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Non-Newtonian effects in the peristaltic flow of a Maxwell fluid
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We analyzed the effect of viscoelasticity on the dynamics of fluids in porous media by studying the flow of
a Maxwell fluid in a circular tube, in which the flow is induced by a wave traveling on the tube wall. The
present paper investigates phenomena brought about into the classic peristaltic mechanism by inclusion of
non-Newtonian effects that are important, e.g., for hydrocarbons. This problem has numerous applications in
various branches of science, including the stimulation of fluid flow in a porous media under the effect of elastic
waves and studies of blood flow dynamics in living creatures. We have found that in the extreme non-
Newtonian regime, there is a possibility of a fluid flow in the directionoppositeto the propagation of the wave
traveling on the tube wall.
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I. INTRODUCTION

Investigation of flow dynamics of a fluid in a tube havin
circular cross section, induced by a wave traveling on
wall ~boundary!, has many applications in various branch
of science. The physical mechanism of the flow induced
the traveling wave can be well understood and is known
the so-called peristaltic transport mechanism. This mec
nism is a natural cause of motion of fluids in the body
living creatures, and it frequently occurs in organs such
ureters, intestines, and arterioles. Peristaltic pumping is
used in medical instruments such as the heart-lung mach
etc. @1#.

Laboratory experiments have shown that an external s
radiation can considerably increase the flow rate of a liq
through a porous medium~Refs. @1,2# and references
therein!. Initially, the idea of flow stimulation via waves trav
eling on the flow boundary, in the context of porous med
has been proposed by Ganiev and collaborators@3#. They
proposed that sonic radiation generates traveling waves
the pore walls in a porous medium. These waves, in tu
generate a net flow of fluid via the peristaltic mechanis
Later, this problem has been studied in a number of publ
tions, where authors used different simplifying assumptio
in order to solve the problem~see, e.g., Ref.@4#!. The most
recent and general study of the stimulation of fluid flow
porous media via peristaltic mechanism is presented in R
@1#, which we will use as a starting point in order to includ
non-Newtonian effects into the peristaltic model.

It is clear that a usual peristaltic mechanism discuss
e.g., in Ref.@1# can be used to describe the behavior o
classic Newtonian fluid, however, e.g., oil and other hyd
carbons exhibit significant non-Newtonian behavior@5#. The
aim of this paper is therefore, to incorporate non-Newton
effects into the classical peristaltic mechanism@1#. Thus, the
present paper formulates a realistic model of the perista
mechanism, which is applicable to the non-Newtonian flu
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~e.g., hydrocarbons! not only to the Newtonian ones~e.g.,
ordinary water! which have been extensively investigated
the past@1#.

It should be noted that there were similar studies in
past~Ref. @6# and references therein!. However, the previous
contributions discussed the peristaltic mechanism for rh
logical equations other than the Maxwellian one. Thus,
present paper fills this gap in the literature. In addition, t
paper is motivated by the recent results of del Rio,et al., @7#,
and Tsiklauri and Beresnev@8#, who found effects, including
the enhancement of aMaxwellian fluidflow in a tube that
was subjected to an oscillatory pressure gradient.

II. THE MODEL

We consider an axisymmetric cylindrical tube~pore! of
radiusR and lengthL. We assume that an elastic wave i
duces a traveling wave on the wall~boundary! of the tube
with the displacement of the following form:

W~z,t !5R1a cosF2p

l
~z2ct!G , ~1!

wherea is the amplitude of the traveling wave, whilel and
c are its wavelength and velocity, respectively. We note t
the z axis of the (r ,f,z) cylindrical coordinate system is
directed along the axis of the tube.

The equations that govern the flow are the balance
mass

]r

]t
1¹W •~rvW !50, ~2!

and the momentum equation

r
]vW

]t
1r~vW •¹W !vW 52¹W p2¹W t̃, ~3!

wherer, p, andvW are the fluid density, pressure, and velo
ity, respectively;t̃ represents the viscous stress tensor.
describe the viscoelastic properties of the fluid using M
well’s model @7#, which assumes that
©2001 The American Physical Society03-1
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tm

]t̃

]t
52m¹W vW 2

m

3
¹W •vW 2 t̃, ~4!

wherem is the viscosity coefficient andtm is the relaxation
time.

