdirectly irreducible. We have already observed that
A F (3y) z = z-y. Since both sides of the equation are positive terms, it is
preserved under canonical extensions. Therefore, A7 satisfies the same sentence,
in other words, A has an identity element.

3Converse?
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Claim: The identity element e, of A is an atom.

PROOF: Suppose that 0 <a <eon A°. Let b=eAa’. Then 0 < b < e. We have
a=a-e=a-(aVb)=a?V(a-b) which implies that @ > a - b. Similarly, b > a-b,
and therefore, 0 = a A b > a-b. But A° is subdirectly irreducible, hence integral.
This contradiction extablishes the claim.

By article 38, BSI = HS(ST). Thus, there is a semilattice S € S, a subalgebra
B of S* and a surjective (BAO) homomorphism k: B — A. Applying the duality
outlined in article 15, we obtain bounded morphisms in the opposite directions:

S+ B T S;— B;
f g
A A

Furthermore, by Goldblatt’s theorem [?7, 3.6.1], there is an ultrapower T of S and
a surjective bounded morphism from T to S§. (In Goldblatt’s terminology, St is
the canonical extension of S.) Since S is an elementary class, T is a semilattice.

Let h be the surjective, bounded morphism from T to Bs obtained above, and
let @ = ker h. Then @ is a bounded equivalence relation (see article 7). Let C =
h='(k;1(As)). By choosing the ternary relation on C' to be the restriction of that
on T, we can easily check that C becomes an inner substructure of T. By article 10,
this means that C is an upset of the semilattice T.

Since e is an atom of A%, we have e € As. Let E = h™1(e). Certainly E C C.
Notice also that F is a single §-class.

Claim: F is an upset of T.

Proor: Let z € Eand z <y € T. Since C is an upset, y € C. Nowz -y =z
in T, and A is bounded, so (hz, hy, hz) € Ra,. But hz = e, so in A7 this yields,
e« hy > e. But e is an identity of A’ and hy is an atom, so hy = e, in other words,
y € E.

Let T denote a point not in T, and define T = T — E U {T}. We order T by
setting T > z for all z € T — E. Since E was an upset it follows that T is a
semilattice with largest element. By expanding the type to include a name for the
new constant, we make T into a member of S.

Finally, define § = (u{(T,MHHn T. § is an equivalence relation on T. The
equivalence classes of 6 are the same as those of 8 except that the class E of § has
been replaced by the singleton {T} in 6.

Claim: The natural map from T to ’i‘/é is a bounded morphism of type (3,1).
PROOF: We need to prove that § is a “bounded equivalence relation” of type (3, 1)
(see §7.) For the unary relation, the require- ment is that T/8 = {T} which we
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observed above. Regarding the ternary relation, we need to show that for any
z,y €T, z/0-y/0 is a union of f-classes.
First, suppose that neither z nor y is equal to 7. Then

z/f-ylb=2x/0-y/0 = U z/8

z€Z

for some set Z, since 8 is bounded. Now z/6 = z/é aslongasz ¢ F. Butz =21 -y
for some z1 0 = and y; 6 y, s0, z R y1. If 2 € E, then, since E is both an upset and
a f-class, y1 € E, so y € E which is false.

On the other hand, if say, z = T, then

z/0-y/d={T}-y/b=y/b

trivially a union of O-classes.

Now T /6 = T /0 since we haven’t created any new equivalence classes. It follows
that A is a bounded morphic image of an inner substructure of a member of S+.
Applying duality, A° € SH(S¥). Finally, since A is a subalgebra of A%, A € V(S¥)
as desired.

42. LOWER-BOUNDED SEMILATTICES

Let S denote the variety of lower-bounded semilattices. Thus the members of S
have a new constant symbol, L and satisfy the identity L -z = L. Asin 41, L
denotes the complex nullary operation obtained from L.

THEOREM 17. If A is an equational base for BSI, then
Ap=AU{L-1=1, (zALl)-(yAL)=zAyAL}

is an equational base for V(ST).

ProoF: One easily checks that Si E A . For the converse, let A be a subdirectly
irreducible model of A|. We wish to show that A, € V(ST).

