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ABSTRACT
We analyse the problem of radiation of seismic waves by a vibroseis source when the
baseplate is subject to flexure. A theoretical model is proposed to account for base-
plate flexure, generalizing the well-known model of the vibroseis source of Sallas and
Weber, which was developed for a rigid plate. Using the model proposed, we analyse
the effect of flexure on the properties of seismic waves. We show that the flexure
does not contribute to the far-field and mainly affects the readings of the reference
accelerometer that is used to measure the force applied to the ground; these readings
generally become dependent on the location of the sensor on the plate. For muddy and
sandy soils, the effect of flexure on baseplate-acceleration measurements is nonethe-
less pronounced at the high end of the vibroseis frequency band only (∼100 Hz), and
is negligible at all frequencies for stiffer soils. The corresponding phase lags intro-
duced by the flexural vibrations at high frequencies lead to errors in the traveltime
measurements (through the cross-correlation function) of up to 0.6 ms for muddy
soils and less for denser soils. We show the existence of an optimal position of the
reference sensor on the baseplate and also propose a general method of eliminating
the phase lag due to the baseplate flexure in acceleration measurements.

I N T R O D U C T I O N

Vibroseis sources are the principal sources of seismic energy
in land exploration. Seismic waves are excited by alternat-
ing the force applied to the ground. To obtain high-quality
earth images, it is important to take the true radiated signal as
the reference in calculating the cross-correlation function with
the far-field waveform, instead of using the theoretical sweep.
Such a true signal is the force applied to the ground. For ex-
ample, knowing the exact radiated signal would enable us to
account for resonant ground behaviour or non-linear contact
effects, which represent the distortion of the theoretical pilot
as it enters the ground.

The applied force can be determined as a ‘weighted sum’
of the accelerations of the baseplate and the reaction mass
(Sallas and Weber 1982; Safar 1984; Sallas 1984; Baeten and
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Ziolkowski 1990). In this case, one of the accelerometers
should be placed directly on the baseplate. However, since
the plate is subject to flexural vibrations, placing the reference
accelerometer in different locations within the plate will gen-
erally produce different records. It is therefore important to
understand how these differences in the estimated force signal,
caused by plate flexure, will affect the cross-correlation with
the far-field waveform. The investigation of this problem is
the objective of our study.

T H E O R E T I C A L B A C K G R O U N D

Model of the vibrator

The ground-reaction force (Fig. 1) can be determined from the
measured accelerations of the reaction mass and the baseplate
as (Sallas and Weber 1982; Sallas 1984)

−Fg = M1 z̈1 + M2 z̈2, (1)
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Figure 1 Equivalent lumped-parameter mechanical model of a seismic
vibrator, corresponding to system (4). The forces Fa and T are shown
applied at separate points for illustrative purposes only; realistically
they are applied at the same point at the centre of the plate.

where M1 and M2 are the reaction mass and the mass of the
baseplate, respectively, and z̈1 and z̈2 are the corresponding ac-
celerations. Equation (1) provides the ground-reaction value
for an inflexible baseplate, while the acceleration z̈2, realisti-
cally measured by a baseplate sensor, will be composed of two
parts,

z̈2 = z̈whole
2 + z̈ flexure

2 , (2)

where z̈whole
2 corresponds to the movement of the baseplate

‘as a whole’ (uniform displacement) and z̈ flexure
2 is the added

flexural-vibration term. It is known from structural acous-
tics (e.g. Junger and Feit 1986) that the flexural deformations
of a plate with free boundaries are a very inefficient source
of elastic-wave radiation when the wave size of the plate is
small (see Appendix A). Consequently, due to the small size
of the plate relative to the radiated wavelengths in the op-
erating band of the vibroseis devices (e.g. Safar 1984), only
the displacement as a whole will contribute significantly to
the far-field response. The ground force Fg determined from
(1) will thus include the non-zero terms that do not affect the
far-field radiation. Note that it is impossible to isolate z̈whole

2

from z̈flexure
2 in real measurements, which only provide a com-

posite value (2). The issue is thus to discover how close the
realistically measured quantity z̈2 is to z̈whole

2 ; any differences
between them will lead to an unknown distortion in the cor-
relation function.

Theoretically, the measured value of z̈2 can be made as close
as necessary to z̈whole

2 by placing the reference accelerometer
at an appropriate point on the plate where z̈ flexure

2 is much
smaller than z̈whole

2 . For example, any point on a nodal line
of the flexural modes could be considered a good choice for

the measurement. However, there are two problems in finding
such a location. Firstly, the nodal lines are not the same for all
flexural modes. Secondly, these lines can be found easily in a
theoretical approach but not in practice. Any deviation from
the theoretical nodal position in the measurements would be
undesirable due to its effect on the correlation function.