We further assume that the following equation of st
holds:

1

r

dr

dp
5k, ~5!

wherek is the compressibility of the fluid. We also assum
that the fluid’s velocity has onlyr andz components.

We make use of ‘‘no-slip’’ boundary condition at th
boundary of the tube, i.e.,

v r~W,z,t !5
]W

]t
, vz~W,z,t !50. ~6!

Equation~4! can be rewritten in the following form:

S 11tm

]

]t D t̃52m¹W vW 2
m

3
¹W •vW . ~7!

Further, we apply the operator (11tm]/]t) to the momen-
tum equation~3! and eliminatet̃ in it using Eq.~7!:

2S 11tm

]

]t D¹W p1m¹W 2vW 1
m

3
¹W ~¹W •vW !

5S 11tm

]

]t D Fr
]vW

]t
1r~vW •¹W !vW G . ~8!

The equations are made dimensionless by scaling
length byR and time byR/c. Also, we have introduced th
following dimensionless variables~and have omitted the
tilde sign in the latter equations!: W̃5W/R, r̃5r/r0 , ṽ r

5v r /c, ṽz5vz /c, and p̃5p/(r0c2). Here,r0 is the regular
~constant! density at the reference pressurep0. We have also
introduced e5a/R, a52pR/l, Re5r0cR/m, and x
5kr0c2.

Following Ref.@1#, we seek the solution of the governin
equations in a form

p5p01ep1~r ,z,t !1e2p2~r ,z,t !1•••,

v r5eu1~r ,z,t !1e2u2~r ,z,t !1•••,

vz5ev1~r ,z,t !1e2v2~r ,z,t !1•••,

r511er1~r ,z,t !1e2r2~r ,z,t !1•••.

Then, doing a usual perturbative analysis using the la
expansions, we can obtain a closed set of governing e
tions for the first (e) and second (e2) order.

Further, following the authors of Refs.@1,8#, we seek the
solution of the liner problem in the form

u1~r ,z,t !5U1~r !eia(z2t)1Ū1~r !e2 ia(z2t),
03630
e
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v1~r ,z,t !5V1~r !eia(z2t)1V̄1~r !e2 ia(z2t),

p1~r ,z,t !5P1~r !eia(z2t)1 P̄1~r !e2 ia(z2t),

r1~r ,z,t !5xP1~r !eia(z2t)1x P̄1~r !e2 ia(z2t).

Here and in the following equations, the bar denotes a co
plex conjugate.

On the other hand, we seek the second (e2) order solution
in the form

u2~r ,z,t !5U20~r !1U2~r !ei2a(z2t)1Ū2~r !e2 i2a(z2t),

v2~r ,z,t !5V20~r !1V2~r !ei2a(z2t)1V̄2~r !e2 i2a(z2t),

p2~r ,z,t !5P20~r !1P2~r !ei2a(z2t)1 P̄2~r !e2 i2a(z2t),

r2~r ,z,t !5D20~r !1D2~r !ei2a(z2t)1D̄2~r !e2 i2a(z2t).

The latter choice of solution is motivated by the fact th
the peristaltic flow is essentially a nonlinear~second-order!
effect @1#, and adding a nonoscillatory term in the first ord
gives only a trivial solution. Thus, we can add nonoscillato
terms, such asU20(r ), V20(r ), P20(r ), andD20(r ), which do
not cancel out in the solution after the time averaging o
the period, only in the second and higher orders.

In the first order bye we obtain

2~12 iatm!P181
1

ReS U191
U18

r
2

U1

r 2 2a2U1D
1

1

3 Re

d

drS U181
U1

r
1 iaV1D52 ia~12 iatm!U1 , ~9!