Let A be the reduct of A back to the language of Boolean groupoids. Then
A E A, so by assumption, A € BSl. Furthermore, A has an element b such that

(3) AFEb-1=b & (Vz,y) (zAD)- (yAb) =z Ay Ab).
As in Theorem 16 we now switch to the canonical extension A”. By €30, A”
is subdirectly irreducible. Since the terms involved in formula (3) are all positive,

those conditions holds in A%as well.
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Claim: b is an atom and (b] is the monolith of A”.

PROOF: Since b-1 = b, (b] is a congruence ideal of A”. Suppose 0 < z < b. Let
y=b—2,80<y<b Byformua (3), z-y =z AyAb=0, contradicting
the subdirect irreducibility of A. Therefore b is an atom, and the claim about the
monolith follows immediately.

Again, following the argument used in Theorem 16, there is a semilattice S, a
subalgebra B of S*, and a surjective homomorphism k: B —» A. Applying duality,
there is a T € S and a bounded homomorphism h: T — Bgs, and A; is an inner
substructure of Bs (see the diagram in article 41). Let E = h™1(b).

Claim: FE is a downset of T.

PROOF: Suppose z € Eand y < zin T. Then z-y = y, so (z,y,y) € Rr.
Applying the bounded morphism h: (b, hy, hy) € Rp,. Therefore, in the complex
algebra (Bs)T = B, b-hy > hy. But b=15b-12> b- hy and both b and hy are
atoms of B7, so it follows that b = hy, and therefore, y € E.

Define 9 to be the equivalence relation on 7' that identifies all elements of E
and nothing else. One easily checks that ¢ is a semllattlce congruence relation on
T(the “Rees congruence”). Let T=T /¢. Then T is a semilattice with a smallest
element, E/v. Since ¢ C kerh, h induces a map h: T - Bs, by h(z/¢) = h(z).
It is stralghtforward to verify that % is a bounded morphism.

Finally, we make T into a member of S, by taking L = E/+ on T. Similarly,
B;s and A can be made into relational structures of type (3,1) by defining L to
be {b}, in both cases. h is still a bounded morphism in this new category. Putting
all of this together, and applying duality, each of T+, B;’ = B7, and A+ A7 are
members of V(ST). Since A | is a subalgebra of A” (m the language containing the
additional constant), A; € V(ST).

The bottom of the lattice of subvarieties

43. SMALL BOOLEAN SEMILATTICES

There is only one Boolean semilattice of order 2, namely, 11. (We will let n denote
an n-element chain, viewed as a semilattice.) Furthermore, V(1) is axiomatized,
relative to X, by z-y =z Ay. Also by |z =z.

PRrOOF: The only integral algebra satisfying z -y = z Ay is 17. Since every
subdirectly irreducible ¥-algebra is integral, that identity must define the variety.

There are six algebras of order 4. They all have the same Boolean structure. Let
the atoms be denoted by a and b. Then the complex operation can be defined on
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the atoms as follows:
a-a b-b a-b

1t x 1t a b 0
2+ a b a
Al a b 1
Ag a 1 a
Aj a 1 1
Ay 1 1 1

A, is a subalgebra of ST, where S is the three-element semilattice that is not a
chain. The remaining three algebras are not finitely representable (by Corollary 13).
However, it can be shown that all three are subalgebras of infinite complex algebras.

Suppose B is a 4-element algebra whose closure-reduct is simple and monadic.
Then a-1=1>b-1=1 and therefore a-b> (a-1)A(b-1)A(aVb)=1. So B = A,
fori=1,3 or 4.

Problem 4. Is A; finitely based, for 1 = 1, 3,47

44, SIMPLE MONADIC ALGEBRAS

Problem 5. Is the 4-element monadic algebra finitely presented? (I’'m not sure
what this question means—there are a lot of coffee stains on the paper. The algebras
A; for i =1, 3,4 of article 43 all would seem to be monadic.)

45. THE BOTTOM OF THE LATTICE OF SUBVARIETIES OF BSI

The lattice of subvarieties of BSI has a single atom, since every nontrivial algebra
contains the subalgebra {0,1}, which is isomorphic to 1*. What are the covers of
that variety? Are there only finitely many? Are they all finitely generated?

Problem 6. Let V E ¥ and suppose that V covers V(17) in the lattice of varieties.
Is V C BSI?

