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Abstract—‘‘What is the maximum possible ground motion near

an earthquake fault?’’ is an outstanding question of practical sig-

nificance in earthquake seismology. In establishing a possible

theoretical cap on extreme ground motions, the representation

integral of elasticity, providing an exact, within limits of applica-

bility, solution for fault radiation at any frequency, is an under-

utilized tool. The application of a numerical procedure leading to

synthetic ground displacement, velocity, and acceleration time

histories to modeling of the record at the Lucerne Valley hard-rock

station, uniquely located at 1.1 km from the rupture of the Mw 7.2

Landers, California event, using a seismologically constrained

temporal form of slip on the fault, reveals that the shape of the

displacement waveform can be modeled closely, given the sim-

plicity of the theoretical model. High precision in the double

integration, as well as carefully designed smoothing and filtering,

are necessary to suppress the numerical noise in the high-frequency

(velocity and acceleration) synthetic motions. The precision of the

integration of at least eight decimal digits ensures the numerical

error in the displacement waveforms generally much lower than

0.005% and reduces the error in the peak velocities and accelera-

tions to the levels acceptable to make the representation theorem a

reliable tool in the practical evaluation of the magnitude of maxi-

mum possible ground motions in a wide-frequency range of

engineering interest.

1. Introduction

One of the practically significant outstanding

issues in strong-motion seismology is the calculation

of maximum possible ground motion that an earth-

quake of given magnitude can create. Among the

factors of engineering importance are maximum

velocities and accelerations, the high-frequency

measures of seismic oscillations of the ground. An

unprecedented vertical ground acceleration of 2.1

g was recorded during the Mw 6.8 1985 Nahanni

earthquake in Northwest Territories, Canada, and a

horizontal value reached 1.8 g at the Tarzana site,

within the greater Los Angeles, during the Mw 6.7

1994 Northridge event. The seismological and engi-

neering communities were taken aback again when a

vertical acceleration of 2.2 g was observed during the

relatively modest Mw 6.3 2011 Christchurch earth-

quake in New Zealand, which struck directly beneath

the city. These examples have demonstrated that even

moderate-magnitude events could produce extreme

seismic shaking. Still further, several locations

exhibited peak accelerations exceeding 2 g during the

Mw 9.0 2011 Tohoku earthquake in Japan. The

Tohoku event occurred offshore along a convergent

plate boundary. Had an earthquake of this size rup-

tured the land, could the shaking have even been

greater? Is there a computable limit, established on

theoretical grounds, which cannot be exceeded? The

answer to this question is still largely unknown

(Strasser and Bommer 2009).

Most existing approaches to the problem have

been based on the dynamic numerical modeling of

earthquake ruptures (Andrews et al. 2007; Ripperger

et al. 2008). This treatment has the disadvantage of

having to specify numerous, insufficiently known

parameters of dynamic faulting, such as the state of

initial stress, the idealized constitutive laws for the

dynamic and static friction, or fracture energies. For

the lack of observational constraints, these parame-

ters often have to be assigned in near-arbitrary

manner. The kinematic numerical models (e.g.,

Schmedes and Archuleta 2008) are free of these

uncertainties, although they have to assume a certain

rupture-propagation speed and a slip function. The

latter quantities are generally better observationally

constrained than the characteristics of dynamic

faulting. Both the dynamic and kinematic simulations

so far have been accomplished through the

1 Department of Geological and Atmospheric Sciences, Iowa

State University, 253 Science I, 2237 Osborn Drive, Ames, IA

50011-3212, USA. E-mail: beresnev@iastate.edu

Pure Appl. Geophys. 174 (2017), 4021–4034

� 2017 Springer International Publishing AG

DOI 10.1007/s00024-017-1623-x Pure and Applied Geophysics

http://orcid.org/0000-0002-4050-919X
http://crossmark.crossref.org/dialog/?doi=10.1007/s00024-017-1623-x&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00024-017-1623-x&amp;domain=pdf


computing-intensive numerical solution of the equa-

tions of motion, achievable on rare and expensive

parallel machines only, and are limited to relatively

low frequencies, typically below 10 Hz. Strong

ground shaking of engineering significance extends to

at least 50 Hz and even to 100 Hz. Other, empirical

estimates of extreme ground motions (McGarr and

Fletcher 2007) have derived their conclusions from

the inversions of ground-motion data for finite-fault

slip, which are themselves subject to often unknown

substantial errors and uncertainties (Beresnev

2003, 2013).