We model the baseplate deformations as the deformations
of a circular plate with a force applied at the centre. The ex-
act shape of the baseplate is not important as long as its size
remains small relative to the wavelength. Since this condition
is a good approximation in the operating bands of vibroseis
devices, the conclusions of this analysis will apply equally to
the realistic plate shapes. In this approximation, it is also pos-
sible to consider the vibroseis device as a vibratory system
with lumped parameters. The ground force for the rigid (in-
flexible) baseplate is defined by Sallas (1984) in terms of the
acceleration of the captured mass (Mg), the deformation of
the captured spring (Kg), and the velocity of the dashpot (Dg)
(describing losses due to radiation) as

Fg = Mg z̈2 + Dg ż2 + Kgz2. (3)

This force controls the radiated signals. The displacements in
the ‘baseplate – reaction mass’ oscillatory system are described
by the governing equations (Lerwill 1981; Sallas and Weber
1982; Sallas 1984),

M1 z̈1 = −Fa(t) − T,

M2 z̈2 = +Fa(t) + T − Fg,

T = Da(ż1 − ż2) + Ka(z1 − z2),

(4)

where ż1, ż2 and z1, z2 are the velocity and the displacement
time histories, respectively. The quantity T in (4) is the cou-
pling force between the reaction mass and the baseplate. The
element Ka is the spring constant for the airbag suspension
of the reaction mass, and Da is the dashpot constant for the
airbag, accounting for the corresponding losses. The actuator
force is Fa. The equivalent mechanical model for the lumped-
parameter system (4) is shown in Fig. 1.

It will be assumed that the actuator force is sinusoidal with
angular frequency ω, i.e. Fa(t) = Fa exp(−iωt), and that it is
applied at the centre of the baseplate. We have introduced the
quantity T for convenience, but it should be recalled that it is
applied at the point of application of Fa, i.e. at the centre of
the plate. The properties of a steel baseplate, as described by
Safar (1984), are used throughout the paper, i.e. it has an area
of 2.35 m2 and a mass of 681 kg (Table 1).
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Table 1 Soil and source parameters used in calculations (also see
tables 2 and 3 of Safar 1984)

Soil type

Parameter Mud Sand Chalk

Soil density (kg/m3) 1500 2500 1800
P-wave velocity (m/s) 1400 488 2140
S-wave velocity (m/s) 90 244 1235
Captured mass Mg (kg) 1512 1236 773
Captured rigidity Kg (107 N/m) 8.33 76.9 127
Captured dashpot Dg (106 kg/s) 0.66 2.15 7
Reaction mass M1 (kg) 1773
Baseplate mass M2 (kg) 681
Spring constant Ka (105 N/m) 6.25
Dashpot constant Da (kg/s) 10 000
Density of baseplate ρs (steel) (kg/m3) 7800
Young modulus of baseplate E (GPa) 200
Poisson’s ratio of baseplate ν 0.3
Baseplate radius R0 (m) 0.865
Baseplate thickness h calculated as

M2/ρsπ R2
0 (m)

0.037

Accounting for baseplate flexure

Equations (3) and (4) are valid for the rigid baseplate. The
flexural deformations can be accounted for by the superposi-
tion of natural modal responses to harmonic excitation (e.g.
Morse and Feshbach 1953, chapter 6.3; Junger and Feit 1986,
chapter 7.10), i.e.

z2(ω, r ) = zwhole
2 (ω) + z flexure

2 (ω, r )

=
∞∑

n=0

an(ω)ψn(r ), 0 ≤ r ≤ R0, (5)

where an(ω) is the complex amplitude of the nth mode, the
set of eigenfunctions ψn(r) is the orthonormal basis describ-
ing the displacement at the radius r from the baseplate cen-
tre, and the radius of the baseplate is R0. The terms in (5)
with n > 0 describe the baseplate flexure and give an explicit
formulation of zflexure

2 introduced in (2), while the term with
n = 0 is the uniform displacement zwhole

2 . In (5), z2(ω,r) is the
amplitude of the baseplate displacement at a given excitation
frequency ω; the time history is obtained by multiplying it
by the factor exp(−iωt). As (5) shows, we chose to decom-
pose the displacement of the plate on the ground into a su-
perposition of free-oscillation modes. Since these modes form
an orthonormal basis, such decomposition is always possible.
The exact form of the functions ψn(r) is found as described in
Appendix A.

To account for the additional flexural terms introduced in
(5), equations (3) and (4) are generalized as follows. Equa-
tion (3) becomes

Fg (ω, r ) = −iωS
∞∑

n=0

Zn (ω) an (ω) ψn (r ), (6)

where Zn is the radiation impedance (B5) per unit area, corre-
sponding to the displacements distributed over the baseplate
in the nth mode (see Appendix B), and S = π R2

0 is the base-
plate area. For the case of the rigid displacement (n = 0), we
set

Z0 (ω) S = −iωMg + Dg + iKg/ω, (7)

so that (6) is identical to (3), assuming zwhole
2 (ω) = a0(ω)ψ0(ω).