46. 8 ELEMENT ALGEBRAS

Does every 8-element member of Mod(X) contain a 4-element subalgebra? (More
likely, we should be restricting to subdirectly irreducibles.) Does the variety gener-
ated by an 8-element algebra contain a 4-element subdirectly irreducible algebra?

47. MORE ON THE FOUR ELEMENT SIMPLE MONADIC ALGEBRAS
Let A be one of the algebras A; for i = 1,3,4 of §43. Then A ¢ HS(SZ ).

PROOF: Suppose A € HS(S™) for some semilattice S. By CEP, HS(S*) = SH(S™)
so A is a subalgebra of an algebra C*, where C is an upset of S. By the remarks
at the end of 434, C, hence S must be infinite.

TuEOREM 18. V(S ) C BSL.
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PROOF: The algebra A above is simple and finite, so it is splitting. Let BSI/A
denote the conjugate variety. Then from the above arguments, Sg’n C BSI/A. The
result follows.

Other identities

48. THE DISCRIMINATOR SUBVARIETY
Let D be the subvariety of Mod % defined by the identity

(4) (z-1) 1= (z-1).

D is a discriminator variety,? in fact, the largest discriminator subvariety of Mod(Z).
A discriminator term for this variety is

tz,y,2) =zAllzdy)VzA(l(zdy).

PROOF: Suppose that B is a subdirectly irreducible member of D. Let a be a
nonzero member of B. Then by 8, (la] = J is a congruence ideal of B. Recall that
la is shorthand for a-1. By our assumption, (a-1)’ is closed, therefore I = ((a-1) ]
is a congruence ideal. Since J NI = {0}, and J # {0}, we have, by the subdirect
irreducibility of B, that (a-1) =0, so a-1= 1. Since a was an arbitrary nonzero
element of B, it follows from Theorem 10 that B is simple. It is easy to see that
the term t induces a discriminator operation on every simple model of ¥. Thus this
variety is a discriminator variety.

Conversely, let D’ be any discriminator subvariety of Mod(X). Then every sub-
directly irreducible member of D’ is simple. Applying Theorem 10 again, every
simple algebra satisfies identity (4). Therefore, D’ satisfies this identity.

Equivalent forms for identity (4):

z < (lz)°
lz < (l2)°

Notice that this variety does not contain an algebra S* for any nontrivial semi-
lattice S. (The identity (4) requires that the complement of a closed element be
closed. But in a semilattice, the complement of a downset is never a downset.)

On the other hand, this variety is nontrivial, since it contains every simple algebra
of Mod(Z). In particular, the algebras A, As and A4 of 943 are all discriminator
algebras.

Problem 7. Jipsen proved that every variety of residuated complex algebras is a
discriminator variety. Can we get some kind of residuation in the above variety?

4This ought to be credited to Jipsen
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49. MORE ON THE DISCRIMINATOR VARIETY D

Let D denote the largest discriminator subvariety of Mod(X) (see article 48). Then
DE |z < ({z)°. It follows that St ND = {1*}.

Problem 8. Is D a complex variety? Is D C BSI?

50. CONDITIONS EQUIVALENT TO LINEARITY

THEOREM 19. In any model of &, the following are equivalent

D z-y=@-VAy-1)A(zVy);
(2) z-z=uz;
(3 z-y<zVvy.

ProOF: (1)=>(2): Takingz =y, z-2=(z-1)Az==z.
(2)=(3): By (2) and additivity:

cVy=(zVvy)l=2v(E-y)vyi=zVv(z-y)Vy.

(3) follows easily.
(3)=>(1): Follows easily from (3) and monotonicity.

-

51. LINEAR SEMILATTICES
Let S be a semilattice. If X C S, then X is a subsemilattice if and only if

X +X = X. And S is linearly ordered if and only if every nonempty subset forms
a subsemilattice. Combining these two observations, a semilattice S is linear if and
only z -z = z. Note that this is condition 2 of Theorem 19.

Lettdenote the class of linearly-ordered semilattices. By the above observations,
Lt satisfies each of the three equivalent conditions of Theorem 19.

THEOREM 20. V(L') is axiomatized by YU{z-z = z}. In particular, it is a finitely
based variety.