A still insufficiently explored tool in estimating

extreme ground motions is the representation theorem

of elasticity. Its advantage is that, within the model

formulation, the analytical integral representation of

the field, expressed by the theorem, is exact and valid

for any frequency. Numerical calculation of the

integral is relatively inexpensive and does not involve

any special computer-memory requirements. The

representation theorem is thus both a rigorous and

practicable means for establishing the upper bounds

on high-frequency seismic motions near a moving

fault. Our study verifies the possibility of applying

the theorem to generating realistic near-fault seismic

input.

2. Theoretical Framework

In introducing the problem, we will use the fault-

related cartesian coordinate system depicted in Fig. 1.

The fault plane is indicated by the rectangle. The sign

conventions are as in Aki and Richards (1980, Fig-

ure 3.1): if the two sides of a fault are denoted byRþ and

R�, then the vector of the displacement discontinuity

across the fault planeDu n; tð Þ ¼ u n; tð ÞjRþ�u n; tð ÞjR� ,

and the unit normal to the fault m points fromR� toRþ.

The quantities x and n are the coordinates of the

observation point and the point on the fault surface,

respectively.

The elastodynamic representation theorem pre-

scribes the wave field radiated by the displacement

discontinuity across the fault, at any distance from it.

For a rupture in a homogeneous elastic space, the

exact ith component of the displacement field uiðx; tÞ
is (Aki and Richards 1980, Equation 14.37)

uiðx; tÞ ¼
l

4pq

ZZ

�
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where Du n; tð Þ ¼ nDuðn; tÞ, Duðn; tÞ is the displace-

ment (slip) function, D _uðn; tÞ is its time derivative

(the slip rate), n is the unit vector in the direction of

slip, R ¼ x� nj j, c ¼ ðx� nÞ=R, a and b are the P-

and S-wave propagation speeds, and l and q are the

shear modulus and density of the medium. The dou-

ble integration in (1) is carried over the fault plane

RðnÞ; the summation convention is assumed for the

repeated subscripts. Here, we also use the explicit

compact convolution integral in the first term in the

integrand instead of introducing the long notation

through the function F(t) as in the original equa-

tion (14.37) of Aki and Richards. The conversion of

the original notation of Aki and Richards to the

convolution integral is shown in the Appendix. The

coefficients before the terms containing Duðn; tÞ and

D _uðn; tÞ in (1) describe the angular radiation patterns

and geometric spreading.

In the following, the half-space condition with

free surface is simulated by multiplying the synthetic

displacement trace by a factor of two (Boore 1983,

p. 1871).

x3

0 
ν x1

x2

Σ-
Σ+

Figure 1
Geometry of the problem
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There is no anelastic attenuation built into the

rigorous formulation of the radiated wave field

expressed by Eq. (1). This is a reasonable approxi-

mation for our purposes, because energy absorption is

not a significant factor in limiting the extreme ground

motions near a fault, where geometric spreading

prevails as the wave-attenuation mechanism. This is

seen from considering the standard anelastic-attenu-

ation operator expð�pR=kQÞ, where k is the

wavelength and Q is the quality factor (Aki and

Richards 1980, p. 169). This factor becomes signifi-

cantly different from unity at distances on the order

of kQ from the fault. As Q for rocks is on the order of

100 (Sheriff and Geldart 1995, Table 6.1), energy

absorption becomes important at distances of many

wavelengths from the fault, where extreme ground

motions are not expected to occur.

In using the representation integral of elasticity, an

assumption of linear wave propagation is made. In

integral (1), the fault zone is represented by a plane. This

effective plane should be construed as a model

approximation of a finite width of a more realistic fault

gouge, beyond which elastic behavior holds. The

example of the Landers earthquake considered in the

article supports this view. In addition, in developing the

model, the absence near the surface of soft-soil material

that may behave non-linearly is presumed. In other

words, the analysis through the representation integral

applies to a ‘‘hard-rock’’ condition. The motions that are

produced can be viewed as input to a certain soil profile.

3. Choice of Source Time Function

The analytical form of the source time function

DuðtÞ at a point on the fault surface in integral (1) has

to be prescribed. Although there is in theory an infi-

nite set of possible candidate functional forms, the

most reasonable constraint on the form of DuðtÞ is

that it should lead to the commonly observed ‘‘x�2’’

Fourier frequency spectrum in the far field (Aki 1967;

Brune 1970; Boore 1983; Beresnev and Atkinson

1997). The point-dislocation function that satisfies

this condition is

Du tð Þ ¼
0; t\0

U 1 � 1 þ t
s

� �
e�t=s

� �
; t� 0;

	
ð2Þ

(Beresnev and Atkinson 1997, Equation 6).