2 ia~12 iatm!P181
1

ReS V191
V18

r
2a2V1D

1
ia

3 ReS U181
U1

r
1 iaV1D52 ia~12 iatm!V1 , ~10!

S U181
U1

r
1 iaV1D5 iaxP1 . ~11!

Here, the prime denotes a derivative with respect tor.
Further, we rewrite the systems~9!–~11! in the following

form:

2gP181S U191
U18

r
2

U1

r 2 2b2U1D 50, ~12!

2gP12
i

a S V191
V18

r
2b2V1D 50, ~13!

where

g5~12 iatm!Re2 iax/3, b25a22 ia~12 iatm!Re.

~14!
3-2
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Note, that Eqs.~12! and ~13! are similar to Eq.~3.11! from
Ref. @1#, except thatg and b are modified by substitution
Re→(12 iatm)Re.

Repeating the analysis similar to the one from Ref.@1#,
we obtain the Master equation forU1(r ) and find its genera
solution as

U1~r !5C1I 1~nr !1C2I 1~br !, ~15!

whereI 1 is the modified Bessel function of the first kind o
order 1, andC1 andC2 are complex constants defined by

C15
abn i I 0~b!

2@a2I 0~n!I 1~b!2bnI 0~b!I 1~n!#
,

C25
2a3i I 0~n!

2@a2I 0~n!I 1~b!2bnI 0~b!I 1~n!#
,

where

n25a2
~12x!~12 iatm!Re2~4/3!iax

~12 iatm!Re2~4/3!iax
.

Here, I 0 is the modified Bessel function of the first kind o
order 0.

We also obtain the general solution forV1(r ):

V1~r !5
iaC1

n
I 0~nr !1

ibC2

a
I 0~br !.

The second-order solutionV20(r ) can also be found in a
way similar to the one used in Ref.@1#:

V20~r !5D22~12 iatm!ReE
r

1

@V1~z!Ū1~z!

1V̄1~z!U1~z!#dz,

whereD2 is a constant defined by

D252
iaC1

2
I 1~n!2

ib2C2

2a
I 1~b!1

2 iaC̄1

2
I 1~ n̄ !

1
i ~b2C2!

2a
I 1~ b̄ !.

The net dimensionless fluid flow rateQ can be calculated
as @1#

Q~z,t !52pFeE
0

1

v1~r ,z,t !r dr 1e2E
0

1

v2~r ,z,t !r dr

1O~e3!G .
In order to obtain the net flow rate averaged over o

period of time, we have to calculate

^Q&5
a

2pE0

2p/a

Q~z,t ! dt.
03630
e

This time averaging yields

^Q&52pe2E
0

1

V20~r !r dr

or finally substituting the explicit form ofV20(r ), we obtain
for the dimensionless net flow rate

^Q&5pe2FD22~12 iatm!ReE
0

1

r 2@V1~r !Ū1~r !

1V̄1~r !U1~r !#drG . ~16!

III. NUMERICAL RESULTS

In the previous section, we have shown that the inclus
of non-Newtonian effects into the classical peristaltic mec
nism by using the Maxwell fluid model yields the followin
change: Re→(12 iatm)Re in all of the solutions.

It is known that the viscoelastic fluids, described by t
Maxwell model, have different flow regimes depending
the value of the parameterDe5tv /tm , which is called the
Deborah number@7#. In effect, the Deborah number is a rat
of the characteristic time of viscous effectstv5rR2/m to the
relaxation timetm . As noted in Ref.@7#, the value of the
parameterDe ~which the authors of Ref.@7# actually calla)
determines in which regime the system resides. Beyon
certain critical value (Dec511.64), the system is dissipative
and conventional viscous effects dominate. On the ot
hand, for smallDe (De,Dec) the system exhibits vis-
coelastic behavior.