The first equation in system (4) remains the same with the
only difference that z2 is now represented by (5). This gives
equation (8a). The second equation in (4) must be replaced by
a more general equation determining the modal amplitudes an.
To this end, we substitute (5) in the equation of motion of the
plate (A1) (see Appendix A), keeping in mind that the terms
ψn(r) satisfy (A1) when its right-hand side is zero. In accor-
dance with the description in Appendix A, we include the force
acting at the plate centre (Fa + T) and the ground-reaction
force (−Fg(ω,r)) defined by (6) in the right-hand side of
(A1). Then the integration of both sides of (A1) over the plate
area with weighting ψn(r) and the orthogonality conditions
(A3) leads to the equations for the modal amplitudes (8b):

−M1ω
2z1 = −Fa − T(ω), (8a)

[
ρsh

(−ω2 + ω2
n

) − iωZn
]

an = (Fa + T(ω))ψn(0), (8b)

T(ω) = −iDaω(z1 − z2) + Ka(z1 − z2),

where z2 in force T(ω) is determined by (5) at r = 0, applied
at the centre of the plate. The quantities ωn are the angular
natural frequencies of the nth flexural mode in a vacuum,
accounting for the plate stiffness, h is the thickness of the
plate and ρs is the density of the plate material (see Appendix
A). For the calculation of ωn, we use the parameters of steel
and the thickness, calculated from the plate area, mass and
density (Table 1). With amplitudes an determined from (8b),
we can calculate the displacement z2 of the flexing plate using
(5). Note that (7) was considered for convenience, but the
generalized system (8) is not restricted to the case of small
wave size of the plate as system (4) was, as it replaced the
lumped parameters of the ground with the exact impedances
(B5).

It is easy to show that (8b) is identical to the second equation
in (4) if the baseplate is rigid (all amplitudes an are zero except
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a0 and z2(ω, r ) = zwhole
2 (ω) in (5)). The eigenfunction ψ0(r ) =

1/R0
√

π describes the uniform displacement of the plate (see
Appendix A) and satisfies the orthogonality conditions (A3).
Multiplying both sides of (8b) by ψ0(r), we obtain

[−ρsh
(
ω2 − ω2

0

) − iωZ0
]

a0ψ0 (r ) = Fa + T (ω)
π R2

0

. (9)

Using zwhole
2 = a0ψ0(r ) (equation (5)), S = π R2

0, M2 = ρsSh

and Z0 determined from (7), in equation (9), we obtain the
second equation in system (4). It should be noted here that
ω0 = 0 as there is no rigidity contribution to the uniform
displacement of the plate in a vacuum.

System (8) describes the plate displacements in response to
a harmonic excitation. In the case of a broadband excitation,
it will describe the response to each spectral component of the
applied force.

Formally, the determination of the vibroseis response us-
ing (8) requires the calculation of the radiation impedance
Zn using the exact equations (B5) for each flexural mode.
These calculations are cumbersome and offer little physical
insight; a more physically transparent approach exists, which
is computationally much simpler. For the small wave size of
the plate, it is natural to consider the generalization of the ra-
diation impedance (7) to the nth flexural mode as the sum of

Figure 2 Frequency dependence of the radi-
ation impedance for the baseplate on sandy
soil. The impedance Zn is normalized by
ρc1: Z̄n ≡ Zn/ρc1. Black symbols corre-
spond to uniform displacement of the plate,
dark grey symbols correspond to the first
flexural mode, and light grey symbols cor-
respond to the second flexural mode. The
solid line at the top of the panel depicts the
ω4 dependence (see Appendix B). The os-
cillations at high frequencies are due to the
Rayleigh pole contribution in (B5).

the same terms but with different, generally mode-dependent
coefficients, i.e.

Zn (ω) S = iKn
g /ω − iωMn

g + Dn
g (ω) , (10)

where Kn
g and Mn

g are the captured rigidity and mass, respec-
tively, and the dashpot constant Dn

g (ω) is taken as a function of
frequency to capture the frequency dependence of the real part
of Zn. This approach is illustrated in Fig. 2, which shows the
frequency dependence of the real (top) and imaginary (bottom)
parts of the exact impedance, calculated from (B5), for a sandy
soil. The values of soil density, wave velocities and plate radius
are given in Table 1. The upper horizontal axis in Fig. 2 indi-
cates the baseplate diameter relative to the shear wavelength,
to emphasize the trends that will be independent of the soil
type. The results of rigorous calculations are denoted by cir-
cles. The coefficient Dn

g (ω), describing the radiation losses, is
simply the real part of the rigorous impedance, while the con-
stants Kn

g and Mn
g are obtained by fitting the imaginary part

in Fig. 2 at small wave sizes with the polynomial shape of the
imaginary part of (10) (dashed lines in Fig. 2, bottom). In or-
der to demonstrate the asymptotic behaviour, the normalized
values of impedance Z̄n ≡ Zn/ρc1 are plotted, where ρ is the
soil density, and c1 is the P-wave velocity.