Anderson and Richards (1975, p. 353) call it the

‘‘Ohnaka ramp’’, after Ohnaka (1973, Equation 16)

who introduced it on entirely different grounds. The

fault displacement in Eq. (2) is fundamentally con-

trolled by two physical parameters. The first

parameter is U, the final slip on the dislocation, which

determines the low-frequency part of the radiated

x�2 spectrum. On the other hand, the corner fre-

quency of the spectrum is

xc ¼
1

s
; ð3Þ

(Beresnev and Atkinson 1997, Equation 11), and

the quantity s, which quantifies the speed at which the

dislocation rises to its final value (the slip rate),

controls the high-frequency spectral part. To relate s
to a physically meaningful variable, an exact rela-

tionship, derived from (2), can be used:

vmax ¼ U

es
; ð4Þ

where vmax is the maximum rate of fault slip and e is the

base of the natural logarithm (Beresnev 2001, p. 398).

Hence, vmax is the second natural physical parameter

that determines (through s) the shape of function (2).

In Eq. (1), the slip functions Duðn; tÞ at different

points on the fault are treated, as would apply to the

most general case, as independent of each other. In

reality, an earthquake rupture is commonly viewed as

starting at a hypocenter point and expanding radially

away from it, involving greater and greater fault

areas. This justifiable view constrains the form of the

slip function to be

Du n; tð Þ ¼ U nð ÞF t � r

vr

� �
; ð5Þ

where r ¼ n� n0j j is the distance propagated by the

rupture along the fault plane, n0 is the hypocenter

point, and vr is the rupture’s moving speed. The

analytical form of the temporal part FðtÞ is still

defined by the brackets in Eq. (2), while U nð Þ
describes the distribution of the final-slip values over

the fault plane. The form of the functions Duðn; tÞ and

D _uðn; tÞ appearing in Eq. (1) thereby becomes, for

example, UðnÞF t � r=vr � R=að Þ for the second term,

and similarly for the other terms. It is common to
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assume the rupture speed to be a constant fraction of

the shear-wave velocity.

Beresnev and Atkinson (2002) showed that using

the stochastic finite-fault-radiation modeling tech-

nique with the source time function (2) leads to

reliable simulation of ground motions from all well-

recorded earthquakes in North America, including the

sometimes observed ‘‘two-corner’’ shape of the large-

fault radiation spectra.

4. Numerical Evaluation of the Integral

For the choice of F(t) as zero (t\ 0) and in the

form as in the brackets of Eq. (2) (t C 0) and taking

into account (5), the convolution integral in the first

term of Eq. (1) evaluates analytically. The result is

Integral (1) with the completely defined integrand

then can be evaluated numerically.

The source time function (2) has discontinuous

second and third derivatives at t = 0. Apparently, the

sharp bend of its continuous first derivative at t = 0

and the subsequent steep rise cause a slow conver-

gence of the double integration of the last two terms

in Eq. (1) containing the time derivative D _u, which,

as we found, following Anderson and Richards

(1975, p. 349), can be significantly improved by

reversing the order of differentiation and integration.

In practice, therefore, in treating the last two terms in

integral (1), we first performed the double integration

of the smoother function Du and then computed the

numerical time derivative of the result.

Although the second and third derivatives of the

source time function (2) are discontinuous, the sur-

face integration removes the discontinuity from the

computed time histories (Haskell 1969, p. 869;

Anderson and Richards 1975, p. 349).

5. Computation of High-Frequency Ground Motions

Computing the displacement waveform radiated by

the fault rupture according to integral (1) is otherwise

not technically difficult. The integration, using a rep-

resentation integral equivalent to (1), was for example

carried out in a classic work by Haskell (1969). In our

study, we used the computational package Mathe-

matica�. We are interested, however, in the high-

frequency measures of ground motion, or the ground-

velocity and acceleration waveforms. The calculation

of the accelerogram from the computed displacement

involves three differentiations in the time domain: two

to convert displacement to acceleration and one more

in the last two terms in Eq. (1). Each time derivative is

ZR=b

R=a

t
0
Du n; t � t

0

 �

dt
0

¼
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\ R

a
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equivalent to the multiplication by x in the frequency

domain; the calculation of the accelerogram thus

involves large amplification (� to x3) of the high-fre-

quency component of the displacement time history.

This high-frequency content theoretically can come

from two sources. First, it can represent the physically

real small oscillations superimposed on the displace-

ment trace, resulting from the interference of seismic

signals arriving at the observation point from different

parts of rupture. Second, it can be pure numerical noise.

