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Short Notes

What We Can and Cannot Learn about Earthquake Sources

from the Spectra of Seismic Waves

by Igor A. Beresnev

Abstract Earthquake sources are commonly viewed as shear dislocations. This
imposes distinct limitations on what source parameters can be realistically deter-
mined from radiated shear-wave spectra. First, the slip velocity on the fault is the
real parameter that controls the strength of the high-frequency radiation; it can be
directly determined from acceleration spectra by fitting their high-frequency level.
Second, the relationship between corner frequency of the spectrum and the radius of
the source is fundamentally unclear. As a result, the source dimensions cannot be
accurately determined from the spectra; such an estimate would be as accurate as
any other informed guess. Third, the stress drop only serves as a proxy for the source
radius in the relationship between the radius and the corner frequency; it thus cannot
be reliably determined from the spectra. The quantity usually obtained from the
spectra and referred to as the stress drop is a poorly defined parameter that may bear
little relevance to the actual stresses acting on faults. This parameter has little mean-
ing unless converted to the maximum slip velocity, which is the only quantity that
can be accurately determined from the spectra. The typical value of stress drop of
100 bars, established from the spectra of California events, may imply that the typical
slip velocities have been on the order of 0.5 m/sec, although it is more accurate to
determine slip velocities directly from the spectra.

Introduction

The classic theory of seismic radiation from an earth-
quake source is based on the model of shear dislocation. This
model is commonly used to determine important source pa-
rameters, such as the source radius or the tectonic shear
stress that caused the rupture. Clearly, the nature of the
model dictates some limitations on what source character-
istics can be realistically determined from the observed spec-
tra. To distinctly outline these limitations, I revisit the issue
by providing a summary of the relationships commonly used
(e.g., Brune, 1970, 1971; Savage, 1972; Tumarkin and Ar-
chuleta, 1994) that highlights the key points.

Seismic Spectra and Slip Velocity

The displacement on the dislocation that leads to a x2

spectrum of shear-wave radiation is

t �t/su(t) � u(�) 1 � 1 � e , (1)� � � �s

where s is the parameter governing the speed of the rise in
dislocation displacement to its final value of u(�) (e.g., Be-

resnev and Atkinson, 1997). The acceleration spectrum in
the far field is then given by the x2 function

2M x0a(x) � ,2x
1 � � �xc

where � indicates proportionality, M0 is the seismic mo-
ment, x is the angular frequency, and xc � 1/s is the corner
frequency of the spectrum. The quantity xc is thus also re-
lated to the speed of dislocation rise.

At high frequencies (x � xc), the acceleration spectrum
is constant:

2a (x) � M x . (2)hf 0 c

Thus ahf is also controlled by the speed of the dislocation
rise.

By taking the time derivative of (1), we can determine
the slip velocity (v), which has its maximum at t � s:



u(�)
v � ,max es

whence, using the earlier definition of corner frequency,

vmax
x � e . (3)c u(�)

We thus conclude that the corner frequency is controlled
by the maximum slip velocity, and that from equations (2)
and (3),

2a (x) � M v . (4)hf 0 max

It follows that slip velocity is the source parameter that is
directly obtainable from the high-frequency spectrum.

Radius of the Source

Can we obtain any other information on the source
based on the seismic spectra? We could try to link the corner
frequency to source dimensions. The source rise time (T)
can be defined as the time it takes the dislocation to reach a
certain fraction of its final displacement. For example, we
could take this fraction as a half of total displacement. Then,
from (1),

u(T) T �T/s� 1 � 1 � e � 0.5 (5)� � � �u(�) s

If we introduce the dimensionless rise time T/s � z, equation
(5) can be viewed as an algebraic equation for z, from which
we have z � 1.68. Thus, the corner frequency can be ap-
proximately linked to the rise time as

1.68
x � . (6)c T

Equation (6) does not yet provide the relationship we need,
since it remains to relate the rise time to the source dimen-
sion. We can do it reasonably well by assuming that each
dislocation on the fault rises as long as the rupture propa-
gates across the fault. This assumption links the rise time to
the fault linear dimension (L):

L
T � , (7)