We can draw three conclusions from (10) and Fig. 2. Firstly,
at low frequencies, the captured-rigidity term Kn

g /ω dominates
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the imaginary part of (10), which is revealed in the initial
ω−1 decay of the curves in Fig. 2 (bottom). Since the captured
rigidity Kn

g is simply a scaling factor of these curves, we see that
it increases slightly with the mode number. Since we also see
that Re(Zn) at low frequencies is very small (Fig. 2, top), the
absolute impedance for the flexural modes at these frequencies
is simply the captured-rigidity contribution.

Secondly, (10) clearly provides a good approximation to the
imaginary part of the radiation impedance up to a wave size
of approximately 1, but it becomes inappropriate above this
value where the dashed lines start to diverge from the exact
solution. It is thus possible to determine the constants Kn

g and
Mn

g from the low-frequency fitting and use them, within these
limits of applicability, in the calculations of the impedance,
instead of performing tedious calculations with (B5). We use
this approach in the following calculations.

Visible oscillations in Zn at large plate sizes are due to the
oscillating character of the radiation of Rayleigh waves as a
function of plate size. To understand the physical nature of
these oscillations, we consider the case of a uniform pres-
sure applied to the ground. If the plate size is greater than
the Rayleigh wavelength, some maxima in the vertical dis-
placement in the Rayleigh wave will be in phase and some
will be out of phase with the applied pressure. In the former
case the wave is transmitted and in the latter case the wave
is damped. The Rayleigh-wave radiation therefore reaches a
minimum when maximum compensation occurs. Note that
the high-frequency asymptote of the radiation impedance per
unit area is Zn = ρc1 (an infinite plate), which corresponds to
a planar radiated P-wavefront.

Thirdly, the radiation losses Dn
g (ω) for the flexural modes are

significantly lower than their values for the uniform displace-
ment of the plate within the entire seismic frequency band.
This fact will be used in the analysis in Appendix B of the
low-frequency asymptotic behaviour of the total power radi-
ated by the flexural modes.

System (8) formally consists of an infinite number of equa-
tions since the total baseplate displacement is described by the
infinite series (5); however, the dimension of the system can be
reduced by considering progressively decreasing values of the
higher terms in the series. Indeed, we see from (8b) that the
decay of the modal amplitudes is inversely proportional to ω2

n

and Zn. The resonance frequencies of the flexural vibrations
in a vacuum are proportional to the square of the mode num-
ber, i.e. ω2

n ∝ n4 (Junger and Feit 1986, chapter 7.10). As we
have seen in Fig. 2, at small plate sizes the radiation impedance
is mainly composed of the captured rigidity, which increases
slightly with the mode number. The higher-order terms in se-

ries (5) will therefore decay no slower than ∝1/n4, providing
fast absolute convergence of the series. For this reason, the
number of terms in the sum (5) can be limited by a reasonable
value N, based on the required accuracy, and system (8) will
therefore consist of N + 2 equations. In the numerical exam-
ples below, the number of modes N was determined so as to
provide a relative accuracy in the computed sum of 10−3 or
better (it was found that N = 5 provides a very good approx-
imation of (5)).

Finally, equations (8) provide a formal framework in which
to calculate the displacement at an arbitrary point on the base-
plate, taking the effect of flexural vibrations into account.
However, it may be expected that this effect will not always
be significant and in some practical situations may simply be
ignored, making detailed analysis unnecessary; hence it would
be of practical interest to first evaluate the conditions under
which the effect of flexure is overall small.

Examining (1) and (2), it is possible to distinguish between
the two causes of the effect of flexure on ground-force mea-
surements. Firstly, this contribution may be significant at the
resonance frequencies at which some of the coefficients an in
(5) become sufficiently large. Secondly, the effect of flexure
needs to be accounted for only if the second term in (1) is
large relative to the first term; otherwise, the contribution of
the baseplate acceleration, whether from the flexural vibra-
tions or vibrations ‘as a whole’, to the weighted sum (1) will
be negligible. This explains why, before describing the results
of the full analysis, we next develop a tool for the evaluation
of resonance frequencies and then estimate the frequency band
in which the value of the second term in (1) is significant.

Resonance frequencies of flexural deformations

Formally, the exact flexural resonance (natural) frequencies
ω̃n of the plate on the ground should be determined as the
solutions of (8b), by setting the external force (right-hand
side) equal to zero and using the rigorous expressions for the
impedance Zn from (B5). However, the rigorous computation
of the impedance may not be necessary in the seismic frequency
band (small wave size of the plate), where the calculation of
the resonance frequencies can be greatly simplified.