Both components will be much enhanced by triple

differentiation. A way to rule out or estimate the

computational error is to continue refining the target

precision of the double integration until the resulting

acceleration trace ceases to change within certain tol-

erance, if at all possible. Excessive numerical noise can

also be suppressed by smoothing or low-pass filtering

of the original displacement time histories. Before the

representation theorem can be used to make mean-

ingful predictions of high-frequency motions, e.g.,

extreme ground accelerations, one needs to ascertain

that the numerical procedure adopted leads to a phys-

ically satisfactory result. In other words, calibration is

necessary. This can be achieved by applying the

method to simulating a realistically observed near-field

velocity and acceleration record. We describe such a

calibration in the following.

6. Modeling of the Lucerne Valley Record

6.1. Fault Geometry and Parameters of Simulation

We will simulate the near-fault ground-motion

record obtained at the Lucerne Valley station, a rock

site uniquely adjacent to the rupture, during the Mw 7.2,

1992, Landers, California earthquake. According to the

COSMOS Strong-Motion Virtual Data Center (see the

‘‘Data and Resources’’ section), the station is situated on

6 m of decomposed granite. After Pacific Engineering

and Analysis’s strong-motion catalog (courtesy of W.

J. Silva), the site was only 1.1 km from the fault (the

closest distance) and has the Geomatrix geotechnical

classification of A (rock, characterized by shear-wave

velocity greater than 600 m/s, or composed of less than

5 m of soil over rock). Its rock category fits our model of

a homogeneous elastic half-space.

The Landers earthquake was a right-lateral strike-

slip event on a vertical fault that extended to the

surface (Wald and Heaton 1994). Figure 2, repro-

duced from Wald and Heaton (1994, Figure 1),

shows the surface offsets (dark lines), aftershocks

(circles), and the three straight fault segments (shaded

bands) of the model used for the inversions by Wald

and Heaton. Our approximation is a single vertical

fault plane with the upper edge on the surface as

shown by a solid straight line in Fig. 2. The symbol

‘‘0’’ indicates the origin of the coordinate system of

Fig. 1. The fault length along strike and width along

dip in our model is 80 by 16 km (Wald and Heaton

1994, Figure 13). The epicenter is shown by the star.

The coordinates of the hypocenter on our fault plane

are n0 ¼ 13km; 0;�6:9kmf g (Wald and Heaton

1994, Figure 13). The Lucerne Valley station is seen

as the symbol labeled LUC. The constants

a = 5.9 km/s, b = 3.3 km/s, and q = 2700 kg/m3

were calculated from the respective values for the

layered crustal structure (Wald and Heaton, 1994,

Table 1) weighted by layer thicknesses. The rupture

velocity vr = 2.7 km/s is the same as one used by

Wald and Heaton (1994, p. 672). Finally, because the

inverted slip distributions may contain significant and

often unknown uncertainties (Beresnev, 2003, 2013),

to avoid speculation about the specific heterogeneous

static-slip values over the fault, we opted to assign a

constant final slip to the entire rupture, U nð Þ ¼ U0.

The value of U0 = 1.95 m was derived from Mw by

combining the definitions of the seismic moment,

M0 = lU0A, where A is the fault area, and of the

moment magnitude, Mw ¼ 2
3

logM0 � 10:7:

For a right-lateral strike-slip fault, ni ¼ di1,

mi ¼ di2, where dij is Kronecker’s delta. For a vertical

fault in the coordinate system of Fig. 1, n2 ¼ 0. There

are only three radiation-pattern coefficients appearing

in the integrand of Eq. (1). In the case considered,

they simplify to

cinpcpcqmq ¼
ðxi � niÞðx1 � n1Þx2

R3
;

minpcp ¼ di2
ðx1 � n1Þ

R
;

nicqmq ¼ di1
x2

R
:

ð7Þ
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6.2. Simulation Results

Following extensive experimentation with the

degree of smoothing and the parameters of filtering,

aimed at the suppression of the numerical noise, the

displacement, velocity, and acceleration time

histories were generated as follows. As noted, the

double integration of Du (instead of D _u) in the fourth

and fifth terms in Eq. (1) was performed first. This

integral will be called Integral 1. The synthetics were

produced with the sampling interval of 1/256 s to

0 

Figure 2
Rupture geometry of the Landers earthquake. After Wald and Heaton (1994)
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match that of the records. The resulting time series

(‘‘Result of Integration 1’’) was smoothed using a 21-

point running average; its time derivative was then

numerically computed and added to the result of the

double integration of the first three terms of Eq. (1).

