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Non-Newtonian effects in the peristaltic flow of a Maxwell fluid
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We analyzed the effect of viscoelasticity on the dynamics of fluids in porous media by studying the flow of
a Maxwell fluid in a circular tube, in which the flow is induced by a wave traveling on the tube wall. The
present paper investigates phenomena brought about into the classic peristaltic mechanism by inclusion of
non-Newtonian effects that are important, e.g., for hydrocarbons. This problem has numerous applications in
various branches of science, including the stimulation of fluid flow in a porous media under the effect of elastic
waves and studies of blood flow dynamics in living creatures. We have found that in the extreme non-
Newtonian regime, there is a possibility of a fluid flow in the directigppositeto the propagation of the wave
traveling on the tube wall.
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I. INTRODUCTION (e.g., hydrocarbonsnot only to the Newtonian one&.g.,
ordinary watey which have been extensively investigated in

Investigation of flow dynamics of a fluid in a tube having the pas{1].
circular cross section, induced by a wave traveling on its It should be noted that there were similar studies in the
wall (boundary, has many applications in various branchespast(Ref.[6] and references thergirHowever, the previous
of science. The physical mechanism of the flow induced by:or.]tributions.discussed the peristaltic m(_achanism for rheo-
the traveling wave can be well understood and is known aogical equations other than the Maxwellian one. Thus, the
the so-called peristaltic transport mechanism. This mecha?r€sent paper fills this gap in the literature. In addition, this
nism is a natural cause of motion of fluids in the body of P2Per is motivated by the recent results of del Rioal, [7],
living creatures, and it frequently occurs in organs such aénd Tsiklauri and Beresng#g], yvho fo_und eff_ects, including
ureters, intestines, and arterioles. Peristaltic pumping is aIs@e enhe_mcement of Ma>.<welllan fluidflow in a tbe that
used in medical instruments such as the heart-lung machinl@’,as subjected to an oscillatory pressure gradient.
etc.[1].

Laboratory experiments have shown that an external sonic
radiation can considerably increase the flow rate of a liquid e consider an axisymmetric cylindrical tulfgore of
through a porous mediunRefs. [1,2] and references radiusR and lengthL. We assume that an elastic wave in-

therein. Initially, the idea of flow stimulation via waves trav- duces a traveling wave on the waboundary of the tube
eling on the flow boundary, in the context of porous mediaith the displacement of the following form:

has been proposed by Ganiev and collaboraf8is They
proposed that sonic radiation generates traveling waves on
the pore walls in a porous medium. These waves, in turn,
generate a net flow of fluid via the peristaltic mechanism.
Later, this problem has been studied in a number of publicawherea is the amplitude of the traveling wave, whileand
tions, where authors used different simplifying assumptiong are its wavelength and velocity, respectively. We note that
in order to solve the problerfsee, e.g., Ref4]). The most the z axis of the ¢,¢,z) cylindrical coordinate system is
recent and general study of the stimulation of fluid flow indirected along the axis of the tube.
porous media via peristaltic mechanism is presented in Ref. The equations that govern the flow are the balance of
[1], which we will use as a starting point in order to include mass
non-Newtonian effects into the peristaltic model.

It is clear that a usual peristaltic mechanism discussed, ip+ﬁ-(p5)=0 )
e.g., in Ref.[1] can be used to describe the behavior of a at ’
classic Newtonian fluid, however, e.g., oil and other hydro- .
carbons exhibit significant non-Newtonian behay\i®}. The and the momentum equation
aim of this paper is therefore, to incorporate non-Newtonian o o ) )
effects into the classical penstalt_lc _mechamﬁm Thus, the _ p—+pv-Vo=—Vp-Vr, 3
present paper formulates a realistic model of the peristaltic at
mechanism, which is applicable to the non-Newtonian quidsW