VR

where VR is the rupture-propagation velocity. Substituting
(7) into (6) gives

1.68VR
x � , (8)c L

which is the relationship sought. We notice, however, that
instead of providing a means of determining fault dimen-

sions from corner frequency, this relationship cautions us
that such a solution is, in fact, fundamentally unclear. First,
we have the coefficient of 1.68 in relationship (8), which
arises from a rather arbitrary definition of the rise time as
the time over which the fault reaches its half-displacement
(why half?). Second, it involves the rupture velocity, VR,
which is an unknown quantity but can be related (albeit with
significant uncertainty) to the shear-wave propagation ve-
locity, for example, VR � 0.8 VS (again, why 0.8?). Third,
equation (8) is based on the stated hypothesis that, locally,
the dislocation grows as long as the rupture propagates along
the fault; however, the local rise time (T) could also be hy-
pothesized to be shorter than the total rupture-propagation
time (L/VR) (e.g., Heaton, 1990). If we use all these as-
sumptions, then

1.68 � 0.8 � V VS S
x � � 0.67 , (9)c L R

where R is the radius of the source.
Brune (1970, 1971) proposed the classic formula

VS
x � 2.34c R

with a different coefficient, which has been used extensively
in observational seismology. However, in view of the pre-
vious reasoning, any particular value of this coefficient has
no rigorous meaning because of the ambiguities involved in
deriving the relationship (9). The use of relationships of this
kind to determine the radius of the source from the spectra
would therefore be as accurate as any other informed guess.

Stress

It is common to express corner frequency in terms of
the change in tectonic stress, which provides the basis for
the determination of stress drop from the seismic spectra.
However, the approach taken is still based on equation (9),
in which R is simply substituted by the moment and stress.
The resulting relationship is thus subject to the same reser-
vations.

The seismic moment is defined as

M � lu(�)A, (10)0

where l is the shear modulus and A is the area of the rupture.
By rewriting the area as A � L2, we determine L from (10):

1/2M0L � . (11)� �lu(�)

The derivation then uses the definition of stress drop (Dr),
which is simply the quantity proportional to the fault dis-
placement normalized by fault dimension:
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u(�)
Dr � l . (12)

L

Using (12) in (11) gives

1/3 1/3M 1 M0 0L � or R � . (13)� � � �Dr 2 Dr

Finally, substituting (13) into (9) gives

1/3Dr
x � 0.67 � 2 � V . (14)c S � �M0

Equation (14) gives an impression that the stress drop
can be determined from the earthquake spectrum, even
though this equation has been simply obtained as a proxy
for the (uncertain) relationship (9) using the definition (12).
It thus carries no new information about the source and can
even be misleading.

Indeed, instead of recognizing slip velocity as the real
physical parameter (other than the moment) governing the
high-frequency level of the spectrum, the stress drop is in-
troduced as a controlling factor, creating confusion. It is
clear even from simple reasoning that stress drop cannot be
responsible for the strength of the high-frequency radiation:
for example, the same drop in stress can lead to either very
strong or no high-frequency radiation, depending on whether
it occurred over a 1 second or 1 year interval. Clearly, the
rate at which the stress changes is a key factor, which again
emphasizes the significance of slip velocity (bringing us
back to equation 4).

Do published estimates of the stress drop, obtained from
shear-wave spectra, bear any relationship to the real stresses
acting on tectonic faults? To answer this question, we should
keep in mind that the quantity determined from the spectra
through equation (14) (or its analogs) is that originally in-
troduced by equation (12). The question is thus reformulated
as that of determining the physical meaning of Dr in (12).

It is common to assume that Dr in equation (12), which
resembles Hooke’s law, is closely related to the actual stress
change during an earthquake. In looking for the theoretical
basis for this assumption, we might go back to the original
work of Eshelby (1957) that is often referred to (e.g., Kan-
amori and Anderson, 1975) as the source for this conclusion.
Eshelby (1957) considered the elastic deformation of a thin
ellipsoidal cavity (l � 0) in a matrix subjected to homo-
geneous simple shear. Eshelby found an expression for the
relative displacement of the faces of the cavity (Du1) (equa-
tion 5.7 in Eshelby’s paper). The maximum displacement
occurs at the center of the cavity:

2bS
Du � , (15)1

lg

where b is the radius of the cavity and S is the ambient shear
stress (I keep the author’s original notation and assume sphe-
roidal cavity shape). The coefficient g is given by equation
5.3 of Eshelby (1957):

p(2 � r)
g � , (16)

4(1 � r)

where r is Poisson’s ratio. Combining (15) and (16), we
have

8bS 1 � r
Du � .1

pl 2 � r

S then can be recovered from Du1 by

p 2 � r Du1S � l .
8 1 � r b

Poisson’s ratio is , where k is Lamé con-
k

r �
2(k � l)

stant. Then, for k � l (a common simplifying assumption),
r � 1⁄4. We thus have

7p Du 7p Du1 1S � l � l (17)
24 b 12 L

(L � 2b), which has the form of equation (12). Equation
(17), which we derived from the work of Eshelby (1957), is
the absolute value of driving shear stress reconstructed from
the maximum relative displacement of the faces of the cav-
ity, for k � l. Note that the deformation of the cavity was
assumed totally elastic; that is, the cavity was assumed to
return to its original shape once the ambient stress had been
removed (no breakage assumed). Clearly, this is an inade-
quate model for the earthquake source, which involves a
break in material continuity and cannot be considered to de-
form elastically. We conclude that the values of stress de-
termined using equation (17), if the displacement disconti-
nuity across the fault is substituted for Du1, may have little
relevance to the actual stress that caused the fault to break.
The calculated quantity will probably have no other meaning
than simply quantifying the fault displacement normalized
by its length. Equating it to the stress that acted on the fault
plane before breakage would be incorrect.

In introducing Dr into a popular source-radiation
model, Boore (1983) was in fact cautious about attributing
this parameter any direct physical meaning, other than sim-
ply that of a parameter controlling the strength of the high-
frequency radiation. Some of the subsequent papers have
been equally frank in acknowledging the lack of physical
meaning behind Dr determined from the spectra (Atkinson,
1993; Atkinson and Boore, 1995; Atkinson and Beresnev,
1997). Nevertheless, determining Dr from relationships
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such as (14) and equating it to the real stress in the crust
became widespread practice.

In spite of the limited practical value of Dr, the fact
cannot be disregarded that a large number of determinations
of this parameter from earthquake spectra have been pub-
lished. We could try to make use of these data by back-
calculating from them the slip velocity, as the source param-
eter that has a simple and clear meaning. We equate
expressions (3) and (8) for the corner frequency:

v 1.68Vmax Re � . (18)
u(�) L

Using the definition of stress drop (12), the relationship VR

� 0.8 VS, and equation , where q is the density,2l � V qs

we rewrite (18) as

1.68 � 0.8 Dr
v � . (19)max e V qS

For example, Brune (1970) determined from seismic
spectra that the stress drop for California earthquakes was
typically on the order of 100 bars. This value has become
classic and is quoted in many textbooks. Using this value in
(19) and assuming typical crustal density and shear-wave
velocity (q � 2700 kg/m3 and VS � 3600 m/sec), we obtain
�max � 0.5 m/sec. This is the probable typical velocity of
slip on rupturing faults calculated from the spectra of seismic
waves. However, we again note the ambiguous character of
equation (19) that contains uncertain coefficients. The best
way of obtaining the slip velocity from seismic data would
be to directly fit the observed spectra with relationship (4),
which would allow us to avoid the use of the ambiguously
defined coefficients that enter (19).

Conclusions

I come to the following conclusions:

1. The maximum velocity of slip on rupturing faults (�max)
is the real physical parameter controlling the high-fre-
quency level of the radiated shear-wave spectra. It can be
determined directly from the observed high-frequency
levels of acceleration spectra.

2. There is no exact relationship between the source radius
and the corner frequency of the spectrum. The accuracy
of the existing approximate relationships is as good as
that of any other reasonable guess.

3. In the popular source models, the stress drop serves as a
proxy for the slip velocity and can be back-calculated into
�max. The stress drop itself is a poorly defined source
parameter and, in its classic definition, does not quantify
the actual stress change during an earthquake. Its values
derived from the seismic spectra have little physical
meaning unless converted back into the slip velocity. For
example, the typical values of stress drop of around 100
bars derived for California events may imply that the typ-
ical slip velocity has been around 0.5 m/sec, although the
equation that establishes this link involves significant
ambiguity.
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