The latter will be called Integral 2. This completed

the calculation of the displacement trace ui x; tð Þ
(‘‘Final displacement trace’’). The time window of

the 21-point moving average is 1/

256 9 20 = 78.125 ms. The modulus of the transfer

function of a moving-average smoothing filter is
sinðNxDt=2Þ
NxDt=2

���
���, where N is number of points and Dt is the

sampling interval (Båth 1974, Table 31). All double

integrations were carried out to the precision of eight

decimal digits for the reasons explained later in this

section. To estimate the magnitude of the numerical

error, they were compared to the same results

obtained with the precision of seven, as also

described further.

The synthetic displacement trace was cosine-tapered

at the ends at 5% of its length and then low-pass filtered,

with the fourth-order Butterworth filter with the cut-off

frequency of 45 Hz, using the double-precision FOR-

TRAN code HICUT courtesy of D. M. Boore (http://

www.daveboore.com/software_online.html). The

resulting filtered time series was numerically differen-

tiated once to obtain the velocity waveform and twice to

obtain the acceleration wave form.

The extent of experimentation performed to arrive

at the algorithm described is summarized in Fig. 3.

As seen from the flowchart, there are three possibil-

ities for processing the Result of Integration 1:

smoothing it, low-pass filtering, or leaving it ‘‘as is’’,

which is illustrated in the second column of Fig. 3.

Furthermore, the reduction of the numerical noise in

the final displacement trace can be achieved through

either smoothing or low-pass filtering, as shown in

the fourth column. The resulting tree leads to six

distinct possibilities, which are numbered in the

rightmost column. The algorithm chosen corresponds

to the path number 2. Paths 3–6 were rejected

because of their not passing the error test between

precisions of seven and eight. The results of paths 1

and 2 were generally similar; however, the latter’s

use of filtering of the final displacement trace

suppressed the noise more efficiently. The testing

performed on different possibilities supports the

robustness of the algorithm implemented.

Result of 
Integration 1 As is

Final 
displacement 

trace

Smoothed

Filtered

Result of 
Integration 1

Smoothed
Final 

displacement 
trace

Smoothed

Filtered

Filtered
Final 

displacement 
trace

Smoothed

Filtered

2

1

3

4

5

6

Figure 3
Flowchart illustrating the algorithms experimented with to obtain the synthetic displacement, velocity, and acceleration time histories
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Since there is no known mechanism by which the

representation integral (1) would generate a spurious

permanent displacement, other than the static dis-

placement on the fault itself, there is no need in low-

cut filtering. The low frequencies are modeled

exactly.

Only the horizontal (N00E and N90E) compo-

nents (processed by W. D. Iwan) are available from

the COSMOS Data Center. Figures 4, 5 present the

comparisons of the observed and simulated displace-

ment (unfiltered), velocity, and acceleration time

histories for these two components. Since our coor-

dinate system is oriented in the fault-parallel and

fault-perpendicular directions (Fig. 1), these

components of the synthetics were rotated to N00E

and N90E. The sampling interval of the records is

1/256 s. The simulated traces were only computed to

the time (4044 samples in total) at which the

observed displacements have already leveled off at

approximately constant levels. The alignment of the

observed and calculated traces shown in Figs. 4 and 5

is to achieve the best match between the N00E

displacements (Fig. 4, top). It does not matter which

component is used, as long as the temporal shift thus

established is the same for both of them. The

acceleration traces were divided by 9.8 m/s2 to

express the accelerograms in the units of g.

The only adjustable parameter in the evaluation of

the integral is vmax. It was varied to produce the

Figure 4
Simulated and observed time histories of displacement (top),

velocity (middle), and acceleration (bottom). Component N00E

Figure 5
Simulated and observed time histories of displacement (top),

velocity (middle), and acceleration (bottom). Component N90E

4028 I. A. Beresnev Pure Appl. Geophys.



visibly best match between the same N00E observed

and synthetic displacements, the effect of this

parameter being in the steepness of the rise of the

simulated displacement to its static value. The value

of vmax = 1 m/s was found to provide a satisfactory

fit, as shown in Fig. 4, top. No fine-tuning was

attempted. Anil-Bayrak and Beresnev (2009) inferred

a range in the observed values of vmax from about

0.2–2 m/s, obtained through their analyses of earth-

quake data based on relationships (3)–(4) and

literature review. The present value for the Landers

earthquake, derived from the representation-theorem

simulation, falls well within this range. It is note-

worthy that Wald and Heaton (1994, p. 683) also

derived 1 m/s as their estimate of the particle velocity

on Landers rupture, although we have made no

attempts to specifically match their value. It should be

remembered, though, with regard to comparing the

particle velocity of Wald and Heaton with vmax, that,

in the source time function (2), the meaning of vmax is

the peak particle velocity achieved during the slip. It

can also be noted that Beresnev and Atkinson (1997,

Table 1), inferred, using an entirely different method,

a lower value of vmax = 0.3 m/s for the Landers

event.