Il. THE MODEL

: @

2
W(z,t)= R+acos{T(z—ct)

herep, p, andv are the fluid density, pressure, and veloc-

ity, respectively;r represents the viscous stress tensor. We
*Email address: tsikd@astro.warwick.ac.uk describe the viscoelastic properties of the fluid using Max-
TEmail address: beresnev@iastate.edu well's model[7], which assumes that
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t(fT— Vo ¥.0-7 4
mo = " H#Vv— 3V, (4)

v4(r,z,t) =Vl(r)ei‘1’(2_t)+v1(r)e—ia(z—t),

p.(r,z,t)= Pl(r)ei“(z_t)+sl(r)e—ia(z—t)’
where u is the viscosity coefficient ant,, is the relaxation

time. — ia(z—t) D —ia(z—t)
We further assume that the following equation of state pur.z)=xPy(r)e *xPyne '
holds: Here and in the following equations, the bar denotes a com-
plex conjugate.
1 d_P — (5) On the other hand, we seek the secosf) rder solution
pdp in the form

wherex is _the comp_ressibility of the fluid. We also assume uz(rlzi):Uzo(r)_l_Uz(r)eiZa(Z—t)+Uz(r)e—iZa(z—t),

that the fluid's velocity has only andz components.

bomzar:;/algftﬁsetzug; ir.1:”sllp boundary condition at the D1, 2,0) = Vo1 )+ V(1) 1200 1 ()@~ 12020,
IW P2(r,2,t)=Py(r) +Py(r)e'2* 4 P,(r)e~2a(z70),

v (W,z,t)= o v,(W,z,t)=0. (6)

po(r,2,)=Dyo(r)+Dy(r)e'?*@ N+ D,(r)e 12a(z0,

Equation(4) can be rewritten in the following form:

The latter choice of solution is motivated by the fact that
the peristaltic flow is essentially a nonline@econd-order
effect[1], and adding a nonoscillatory term in the first order
gives only a trivial solution. Thus, we can add nonoscillatory
Further, we apply the operator ¢1t,d/dt) to the momen- terms, such abl,o(r), Voo(r), Poo(r), andD,g(r), which do
tum equation(3) and eliminatér in it using Eq.(7): not cancel out in the solution after the time averaging over
the period, only in the second and higher orders.

In the first order bye we obtain

A 7

d\~ N
1+tmﬁ) T:—/.LVU_

w|x

d\ o> Mo = -
1+tmﬁ_t Vp+uV v+§V(V-v)

. 1 Uy U;
(91; _(1_|atm)P5_+R—e UI+T—r—2_a Ug
pE+p(J~V*)J] (8)

—_(l—Ft _5’
m
at 1 d

The equations are made dimensionless by scaling the 3 Redr
length byR and time byR/c. Also, we have introduced the
following dimensionless variableg&and have omitted the

tilde sign in the latter equationsW=WIR, p=p/py, v,
=v,/c, v,=v,lc, andp=p/(pyc?). Here,p, is the regular

U
Ui"_Tl+iavl):_ia(l_iatm)ul’ (9)

—ia(l-iaty,)Pi+

V/
Vi —— azvl)

Re r

. (e U
_(constan)t density at the reference pressyge We have also +3_Re( Uj+ 2L aVi|=—ia(l-iat,)V,, (10
introduced e=a/R, a=2mR/\, Re=pocR/u, and y r
= KpOCZ. U
Fol_lowm_g Ref.[1], we seek the solution of the governing UL+ —1+iav1) —iayP;. (11)
equations in a form r
P=po+ €p1(r,z,t)+€’py(r,z,t)+ - - -, Here, the prime denotes a derivative with respeat to
Further, we rewrite the systeni@)—(11) in the following
v, = €Uy(r,z,t)+ €uy(r,z,t)+ - - -, form:
v,=ev(r,z,t)+ €v,(r,z,t)+- - -, 1 U
2 ? —yPLH| Ul — = 7 B2 |=0, (12)
p=1+epy(r,z,t)+ € py(r,z,t)+---.
. . . . i V!
Then, doing a usual pgrturbatlve analysis using Fhe latter — P —| VIt _1_/32\/1) =0, (13)
expansions, we can obtain a closed set of governing equa- a r

tions for the first €) and second¢?) order.
Further, following the authors of Reffl,8], we seek the Where

solution of the liner problem in the form y=(1—iat,)Re—iay/3, B2=a’—ia(l—iat,)Re.