A numerical code has been written to calculate^Q& ac-
cording to Eq.~16!. In order to check the validity of our
code, we run it for the parameters similar to the ones used
other authors. For instance, fore50.15, Re5100.00, a
50.20, x50, and tm50 we obtain^Q&50.270 870 6458,
which is equal~if we keep four digits after the decimal poin!
to the result of the authors of Ref.@1# who actually obtained
^Q&50.2709.

Further, we have made several runs of our code for
ferent values of the parametertm . We note again thattm
enters the equations because we have included n
Newtonian effects into our model. Equation~16! will be
identical to the similar Eq.~4.1! from Ref. @1# if we set tm
50 in all our equations.

The results of our calculation are presented in Fig.
where we investigate the dependence of^Q& on the com-
pressibility parameterx for the various values oftm . In or-
der to compare our results with the ones from Ref.@1#, we
have plotted^Q& for the following set of parameters:e
50.001, Re510 000.00,a50.001, andtm50 ~solid line!.
We note that the curve is identical to the corresponding cu
in Fig. 2 from Ref.@1#. This obviously corroborates the va
lidity of our numerical code. Further, to investigate the d
pendence of the flow ratêQ& on tm , we perform the calcu-
lation for a few values oftm . When tm51.0, we notice no
noticeable change in the plot as both curves coincide wit
the plotting accuracy. Fortm5100.00 ~dashed curve with
3-3
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crosses!, we notice slight deviation from the Newtonian lim
iting case~solid line!, which translates into shifting the max
mum towards largerx ’s. For tm51000.00~dash-dotted curve
with asterisks!, we notice further deviation from the Newton
ian flow, which also translates into shifting the maximu
towards largerx ’s. However, for tm510 000.00 ~dashed
curve with empty squares!, we note much more drasti
changes, including the absence of a maximum and ra
growth of^Q& in the considered interval of variation of com
pressibility parameterx. The observed pattern conforms
our expectation, since largetm means smallDe (De
,Dec) and the system exhibits strong viscoelastic behav
Note thattm is dimensionless and scaled byR/c.

After the above discussion, it is relevant to define qua
tatively the transition point where the flow starts to exhi
~non-Newtonian! viscoelastic effects. It is known@7# that
De5tv /tm5(rR2)/(mtm). Now, using the definition of Re
5rcR/m, we can define the critical value oftm as

tmC5S Re

Dec
D R

c
. ~17!

FIG. 1. Dimensionless flow ratêQ& as a function of compress
ibility parameter x. The parameters used aree50.001, Re
510 000.00, anda50.001. tm50 corresponds to the solid line
whereastm5100.00, 1000.00, and 10 000.00 correspond to
dashed curve with crosses, dash-dotted curve with asterisks,
dashed curve with empty squares, respectively.

FIG. 2. Plot of dimensionless flow rate^Q& as a function ofa.
Here,e50.001, Re510 000.00, andx50.6. tm50 corresponds to
the solid line, whereastm5100.00 and 1000.00 correspond to t
dashed curve with crosses and dash-dotted curve with aster
respectively.
03630
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In all our figures we have used Re510 000.0. If we put the
latter value of Re and the critical value of the Deborah nu
ber 11.64@7# into Eq. ~17!, we obtaintmC5859.11 ~mea-
sured in units ofR/c). Therefore, the values oftm greater
than tmC ~for a given Re) correspond to subcritical (De
,Dec) Deborah numbers for which viscoelastic effects a
pronounced.

In Fig. 2 we investigate the behavior of the flow rate^Q&
on the parametera, which is the tube radius measured
wavelengths. Again, to check for the consistency of our
merical results with the ones from Ref.@1#, and also inves-
tigate phenomena brought about by the introduction of n
Newtonian effects~appearance of nonzero relaxation tim
tm) into the model, we first plot̂Q& versusa for the fol-
lowing set of parameters:e50.001, Re510 000.00,x50.6,
and tm50. If we compare the solid curve in our Fig. 2 wit
the dashed curve in Fig. 3 of Ref.@1#, we will note no dif-
ference, which again corroborates the validity of our nume
cal code. We then settm to various nonzero values and in
vestigate the changes introduced by non-Newtonian effe
As in Fig. 1, we notice no change fortm51.0. For tm
5100.00 andtm51000.00, we notice that the flow rat
somewhat changes, attaining lower values asa ~radius of the
tube! increases.