In characterizing the fit between the simulations

and observations, it should be remembered that the

goal of the study is to assess the application of the

representation theorem to the evaluation of peak

motions by direct integration of (1). We do not

attempt to build a comprehensive simulation tool.

With that goal in mind, given the simplicity of the

theoretical model, the overall shape of the displace-

ment time history, the main pulse of velocity, as well

as the peak velocity and acceleration on the N00E

component are reproduced very closely (Fig. 4). The

natural irregularities on the displacement trace

(Fig. 4, top), leading to the respective ‘‘tail’’ in the

ground velocity following the main pulse (Fig. 4,

middle), are probably due to the heterogeneities on

the fault and in the medium. The shape of the

synthetic acceleration is much simpler than that of the

observation (Fig. 4, bottom), exhibiting only a few

prominent peaks, which is expected in view of the

lack of randomness in the model. Those peaks most

probably correspond to the interference of discrete

wave arrivals. Although it would be possible to ‘‘fine-

tune’’ the fault-slip distribution to better match the

displacement time history, as well as the resulting

velocity and acceleration, such a result would most

likely be ‘‘ad hoc’’ and would not necessarily bear

relevance to the slips that realistically occurred. It has

been shown that near-perfect simulation ‘‘fit’’ can be

achieved to the observed low-frequency displacement

trace with meaningless fault slips (Olson and Apsel

1982; Beresnev 2003). Beresnev (2003, 2013)

pointed out that heterogeneous slip distributions

obtained by inversions in many cases are meaning-

less, as they are strong functions of the number of

parameters solved for and the imposed numerical and

physical constraints. We have not attempted any fine-

tuning.

It should be emphasized that there is no mecha-

nism by which heterogeneity in the slip distribution

could control the amplitudes of high-frequency

radiation, vmax being the dominant factor (Beresnev

2003, p. 2451; Beresnev 2017). This inference, for

example, was directly demonstrated by Beresnev and

Atkinson (1998) through the stochastic finite-fault

simulation of radiation from the Northridge event. In

their study, randomizing slip distribution versus a

published inverted model did not lead to a statisti-

cally greater error in the simulation of acceleration

time histories near the causative fault relative to

observations. The lack of control of fault roughness

on the peak values of high-frequency motions was

also directly shown in a parallel study by Beresnev

(2017) through the same direct integration of (1) as in

the present work. Specifically, randomly disturbing

the uniform slip and maximum slip rate or introduc-

ing asperities did not lead to any appreciable

differences in the shape of the ground-acceleration

time histories. It was also shown theoretically that

variable rupture speed could modify fault directivity

but could not cause any systematic effect on the

preferential generation of high frequencies.

The mismatch between the theory and observation

is greater for the N90E component (Fig. 5), which, as

seen in Fig. 2, is close to the fault-normal direction.

Although the shapes of the observed displacement

and velocity traces are modeled sufficiently close, the

theoretical ones are shifted in time and have lower

amplitudes (Fig. 5, top and middle). The curved

shape of the Landers fault trace approximated as a
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straight line in the model (Fig. 2) may be responsible

for this misfit. The peak acceleration is nonetheless

reproduced well by the model (Fig. 5, bottom). This

is sufficient for our purposes, which is correctly

capturing the peak values using the representation

integral.

As the check of the magnitude of the numerical

error in the computation of the displacement, veloc-

ity, and acceleration, the same time histories were

calculated to the precision of double integration of

seven and eight decimal digits. Figure 6 presents the

differences, in the same units and for the same time

periods, as in Figs. 4 and 5, between the displace-

ment, velocity, and acceleration components

calculated with the precisions 7 and 8. There are

4044 samples in each simulation. The shapes of all

graphs in Fig. 6 are similar and generally are scaled

versions of each other. The displacement traces are

calculated very precisely: the estimates of the

numerical error do not exceed 0.2 mm, and for the

vast majority of points, they are much lower (Fig. 6,

top row). The magnitude of the displacement itself in

Figs. 4 and 5 is on the order of meters, giving the

relative computational error of much less than

0.005% for most points. The original precision of at

least seven digits (that is, approximately 10-5%) in

the double integration is lost due to the numerical

differentiation of Integral 1 with the ensuing magni-

fication of the high-frequency noise. The noise is

further significantly enhanced as two more

Figure 6
Differences between displacement (top row), velocity (middle row), and acceleration (bottom row) time histories obtained by numerical