Firstly, as we have seen, the impedance values in this case
can be accurately approximated by (10). Secondly, the system
dissipation does not significantly affect the computation of the
resonance frequencies as long as the system’s quality factor Q

exceeds unity; in this case, the dissipation effect only appears
as a small correction, of the order of 1/Q2, to the resonance
frequencies (Landau and Lifshitz 1976, chapter 25). From the
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analysis of the resonance peaks in Fig. 6, the Q-factor is at least
2–3. Therefore, for the calculation of the resonance frequen-
cies (but not in Figs 4–8), (10) can be reduced to its imaginary
part, Zn(ω)S ≈ iKn

g /ω − iωMn
g.

A further simplification is possible. As can be seen from
Fig. 2 (bottom), within the same degree of accuracy, the
imaginary parts Im(Zn) for the flexural modes and for the
uniform displacement of the plate are close to each other.
In other words, the resonance frequencies can be computed
with the assumption that Kn

g ≈ Kg and Mn
g ≈ Mg, thus yield-

ing the impedance in the form, Zn(ω)S ≈ iKg/ω − iωMg.
Such an assumption is, for example, made for the elastic-
foundation model in mechanical engineering (Timoshenko
and Woinowsky-Krieger 1959, chapter 8; Johnson 1985), in
which the ground reaction is considered to be independent of
the displacement distribution over the plate; the impedance is
thus assumed to be independent of the mode number and to
be the same as for uniform displacement. In this case, the cap-
tured rigidity and mass in (10) are substituted by their values
for the uniform displacement (7).

Using these approximations and substituting ZnS ≈
iKg/ω − iωMg in (8b) with the right-hand side equal to zero,
and with M2 = ρshS, we find a simple solution for the flexural
resonance frequencies of the plate on the ground, i.e.

ω̃2
n = ω2

n

M2

M2 + Mg
+ �2,

where

�2 = Kg

M2 + Mg
,

and where, as before, ωn are the resonance frequencies in
vacuum.

Note that the latter formula uses the elastic-foundation
model, while a more accurate estimate could be obtained by
using the values of Kn

g and Mn
g . The first two flexural resonance

frequencies, obtained both ways, are tabulated for muddy soil
in Table 2. The muddy soil was chosen because its value of Mg

Table 2 Resonance frequencies of the displacement of the plate as a
whole (n = 0) and of the first two flexural modes, for muddy soil

Frequencies determined
Mode number using elastic-foundation Frequencies determined
n model (Hz) using Kn

g and Mn
g (Hz)

0 31 31
1 68 94
2 261 333

is a maximum and the value of Kg is a minimum compared with
chalky or sandy soils (Table 1). The resonance frequencies are
therefore minimized, and we can expect the most pronounced
effect of flexure on the baseplate dynamics. As we have seen
in Fig. 2, Kn

g increases slightly with the mode number; this
is why the more accurate values (the third column in Table
2) slightly exceed the values for the elastic-foundation model
(second column). However, the approximations given by the
elastic-foundation model are clearly suitable for practical ap-
plications.

For the determination of the resonance frequencies of the
higher modes, the approximate approach used to calculate the
values in Table 2 will, of course, not be applicable, as the plate
wave size will not be small or of the order of 1. The frequencies
in this case should be calculated using the general approach
outlined at the beginning of this subsection. These frequencies
will, nevertheless, generally be beyond the seismic band, as
those listed in Table 2 for muddy soil represent typical lower
boundaries, and will be of little practical interest.

Frequency band where the effect of flexure is significant

We next evaluate the frequency band in which the contribution
from the baseplate acceleration, the second term M2 z̈2, to the
weighted sum (1) is significant. To make this estimate, we can
simply use z̈2 obtained for a rigid plate (z̈2 = z̈whole

2 ), since, if
the second term in (1) is comparable to the first term for a
rigid plate, the effect of flexure, appearing as a perturbation
to z̈2, will certainly not change this relationship.

Figure 3 shows the frequency dependence of the ratio ζ =
|M2 z̈2/Fg|, where Fg is defined by (1). The calculations were
made by the standard solution of the original system of lin-
ear equations (4). The vertical arrows show the positions of
the frequency �/2π , introduced in the previous subsection. It
can be seen that the values of ζ are about 1 at high operat-
ing frequencies only (60 Hz for muddy soil and 200 Hz for
sand) and above the corresponding �/2π in each case. The
greatly reduced values of ζ at low frequencies are explained
by the growth in the impedance |Kg/ω| (see equation (7)) and
the dominance of Kg over Ka (Table 1). As the flexure affects
z̈2 as shown in (2), we thus expect that the most significant
contribution of flexure will also occur at high frequencies. The
compact soils such as chalk are of no interest because ζ ≈ 1 at
frequencies of 800 Hz, which is outside the vibroseis operat-
ing band. As we previously noted, the contribution of flexure
could also be significant around the flexural resonance fre-
quencies. Since all the resonance frequencies are higher than
�/2π , as shown in the previous subsection, we conclude that,
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Figure 3 The frequency dependence of the
contribution of the baseplate displacement
‘as a whole’ to the ground-force signal (1).
The solid line corresponds to chalky soil,
long dashes correspond to sandy soil, and
short dashes correspond to muddy soil. The
parameters in (4) are as in Safar (1984)
(Table 1).

in all possible scenarios, the contribution of baseplate flex-
ure will be significant only at the high end of the vibroseis
operating band.