uy(r,z,H)=Uy(r)e' @ D4+ Uy(r)e a0, (14)
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Note, that Egs(12) and (13) are similar to Eq(3.11) from  This time averaging yields

Ref. [1], except thaty and 8 are modified by substitution L

Re—(1—iat,)Re. _s zf Y q
Repeating the analysis similar to the one from Reél, (Q)=2me 0 2o )T ar

we obtain the Master equation for;(r) and find its general

solution as or finally substituting the explicit form o¥,4(r), we obtain
for the dimensionless net flow rate
Uy (r)=Cyly(vr)+Coly(Br), (15 )
wherel, is the modified Bessel function of the first kind of (Q)=me? D2—(1—iatm)Ref0 r2[V1(r)Us(r)
order 1, andC,; andC, are complex constants defined by
oo apvil o(B) +V4(r)Us(r)]dr|. (16)
Y 2Lallo(v)14(B)— Brio(B)11(1)]’
— a3i|0( V) I1l. NUMERICAL RESULTS
C = 1
2 2[a’lo(»)11(B)— Brlo(B)11(¥)] In the previous section, we have shown that the inclusion
where of non-Newtonian effects into the classical peristaltic mecha-
nism by using the Maxwell fluid model yields the following
(1-x)(1-iaty)Re—(43)iay change: Res(1—iaty)Re in all of the solutions.
v?=a? . It is known that the viscoelastic fluids, described by the

(1-iaty)Re=(4/3)iax Maxwell model, have different flow regimes depending on

Here, |, is the modified Bessel function of the first kind of the value of the paramet&@e=t, /t,,, which is called the
order 0. Deborah numbé7]. In effect, the Deborah number is a ratio
We also obtain the general solution 15(r): of the characteristic time of viscous effetis= pR?/ u to the
relaxation timet,,. As noted in Ref[7], the value of the
C, parameteDe (which the authors of Ref7] actually calla)
lo(Br). determines in which regime the system resides. Beyond a
certain critical valueDe.=11.64), the system is dissipative,
The second-order solutiovi,o(r) can also be found in a and conventional viscous effects dominate. On the other
way similar to the one used in RdflL]: hand, for smallDe (De<De.) the system exhibits vis-
coelastic behavior.
A numerical code has been written to calculé€@) ac-
cording to Eq.(16). In order to check the validity of our
code, we run it for the parameters similar to the ones used by

iC(Cl

B
v Io(Vr)+ o

Vi(r)=

1 _
Voo(r)=D,—(1—iaty)Re r [Vi(HU1()

+V1(OHU4(D)]dE, other authors. For instance, far=0.15, Re=100.00, «
_ _ =0.20, =0, andt,,=0 we obtain(Q)=0.270870 6458,
whereD; is a constant defined by which is equalif we keep four digits after the decimal pojnt
) _ to the result of the authors of Ré¢fl] who actually obtained
~ iaCy iB°C, —iaCy  — (Q)=0.2709.
D=~ 2 hh(v) = 2 L(B)+ 2 h1(v) Further, we have made several runs of our code for dif-

- ferent values of the parametéy,. We note again that,,
i(B°Cy)  — enters the equations because we have included non-
2a 11(B). Newtonian effects into our model. Equatida6) will be
identical to the similar Eq(4.1) from Ref.[1] if we sett,,
The net dimensionless fluid flow ra@can be calculated =0 in all our equations.

+

as[1] The results of our calculation are presented in Fig. 1,
. . where we investigate the dependence{@l} on the com-
Qzt)=27 ef vy(r,ZOr dr+62f vo(r,z,t)rdr pressibility parametey for the_varlous values df,. In or-
0 0 der to compare our results with the ones from Ré&f, we

have plotted(Q) for the following set of parameters
=0.001, Re=-10000.00,=0.001, andt,,=0 (solid line).