integration with precisions 7 and 8. The N00E and N90E components are on the left and on the right, respectively
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differentiations are performed in the computation of

the velocity and acceleration. The difference between

the computations with the two precisions for the

velocity traces (Fig. 6, middle row) does not exceed

1% of the value of the velocity for most points. The

prominent error spike on the N90E acceleration

component reaches approximately 0.2g (Fig. 6, bot-

tom right); however, it does not coincide with the

peak acceleration (Fig. 5, bottom), which is calcu-

lated much more precisely.

It should further be noted that, out of the total of

4044 samples, there were 219 (5.4%) for which either

Integral 1 or Integral 2 did not converge to the

required precision of eight digits for the component

x1, and 188 (4.6%) for the component x2. The

percentages of points of non-convergence further rise

if the precision of nine is sought. On the other hand,

precisions of 6 or 7 were inadequate, as the respective

error estimates were much greater than those shown

in Fig. 6.

Showing the locations of the points of non-

convergence for the entire traces seen in Figs. 4 and 5

would be misleading, as, with 256 samples per

second, the disparate single points would merge into

a continuous line. We, therefore, show the abscissas

of non-convergence for a portion of the simulated

N00E and N90E accelerograms containing the main

peaks (Fig. 7). Since both components x1 and x2 have

been rotated to produce the N00E and N90E ones, the

points for both x1 and x2 (some of which coincide),

which fall within this time interval, are shown by

open circles above the time axis. The acceleration

samples are indicated by dots. It is seen that non-

convergence of the integrals did not affect the

evaluation of peak accelerations. Further analysis

also showed that the points of non-convergence did

not necessarily coincide with the times at which an

anomalously large difference between the calcula-

tions with precisions 7 and 8 was observed.

7. Summary and Conclusions

The representation theorem of elasticity has been

tested as a tool for the evaluation of extreme high-

frequency ground motions. The validation has been

conducted through the simulation of the near-field

hard-rock record at the Lucerne Valley station during

the Mw 7.2 Landers, California earthquake.

A numerical procedure has been developed,

involving smoothing and filtering of the displacement

waveforms obtained from double integration in

Eq. (1). The application of the procedure showed that

the displacement time histories could be reproduced

in a satisfactory manner and with high numerical

precision, with the estimated relative error of at most

0.005% (much less for most points). Of most interest

for the present study is the possibility of generating

high-frequency ground motions, or the velocity and

acceleration seismograms. The relative numerical

error in the velocity time history does not exceed 1%.

The maximum absolute error in ground acceleration

can be as large as 0.2g; however, the peak accelera-

tions were calculated much more precisely.

Dynamic earthquake simulations, conducted

through the numerical solution of the equations of

motion of elasticity, which are written in ground

displacement, are subject to similar numerical errors.

Figure 7
Abscissas of points of non-convergence (open circles) of Integrals 1 and 2 on the simulated acceleration waveforms for the N00E (left) and

N90E (right) components
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These errors will be amplified by the numerical dif-

ferentiation of the displacement time series to

velocity and acceleration. One can thus anticipate

that the magnitude of the computational errors

resulting from such simulations will be similar to that

resulting from the simulation through the represen-

tation integral.

The main objective in the task of estimating

maximum ground motions is to impose a possible

theoretical cap on the peak high-frequency input that

can be experienced near an earthquake of given

magnitude, with plausible seismological scenarios of

the temporal form of slip on the fault. The results of

the study indicate that, with this application in mind,

the representation integral is a useful tool, reliably

capping the peak velocity and acceleration in a wide-

frequency range, from zero to the value that the

recorded data, sampled at 1/256 s, allow. Despite the

simplicity of the approach, its strength is that it cor-

rectly captures the underlying physics explaining the

most conspicuous features of ground motion.

It is important to constrain what to expect from

this deterministic tool. It would be incorrect to

anticipate it to provide every detail of high-frequency

time histories, which are controlled by random fac-

tors beyond theoretical reach. For example, even

though the complexity of the observed acceleration

time histories is reduced to a series of peaks in the

model, the magnitude of these spikes is predicted

correctly. An immediate advantage of this approach,

over the fully stochastic techniques of ground-motion

simulation (e.g., Boore 1983; Beresnev and Atkinson

1997), is that it does not rely on any heuristic com-

ponent: except for the numerical noise in the

evaluation of the representation integral (1), the

solutions obtained are mathematically and physically

exact.