R E S U LT S A N D D I S C U S S I O N

As we have discovered, the baseplate displacement makes a
substantial contribution to the ground-force signal (1) only
at sufficiently high frequencies near 100 Hz, and the effect is
most pronounced for soft soils such as sand or mud. Conse-
quently, in the following, we focus on sandy and muddy soils.
The positions of the reference accelerometer at the centre (r =
0) and the edge (r = R0) of the plate will be considered. To es-
timate the distortion in the correlation function resulting from
the contribution of flexural vibrations to the sensor readings,
we proceed as follows. We calculate the ground-reaction force
(1) without flexure (baseplate moving ‘as a whole’, no z̈ flexure

2

term in equation (2)) as well as with flexure taken into ac-
count (finite z̈ flexure

2 term in equation (2)). We call these the
‘ideal’ and the ‘measured’ ground-force signals, respectively.
The required terms z̈whole

2 and z̈ flexure
2 are found from (5), with

modal amplitudes an (n > 1) calculated from (8b) in the latter
case. We then correlate these signals with the far-field geo-
phone response and compare the results.

The calculation of the far-field geophone response is based
on the equations for the far-field particle velocity developed by
Lebedev and Sutin (1996), which are similar to those given by
Miller and Pursey (1954). For each spectral component of the
sweep-signal, the far-field particle velocity Vz in the vertically
propagating P-wave is calculated as (Lebedev and Beresnev
2004, eq.B6)

Vz = ik1 F exp(i(k1d − ωt))
2πρc1d

, (11)

where k1 = ω/c1, d is the depth to the geophone, and F is the
force applied to the ground (F = −Fg). This force has been
set according to (1) with z̈2 = z̈whole

2 , because, as shown in
Appendix A, the flexure does not affect the far-field signal.
For simplicity, a homogeneous medium is assumed.

Cross-correlation for different accelerometer positions

Figures 4 and 5, respectively, show the results for sandy soil
and muddy soil beneath a steel baseplate. The absolute arrival
times correspond to a depth of 100 m beneath the baseplate,
although the differences we study do not depend on this dis-
tance. The sweep frequencies are 15–150 Hz.

We see that the ‘measured’ arrival time can be greater or
less than the ‘ideal’ arrival time, depending on where the ref-
erence sensor is located with respect to the point of applica-
tion of the force. The maximum shift is 0.3 ms for sandy soil
and 0.6 ms for muddy soil. These shifts seem insignificant,
although a value of 0.3 ms is recognizable in vibroseis mea-
surements (Martin and Jack 1990). If arrival-time errors of
less than one millisecond are to be avoided, it is necessary to
take the effects of baseplate flexure into account.

Physically, the changes in the arrival time are caused by the
phase lag in the transfer function defined as the ratio of the
ground force Fg, measured by the reference sensor, to the ap-
plied force Fa (Fig. 6). As before, the ‘ideal’ ground force is
the signal corresponding to the vibrations of the plate with-
out flexure, and the ‘measured’ ground force is the one that
includes flexure. It is seen that the phase deviation (Fig. 6,
right, curves 1 and 2) may be positive or negative depending
on the location of the sensor (the respective cross-correlations
are shown in Fig. 5). It is important to note that the
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Figure 4 The effect of flexure on arrival time. The numbers at the arrows correspond to arrival times in milliseconds, defined as the abscissae
of the peaks. The baseplate is on sandy soil.

Figure 5 The effect of flexure on arrival time. The numbers at the arrows correspond to arrival times in milliseconds, defined as the abscissae
of the peaks. The baseplate is on muddy soil.

deviations occur around the resonance frequencies of the
flexural vibrations (dotted arrows). The positive deviations
(curve 1) indicate an additional delay in the cross-correlation
function, while the negative deviations (curve 2) indicate an
earlier arrival.