We note that the curve is identical to the corresponding curve
in Fig. 2 from Ref.[1]. This obviously corroborates the va-
In order to obtain the net flow rate averaged over ongidity of our numerical code. Further, to investigate the de-

+0(€%)

period of time, we have to calculate pendence of the flow ratQ) ont,,, we perform the calcu-
o (2nla Iati(_)n for a few vall_,les of,,. Whent,,=1.0, we r_10ti_ce no
(Q)= — Q(z,t) dt. notlceab!e change in the plot as both curves coincide \_Nlthm
2 the plotting accuracy. Fot,,=100.00 (dashed curve with
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FIG. 1. Dimensionless flow ratQ) as a function of compress- FIG. 3. Plot of dimensionless flow ra{®) as a function ofx

ibility parameter y. The parameters used are=0.001, Re ©n @ larger(than in Fig. 2 interval of variation ofa. Here, €
=10000.00, andx=0.001.t,,=0 corresponds to the solid line, =0-001, Re=10000.00,x=0.6, andt,,=1000.00.

whereast,,=100.00, 1000.00, and 10000.00 correspond to the

dashed curve with crosses, dash-dotted curve with asterisks, arm all our figures we have U_S?d Ra0000.0. If we put the
dashed curve with empty squares, respectively. latter value of Re and the critical value of the Deborah num-

ber 11.64[7] into Eq. (17), we obtaint;,,c=859.11 (mea-
crossel we notice slight deviation from the Newtonian lim- syred in units ofR/c). Therefore, the values df, greater
Itlng Case(SO”d |ine), which translates into Shlftlng the maxi- than tme (for a given Re) Correspond to SUbCl’itiCdDé
mum towards largeg’s. Fort,,=1000.00(dash-dotted curve  <pe ) Deborah numbers for which viscoelastic effects are
with asterisky we notice further deviation from the Newton- pronounced.
ian flow, which also translates into shifting the maximum™ | E; ; ; ;

‘ = g. 2 we investigate the behavior of the flow ré@)

towards largery’s. However, for t,=10000.00 (dashed 4o harameter, which is the tube radius measured in

carve W'th. elmé)_ty :i?]uarég.bs we notrfe much more drgsnc .wavelengths. Again, to check for the consistency of our nu-
changes, Including the apsence of a maximum and rapify,q e results with the ones from Ré¢fl], and also inves-
growt_h _o_f(Q) in the considered interval of variation of com- tigate phenomena brought about by the introduction of non-
pressibility pa.“amet?’( - The observed pattern conforms to Newtonian effects(appearance of nonzero relaxation time
our expectation, since Ia_rg_em means smaIID_e (De .ty into the model, we first plo{Q) versusa for the fol-
<De;) and the system exhibits strong viscoelastic behav'orlowing set of parameterg:=0.001, Re=10000.00,y=0.6

Noﬁtthiﬁm |sbd|medn_3|onle_ss a_rt1ql SC<’:|1|ed Eyf def " andt,,=0. If we compare the solid curve in our Fig. 2 with
er the above discussion, 1t IS relevant to detine quantiy, s jashed curve in Fig. 3 of Réfl], we will note no dif-

tatively the tr.ansit_ion point. where the flpw starts to exhibitference, which again corroborates the validity of our numeri-
(non-Newtoniai viscoelastic effects. It is knowh7] that cal code. We then set, to various nonzero values and in-

De=t, /tn=(pR?)/(1ty). Now, using the definition of Re vestigate the changes introduced by non-Newtonian effects.
=pCR/u, we can define the critical value &f as As in Fig. 1, we notice no change fdr,=1.0. Fort,
Re\| R =100.00 andt,,=1000.00, we notice that the flow rate
mc= ( De ) (17) somewhat changes, attaining lower valuesrdsadius of the
€ tube increases.

E .