The inference that heterogeneity in rupture pro-

cess is not needed to reproduce the most salient

features of strong ground motions is also one of the

main results of the study.

The application of the algorithm developed to

characterizing the maximum possible ground motions

near hypothetical seismic ruptures of prescribed

magnitude is anticipated as the next step. There

presently is no direct observational evidence that

fault-slip velocities can exceed 2 m/s (Beresnev and

Atkinson 2002, Figure 6; Anil-Bayrak and Beresnev

2009); this value can be used as the upper limit for

the parameter vmax that controls the strength of high-

frequency radiation.

The inferences made through the application of

the representation integral (a homogeneous half-

space) would practically apply to a hard-rock con-

dition and should be construed as establishing the

cap on the maximum seismic input to the bottom of

a local soil profile. In the modeling example pro-

vided, we took advantage of the ‘‘rock’’ category of

the Lucerne Valley station, for which the site effect

is minimal. In Wald and Heaton’s (1994, Table 1)

velocity structure, the uppermost layer is 1.5-km-

thick and has a = 3.8 km/s. At the velocity and

acceleration level characteristics of extreme

motions, non-linear elastic behavior of sediments, if

the latter are present, may become important

(Beresnev and Wen 1996; Field et al. 1997). There

are established methodologies to compute the

amplification/deamplification of time histories

propagating through a given soil column (e.g.,

review by Beresnev and Wen 1996).

8. Data and Resources

The Lucerne Valley corrected acceleration,

velocity, and displacement time series were down-

loaded from the COSMOS Strong-Motion Virtual

Data Center (http://strongmotioncenter.org/vdc/

scripts/search.plx) (last accessed August 2015). The

FORTRAN code HICUT was obtained from http://

www.daveboore.com/software_online.html (last

accessed January 2016).

Appendix

We need to show that the convolution integral

ZR=b

R=a

t
0
Duðn; t � t

0 Þdt0 ; ðA1Þ

used in the first term of the integrand in Eq. (1) is the

same as the function
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F t � R

a

� �
� F t � R

b

� �
þ R

a
_F t � R

a

� �
� R

b
_F t � R

b

� �� �
;

whereF tð Þ ¼
Z t

0

dt0
Zt0

0

Du n; t00ð Þdt00;

ðA2Þ

appearing instead in the original Eq. (14.37) of Aki

and Richards (1980).

We start with the convolution (A1) and switch to

a new integration variable t
00 ¼ t � t0, transforming

(A1) to

Zt�R=a

t�R=b

ðt � t
00 ÞDuðn; t00 Þdt00 : ðA3Þ

With the use of Barrow’s theorem, d

dx

Rx
a

f tð Þdt ¼
f ðxÞ (e.g., Harris and Stocker 1998, p. 552), (A3) is

re-written as

Zt�R
a

t�R
b

t � t
00


 � d

dt
00

Zt00

0

Du n; tð Þdt

2
64

3
75dt

00

¼
Zt�R

a

t�R
b

ðt � t
0 Þ d

dt
0

Zt0

0

Du n; t
00


 �
dt

00

2
64

3
75dt

0
; ðA4Þ

where we renamed the variables of integration in the

right-hand side. Integrating (A4) by parts, noting that

dt=dt0 ¼ 0, and observing that several terms cancel,

we transform the right-hand side of (A4) to

R

a

Zt�R=a

0

Du n; t
00


 �
dt

00 � R

b

Zt�R=b

0

Du n; t
00


 �
dt

00

þ
Zt�R

a

t�R
b

dt0
Zt0

0

Du n; t
00


 �
dt

00
: ðA5Þ

Equation (A5) can be re-cast as

R

a

Zt�R=a

0

Duðn; t00 Þdt00 � R

b

Zt�R=b

0

Duðn; t00 Þdt00

þ
Zt�R

a

0

dt
0
Zt0

0

Duðn; t00 Þdt00 �
Zt�R

b

0

dt
0
Zt0

0

Duðn; t00 Þdt00 :

ðA6Þ

If we now introduce the function FðtÞ as in (A2)

and note that, by Barrow’s theorem,

_F tð Þ ¼ d

dt

Z t

0

dt0
Zt0

0

Du n; t00ð Þdt00 ¼
Z t

0

Du n; t00ð Þdt00;

(A6) becomes

R

a
_F t � R

a

� �
� R

b
_F t � R

b

� �
þ F t � R

a

� �

� F t � R

b

� �
; ðA7Þ

which is the desired equation (A2).
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