It follows that we should only be concerned with the effect
of flexural vibrations (the position of the reference sensor)
on the arrival-time measurements if their resonance frequen-
cies fall within the seismic frequency band. If they are outside

this band, the position of the reference sensor will not real-
istically matter. It can be shown that the values of the reso-
nance frequencies increase as the ground rigidity increases. A
‘muddy’ soil will therefore represent the worst-case scenario,
as its rigidity is the lowest (Table 1). The upper frequency of
the sweep signals is typically below 200 Hz. Even for muddy
soil, all flexural resonance frequencies except the first one will
be above this limit (Table 2); we therefore only need to con-
sider the effect of the first mode.
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Figure 6 The frequency dependence of the modulus (left) and phase (right) of the transfer function. The calculations were made for muddy
soil. The force is applied at the centre of the baseplate. Curves 1 correspond to the reference sensor at the point of excitation (r = 0), curves 2
correspond to the sensor located at the edge of the baseplate (r = R0), and curves 3 correspond to the optimum location of the sensor (see text).
Solid arrows depict the resonance frequencies of the vibratory system with the rigid baseplate (reaction mass + plate) (Lebedev and Beresnev
2004, fig. 3); dotted arrows correspond to the flexural resonances.

Figure 7 The distribution of displacement along the radius of the base-
plate for the first flexural mode. The thin vertical line shows the po-
sition of its node.

Reference accelerometer at the nodal line
of the first f lexural mode

We now check to see if placing the sensor at the node of the
first flexural mode will eliminate the error in the arrival time.
Figure 7 shows the distribution of displacement in the first
flexural mode along the radius of the plate. The node is lo-
cated at r ∼= 0.68R0. The curves 3 in Fig. 6 correspond to the
reference sensor at this nodal position. We see that the addi-
tional phase lag is nearly absent below ∼ 200 Hz. The cross-
correlation between the received and the reference signals for
this optimum case is shown in Fig. 8. No shift in the arrival
time, caused by the effect of the flexural vibrations, occurs (see
Figs 4 and 5). Thus placing the sensor at the node of the first
flexural mode eliminates the error.

Figure 8 Cross-correlation function for the optimum position of the
reference sensor.

In practice, it may be difficult to find the exact nodal line of
the flexural mode of the baseplate. A more practical solution
to eliminating the effect of the reference-sensor location on
the arrival times would be to move the first flexural resonance
above the upper frequency of the sweep signal.

S U M M A RY A N D C O N C L U S I O N S

We have considered the problem of the effect of flexural de-
formations on the radiation properties of vibroseis sources.
The analysis showed that in most practical applications the
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flexural deformations only weakly affect the far-field radi-
ation. We evaluated the frequency band in which the base-
plate flexure may contribute considerably to the measured
‘weighted-sum’ ground-force signal; these frequencies are at
the higher end of the vibroseis operating band (around 100 Hz)
and are lowest for softer soils.

We calculated the ground-force signal that would be mea-
sured by a reference accelerometer placed at different points
on the baseplate, with and without flexure being taken into
account. The cross-correlation of the far-field signal with these
reference signals determines the arrival time of the seismic
waves. The effect of moving the accelerometer around the flex-
ing baseplate causes errors in the arrival time of up to 0.6 ms
for muddy soil and less for denser soils, relative to the case of a
rigid plate. They are therefore rather insignificant. These time
shifts are caused by the phase lag in the oscillations of the plate
relative to the actuator force, occurring around the resonance
frequency of the first flexural mode. Placing a reference sensor
on the nodal line of this mode will thus eliminate the traveltime
error. However, a more practical solution would be to make
the resonant frequencies of the flexural modes higher, moving
them beyond the vibroseis operating band, for example, by
using plate stiffeners.

Our principal conclusions apply to realistic baseplate shapes
in the seismic frequency band. Similar calculations for com-
plex plate geometries at higher frequencies will be much more
complicated and physically not as transparent; therefore, they
are of little interest for seismic-exploration applications and
are beyond the scope of this article.
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A P P E N D I X A

Radiation efficiency of flexural deformations in the far-field

The set of eigenfunctions (oscillation modes) ψn(r) of the plate
with free edges forms an orthonormal basis. These functions
are obtained as follows. The differential equation for axisym-
metric flexural deformations of a thin plate with free bound-
aries can be written (Skudrzyk 1968, chapter 8) as

D∇4z2(r, t) + ρshz̈2(r, t) = F (t)δ(r )
2πr

− Fg(r, t)

π R2
0

, (A1)
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with the boundary conditions (Landau and Lifshitz 1959,
p. 51, problem 5)

∇3 z2|r=R0
= 0,

(
∇2z2 − 1 − ν

r
∇z2

)∣∣∣∣
r=R0

= 0, (A2)

where r is the distance from the plate centre, R0 is the plate
radius, D = Eh3/12(1 − ν2) is the ‘bending’ stiffness, E, ν and
ρs are the Young modulus, Poisson’s ratio and density, respec-
tively, of the plate material, h is the plate thickness, and δ(r)
is Dirac’s delta-function. The conditions (A2) physically mean
that the bending moment and the shear force vanish at the
plate boundary. The right-hand side of (A1) is the total force
acting on the plate per unit area, which incorporates the force
F acting at the plate centre and the ground-reaction force −Fg.
For an axisymmetric problem, the operators ∇ p are

∇4 =
(

d2

dr2
+ 1

r
d
dr

)2

, ∇3 = d
dr

∇2,

∇2 = d2

dr2
+ 1

r
d
dr

and ∇ = d
dr

.