PRrOOF: Let B be a Boolean groupoid satisfying £ U {z - z = z}. Then B satisfies
all three conditions of Theorem 19. By condition 1, the structure of B is entirely
determined by that of B!. But B! lies in the variety Sq 3 of modal algebras.® This
variety of closure algebras is generated by the complex algebras of linearly ordered
sets. It follows from our observation about condition 1, that the corresponding
variety of Boolean groupoids is generated by linarly ordered semilattices.

SWim, can you give me a short proof of this?
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52. UP-DIRECTED SEMILATTICES
THEOREM 21. Let S € S. Then S is up-directed if and only if

(6) STE =) A L% < Uz Ay)).

PRrOOF: First let S be up-directed. Suppose that X, Y € ST and z € [(X°)NL(Y°).
Then there are z € X° and y € Y° with z < z,y. By up-directedness, there is
u € S such that =,y < u. Since X° and Y*° are upsets, v € X° NY°. Therefore
z € [(X°NY°) = [(XNY)° by article 27.

Conversely, suppose S* satisfies the identity, and let z,y € S. Let X = Tz
and Y = 7y. Then X = X° and ¥ = Y°. Since S is a semilattice, the element
z=z-y€S,and z € [ XN]Y C [((XNY)°). Therefore, X NY is nonempty.
Let w € X NY. By the definition of X and Y, z,y < u. This shows that S is
up-directed.

53. ANOTHER IDENTITY
Let € be the identity

(e) sA(r 1)< (z-1) - 1.
Note that the right-hand side can be rewritten as z'° - 1.
PROPOSITION 22. 3% Fe.

PROOF: Let 3 = (a < b < ¢). Take X = {a,c}. Then X' -1 = |b = {a,b}, so0
a€XN(X' 1). But X-1=3,50 (X-1)-1=2.

Now let S be the three-element semilattice that is not a chain, and T be the
semilattice 2 x 2. Then T+ ¥ ¢ (since 3 is a bounded homomorphic image of T),
but T+ does satisfy the identity (§) of 452 since it is up-directed. On the other
hand, ST E ¢, but ST does not satisfy the up-directed identity.

Problem 9. Is 3 splitting (with conjugate identity €) in BSI?

54. THE TOTAL RELATION
Let K= {(5,5%): 5 aset }. What can we say about K*? It clearly satisfies Z.
Did we prove that it lies in BSI?

One easily checks that no member of K has an inner substructure (or put another
way, using Theorem 10, every member of K* is simple), and K is closed under
bounded morphic images.

The variety V(K*) can be axiomatized (relative to what?) by lz = (lz)° and
I(z+y)=x-y.5 Will one of these suffice? Can you substitute z? = |z?

Problem 10. Is this variety generated by its finite members? Is it locally finite?
What are its subvarieties? What is its relationship to monadic algebras?

6Proof?
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The algebra B

55. THE FREE SEMILATTICE AS A DIRECT LIMIT
Let S denote the free (meet) semilattice on countably many generators, and S, the
free semilattice on n generators. Note that every S, is an inner substructure (i.e.,
an upset) of S, and that 8 =, ¢, Sn.

On the other hand, S = {JS, is a bounded homomorphic image of {:)S,, in a
natural way. Applying duality, we conclude that

v(st) = \/ V(s).
new

In particular, V(S™) is generated by its finite members. Surely, there is something
more general going on here.

56. A FINITENESS PROPERTY OF B}
Let B, denote the infinite binary tree, and let B,, be a finite binary tree of height
n. B, is a BHI of B,,. To see this, let 8,, be the equivalence relation defined on
B, that identifies all of Tx, for every x in B, of height n. It is easy to see that 8,
satisfies the conditions of 7, and B, /0, = B,,.

Applying duality, we have a chain of inclusions:

Bf < B} < Bf =B}

For contrast, consider the following. Think of B, as the set of finite binary
sequences, ordered by extension. Let U be the subset of B, counsisting of those
sequences that end in a 0, and let V' be the complement of U. let § be the set of

finite subsemilattices of B,,.
Note that U -V = B,,, and therefore,

VFeF (U-VNF#UNF)-(VNF).

This means that the obvious approach to embedding B into a nonprincipal ultra-
product of { F* : F € §} is not going to work. (Big deal!)