We treat the latter,tm51000.00, case separately for th
reason of an appearance of a effect ofnegativeflow rates
when the interval of variation ofa is increased up to 0.05
Again, we expect that for largetm (tm.tmC5859.11), i.e.,
smallDe (De,Dec), the system should exhibit viscoelast
behavior. We note from Fig. 3 that fora>0.035, ^Q& be-
comesnegative, i.e., we observe backflow. In fact, by doin
parametric studies we conclude thattmC is the critical value
of tm , above which we observe backflow. By increasingtm
further, tm510 000.00, we note from Fig. 4 that in thi
deeply non-Newtonian regime,^Q& becomes highly oscilla-
tory, but what is unusual again is that we observe the ne
tive flow rates for certain values ofa, that is, the tube radius
measured in wavelengths. Obviously, the negative^Q&
means that flow occurs in the direction opposite to the dir
tion of propagation of the traveling wave on the tube wa
Oscillatory behavior~appearance of numerous of maxima
the behavior of a physical variable! in the deeply non-

e
nd

ks,

FIG. 3. Plot of dimensionless flow rate^Q& as a function ofa
on a larger~than in Fig. 2! interval of variation ofa. Here, e
50.001, Re510 000.00,x50.6, andtm51000.00.
3-4
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Newtonian regime is not new@8#. However, the flow of a
fluid created by the peristaltic mechanism in the direct
opposite to the direction of propagation of the traveli
wave, is unusual and should be attributed to a complica
nonlinear form of the response of a Maxwell fluid to th
stress exerted by the wave.

IV. CONCLUSIONS

In this paper, we investigated the dynamics of fluid flo
in a tube with a circular cross section, induced by a wa
traveling on its wall~boundary!. This problem has numerou
applications in various branches of science, including stim
lation of fluid flow in porous media under the effect of elas
waves.

The present paper investigates phenomena brought a
into the classic peristaltic mechanism by the inclusion
non-Newtonian effects based on the model of a Maxw
fluid.

FIG. 4. Plot of dimensionless flow rate^Q& as a function ofa.
Here,e50.001, Re510 000.00,x50.6, andtm510 000.00.
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We have found that in the extreme non-Newtonian regi
there is a possibility of flow in the direction opposite to th
propagation of the wave traveling on the tube wall. A som
what similar effect is known as the acoustic streaming@9#, in
which an acoustic wave propagating in a tube induce
mean flow in the direction of propagation in the acous
boundary layer, but in the opposite direction in the cent
part of the tube. The mean flow or acoustic streaming
caused by the presence of friction at the bounding surface
the tube. While fluid away from the neighborhood of
boundary vibrates irrotationally as the acoustic wave pas
fluid in close proximity to the boundary must vibrate rot
tionally to satisfy the no-slip condition on the tube wall. Th
deviation from inviscid, irrotational behavior provides an e
fective driving force known as the Reynolds stress. This
fective force, because of it is quadratic rather than linear,
a nonvanishing time-average tangential component to
tube wall that drives flow in the boundary layer. In the ca
considered in our paper, instead of having an acoustic w
propagating through the volume of the tube, we have a w
traveling on the tube wall; besides we have the further co
plication of considering non-Newtonian~Maxwell! fluid ~re-
call that the discovered effect is demonstrated for the cas
non-Newtonian regimetm /tmC.1.0). Similarly, the peristal-
tic flow itself is a second-order nonlinear effect. Therefo
the flow of a fluid created by the peristaltic mechanism in
direction opposite to the direction of propagation of traveli
wave ~i.e., backflow! could be explained by a complicated
non-Newtonian, nonlinear response of a Maxwell fluid to t
stress exerted by the traveling wave.
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