1.8 — T T T T T T T 1 We treat the lattert,,,=1000.00, case separately for the

><101.g o - reason of an appearance of a effectnefativeflow rates
14k i when the interval of variation o# is increased up to 0.05.
1ok | Again, we expect that for largg, (t,,>t,c=859.11), i.e.,
é Lok i smallDe (De<De,), the system should exhibit viscoelastic
v ' behavior. We note from Fig. 3 that far=0.035, (Q) be-
0.8 = § comesnegative i.e., we observe backflow. In fact, by doing
06 ’ ’ = parametric studies we conclude that is the critical value
0.4 TR - of t,,, above which we observe backflow. By increastpg
0.2 F — e 1 further, t,,=10000.00, we note from Fig. 4 that in this
0 I M ks i S M R R S deeply non-Newtonian regiméQ) becomes highly oscilla-

0 0.002 0.004 0.006 0.008 0.01 tory, but what is unusual again is that we observe the nega-
@ tive flow rates for certain values af, that is, the tube radius
FIG. 2. Plot of dimensionless flow ra{®) as a function ox. ~ Measured in wavelengths. Obviously, the negat{¢@)
Here,e=0.001, Re= 10 000.00, ang¢=0.6.t,,=0 corresponds to means that flow occurs in the direction opposite to the direc-
the solid line, whereas,,=100.00 and 1000.00 correspond to the tion of propagation of the traveling wave on the tube wall.
dashed curve with crosses and dash-dotted curve with asterisk®scillatory behavioappearance of numerous of maxima in
respectively. the behavior of a physical variablen the deeply non-
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0.0008 — T T T T T T T We have found that in the extreme non-Newtonian regime
0.0006 - there is a possibility of flow in the direction opposite to the
’ propagation of the wave traveling on the tube wall. A some-
0.0004 |- what similar effect is known as the acoustic streani®igin
A 0.0002 which an acoustic wave propagating in a tube induces a
> mean flow in the direction of propagation in the acoustic
% 0 boundary layer, but in the opposite direction in the central
part of the tube. The mean flow or acoustic streaming is
-0.0002 |- caused by the presence of friction at the bounding surfaces of
-0.0004 the tube. While fluid away from the neighborhood of a
boundary vibrates irrotationally as the acoustic wave passes,
-0.0006 1 1 1 1 1 1 1 1 1 R . i X X
0 0.002 0.004 0.006 0.008 0.01 fluid in close proximity to the boundary must vibrate rota-

@ tionally to satisfy the no-slip condition on the tube wall. This

) ] ) deviation from inviscid, irrotational behavior provides an ef-

FIG. 4. Plot of dimensionless flow ra{@) as a function ofx. (g ive driving force known as the Reynolds stress. This ef-
Here, e=0.001, Re=10000.00,y=0.6, andtn,=10000.00. fective force, because of it is quadratic rather than linear, has
. . . a nonvanishing time-average tangential component to the
Newtoman regime Is not ne\{SB]. Howe\{er, the flow .Of 4 tube wall that drives flow in the boundary layer. In the case
fluid created by the peristaltic mechanism in the direction. <iqered in our paper, instead of having an acoustic wave
opposite to the direction of propagation of the traveling ropagating through the’volume of the tube. we have a wave
wave, is unusual and should be attributed to a co_mplicate raveling on the tube wall; besides we have, the further com-

nonlinear form of the response of a Maxwell fluid to the plication of considering non-NewtonigMaxwell) fluid (re-

stress exerted by the wave. call that the discovered effect is demonstrated for the case of
non-Newtonian regimé,,/t,,c>1.0). Similarly, the peristal-
IV. CONCLUSIONS tic flow itself is a second-order nonlinear effect. Therefore,

In this paper, we investigated the dynamics of fluid flowthe ﬂqw of aflui_d created by th_e peristaltic me_chanism in _the
in a tube with a circular cross section, induced by a Wavedlrectlon opposite to the direction of propagation of traveling

traveling on its wall(lboundary. This problem has numerous waveN(|.e., bgckflovv I(_:ould be explam?d tl\)/ly a co”rrglpl]gatedh,
applications in various branches of science, including stimu!"®"-Newtonian, nonlinear response of a Maxwell fluid to the

lation of fluid flow in porous media under the effect of elastic stress exerted by the traveling wave.

waves.
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