57. ON A3, Ay AND BT,
PROPOSITION 23. A3z ¢ S(BZ) (See article 43).

PROOF: Suppose it were. Let X and Y denote the two atoms of Aj, viewed as
complexes of B,. Then X - X =X and X -Y =Y -Y = B,. Choose a minimal
element, y, of Y. Since Y C X -1 there is a minimal element z of X with = > y.
Say x is on the left subtree above y. Let z be the right-hand successor of y. Since
X-X=X,z€Y,infact, Tz CY. But X .1 =1 implies that z must lie below
some element of X, which is a contradiction.

On the other hand, let A be the subalgebra of B} generated by {U,V}, where
U and V are the complexes defined in the last two paragraphs of §56. Since
U.U=U-V=V.-V=B, A=A, s0A;cS(B]).
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58. MORE ON B,

Let U be an upset of B,. Then U has minimal elements {u1,us,...}. Therefore
U = |-)Tu;. Each Tu; & B,,. Thus U is isomorphic to B™ or to B, By duality,
Ut € P(Bf). Similar statements holds for the upsets of By,.

PROPOSITION 24. Let T be the ternary tree of height 1. T is not a bounded
homomorphic image of B,,.

PROOF: Suppose it were. Then there is a bounded equivalence relation 6 on B,
such that T = B, /6. Since T is a semilattice, # is also a congruence relation on
B,. 6 will have four equivalence classes, and each of them will have a minimum
element, since T is idempotent. Let the four minimal elements be a,b, ¢, L, where
1 is the minimum element of B,,.

Now a/6-b/6 = L/6. It follows from the boundedness of ¢ and the minimality
of @ and b that a - b= L. But similarly, a- ¢ =b-c= L which is impossible.

THEOREM 25. Tt ¢ SP,(B}) and T* ¢ V{B} :n<w}.

PROOF: By Proposition 24 and duality, T+ ¢ S(BZ). Since T'* is finite, there is a
first order sentence that says “I have a subalgebra isomorphic to T*”. Therefore,
T+ ¢ SPu(BJ).

Now, for any n, B,, is a bounded homomorphic image of B, (see §56). It follows
from the Proposition that T is not a bounded homomorphic image of B, for any n,
and therefore T+ can not be embedded into B;}. Since T is finite and subdirectly
irreducible, it is splitting. Therefore, { B} :n € w} C BSI/T*. From this, the
second claim follows.

We can apply the results of 37 to K = {B}}. H,(B}) C P(B}). Therefore
V(B} )i C SH,(B}) C SP(BY), and therefore V(B )t C S(BJ). Since T is
(finitely) subdirectly irreducible, we conclude from the above Theorem that T ¢
V(B]).

Finally, in 456, we showed that A4 is embeddable in B, Since A4 is not finitely
representable, we conclude

V{B}:new} cV(B})cBSI/T*.
Problem 11. Is V(B}) generated by its finite members?

59. ONE MORE FACT ABOUT B}

B} Fz? =23

Proor: Let X C B,,. Think of B, as finite binary sequences. Suppose a,b,c € X
and let w = a-b-c € X3. If any two of a, b and ¢ are comparable, then v € X2
So we may assume that a,b,c are pairwise incomparable. As a finite sequence,
u = (ug, U1, - -, Un). Then the lengths of a,band c must be greater than n. Without
loss of generality, @41 = bny1 =0 and cpyp = 1. But thena-c=w.

4. OTHER OBSERVATIONS ON BOOLEAN ALGEBRAS WITH OPERATORS
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Boolean semigroups and monoids

60. SEMIGROUPS

Let V denote the class of all semigroups. Is V(V*) finitely axiomatizable? (It is
not decidable.)”

61. CLOSURE OPERATION ON A BOOLEAN MONOID
Let (M,-,¢) be a monoid. Then the operation ‘|’ on M™* defined by | X = X - 1
is a closure operation. Of course we can no longer consider |X to be a downset.
However, it is, in the terminology of semigroup theory, the right ideal generated by
X.

It may be better to use the term 1z -1 for a closure operation on a monoid.
Pam Reich has shown that the term zV2z-1V1-2V1-z-1 is a closure operation on
the complex algebra of any semigroup. The closed subsets are precisely the ideals.

62. WHICH BOOLEAN MONOIDS ARE BOOLEAN SEMILATTICES?
Let M be a monoid. Then Mt k z < z? if and only if M is a semilattice. Can this
be used to obtain an axiomatization of Boolean semilattices from Boolean monoids?

63. FINITE MONOIDS
Let M = (M, +,e) be a finite monoid. Then M™ satisfies the quasiidentity

(5) z+zrz<z & e<z+1 - e<z.

PRrROOF: Suppose A C M, A+ AC Aande € A+ M. Then there are a € A
and b € M such that e = a + b. Therefore 2a +2b = a4+ (a+b) +b = a +
e+b=a+b= e Arguing inductively, ka + kb = e for every positive integer
k. Now the set {a,2a,3a,...} is contained in A and is finite. Therefore there
are positive integers k£ < n such that ke = na. So by the above computation,
e=ka+kb=na+kb=(n—-kla+ka+kb=(n-k)ac A

Note that (Z, +, 0) fails to satisfy formula (5), since A = {1,2,3,... } is a witness.
Consider also the following frame T:

-+ l a b e
a la 1 a
b |1 b b
e b

7 Are we sure of this? I can’t remember the details.
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T+ also fails to satisfy the quasiidentity. There is a bounded morphism f: Q - T
given by

a ifz>0
flz)y=1< ¢ ifz=0
b if z < 0.

Here is another quasiidentity that has the same properties. For some reason, we
liked it better.

(Va,p,q) a>2a & p<a & p+g=e — e<a.

64. THE VARIETY OF BOOLEAN MONOIDS IS NOT GENERATED BY THE FINITE
MONOIDS
In EDPC I, Blok and Pigozzi proved that (assuming equationally definable prin-
cipal congruences) if x is a quasiidentity and Q = Mod(x), then Q has a largest
subvariety, namely,

Vo={Ae€Q:H,(A)CQ}.

Here H,(A) = { A/§ : 0 is a compact congruence } .

Let M denote the class of monoids, and Q the subquasivariety of V(M™) defined
by the quasiidentity (5) of §63. (V(M*) has EDPC by the same argument used
in €36.) Then Mi C Q C V(MT), and therefore M C Vq, since M{ s closed
under H,. It follows that V(ML ) ¢ V(M*). A similar arguement works for
commutative Boolean monoids.

We have proved the following Theorem.

THEOREM 26. Neither the variety of Boolean monoids nor the variety of commu-
tative Boolean monoids is generated by the complex algebras of finite monoids.®

Problem 12. Is the variety BS! generated by its finite members?

65. A QUESTION FOR PAM
Let X be a set. Is (P(X?),|,Ax) € V(M™), where M is the class of monoids?

66. ANOTHER IDENTITY
What can you say about the identity z -y =z -y - 17 (See article 54.)

67. YET ANOTHER IDENTITY

Problem 13. Consider the variety of associative Boolean groupoids that satisfy

.’132 = .TS.

8In my notes, I had something more general: these varieties are not generated by their finite
members. Can we obtain that result from this argument?
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Other structures

68. MONO-UNARY ALGEBRAS

Let V be a variety of mono-unary algebras. Then V(V*) is finitely axiomatizable
and is identical to V((Vg,)*).°

69. COMPLEX ALGEBRAS OF GROUPOIDS
Let G denote the class of all groupoids. Then V(G*) is the variety of all Boolean
groupoids.

Problem 14. Is V((Gga)™) equal to the variety of all Boolean groupoids?
Analogous questions can be asked for the class of all commutativie groupoids and

idempotent groupoids.

70. THE “SUPER IDEMPOTENT LAW”

Consider the variety of Boolean groupoids that satisfy only the identity z -z > =z.
How much of the theory of Boolean semilattices continues to hold. (What about
the associative law?)

71. BOOLEAN SEMILATTICES WITH RESIDUATION
Let (S,-) be a semilattice. Form the structure (P(S),+, —), where

X—->Y={zeS5: X -{z} CY}:
Is the variety of all such algebras axiomatized by:

xoy:y-l’
(-y)z=x-(y-2)
@-y)—z=2—(y—2)?
What happens if we add T to the type?

We have an example of this on N, but I don’t understand it anymore.

72. RESIDUATION IN L
Look at the residuation operation in L.

9Do we have a proof of this?
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