The basis ψn(r) satisfies (A2) and (A1) with the right-hand side
equal to zero, so that ∇4ψn(r ) = κ4

n ψn(r ), where κ4
n = ρshω2

n/D

is the flexural wavenumber for the nth mode. The solution
of this equation, having no singularity at the plate centre, is
ψn(r ) = AnJ0(κnr ) + BnI0(κnr ), where J0(x) is the Bessel func-
tion of zero order and I0(x) is the modified Bessel function
of zero order (Skudrzyk 1968, eq.8.31). The values of κnR0

and the ratio Bn/An are determined from the boundary condi-
tions (A2). Specifically, the first equation in (A2) allows us to
exclude Bn, i.e.

ψn(r ) = An

(
J0(κnr ) − J1(κn R0)

I1(κn R0)
I0(κnr )

)

for n > 0, where J1(x) and I1(x) are the corresponding Bessel
functions of the first order. This expression is then used in the
second equation (A2) to find the values of κnR0, which will
depend on the material of the plate through Poisson’s ratio
ν. The resulting transcendental equation for κnR0 is solved
numerically (parameters as in Table 1) to provide the roots
κ1R0 = 3.0005, κ2R0 = 6.2003, κ3R0 = 9.3675, . . . , κn R0

∼=
πn. Finally, the value of An (amplitude) is found from the
orthogonality condition,

2π R2
0

∫ 1

0
ψm (x) ψn(x)x dx = δmn, x = r/R0. (A3)

where δmn is the Kronecker delta.
The natural frequencies in (8b) are ω2

n = Dκ4
n /ρsh. The uni-

form displacement of the plate (displacement ‘as a whole’)
corresponds to ψ0(r ) = 1/R0

√
π , which clearly satisfies (A2)

and (A1) with the right-hand side equal to zero. The flexural
modes with n = 1 are orthogonal to the uniform displacements
(δ0n = 0). As a result, the integral over the plate area is

2π

∫ R0

0
ψn(r )r dr = 0, n > 0. (A4)

If the plate size is small relative to the radiated wavelengths,
k1,2 R0 � 1, the ground-reaction pressure for each flexural
mode is

−Pn = Kn
g an

π R2
0

ψn (r ) , (A5)

where k1,2 = ω/c1,2, ω is the angular frequency, and c1, c2 are
the P- and S-wave velocities, respectively. The value of Kn

g in
(A5) is the captured rigidity, which is possible to determine
using the approach described by (10).

Because of (A4) and (A5), the total ground force (the pres-
sure integrated over the plate area) produced by flexure is zero.
To calculate the far-field radiation from the flexural mode, it is
helpful to distinguish between the areas with positive and neg-
ative pressures separated by the nodal lines (zeros of ψn(r)),
whose contributions to the far field should be summed. We
consider, for simplicity, the far-field radiation from the first
flexural mode, which has only one nodal line located at the
radius r1

∼= 0.68R0 (Fig. 7). In the case of small plate size,
the field radiated by the distribution of positive and negative
pressures can be represented as the sum of the fields from two
equivalent circular sources of opposite sign, one with radius r1

and the other with radius R0, which would provide the same
zero pressure integral over the plate area. The pressure is con-
stant over each of the circular sources (Fig. 9). The problem of
the calculation of the far-field radiation from a flexural mode
is thus reduced to the calculation of the sum of the fields from
two piston sources with uniform pressure.

The far-field displacement for a uniform-pressure circular
piston is proportional to the ground force multiplied by the
factor

f (kRsin θ ) = 2J1(kRsin θ )
kRsin θ

,

where k = ω/c, c is the phase velocity of P-, S- or Rayleigh
waves, R is the radius of the piston, and θ is the angle measured
clockwise from the down direction (Junger and Feit 1986,
chapter 5, eq.5.10; Lebedev and Beresnev 2004, appendix B).

Assuming two equivalent piston sources, in which the nega-
tive pressure is constant over the piston r = r1 and the positive
pressure is constant over the piston r = R0 (Fig. 9), the far-field
displacement UP in the P-wave due to flexure is given by

UP ∝ 2J1 (k1 R0 sin θ )
k1 R0 sin θ

− 2J1 (k1r1 sin θ )
k1r1 sin θ

. (A6)
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Figure 9 Two equivalent sources for the example considered (radia-
tion from the first flexural mode).

As long as k1R0 � 1, (A6) can be re-written using a low-
frequency (x � 1) asymptote of the Bessel function,

J1(x) ∼= x
2

(
1 − x2

8

)

(Korn and Korn 1968). As a result, the far-field displacement
due to flexure is

UP ∝ k2
1 R2

0 sin2
θ

8

(
1 − r2

1

R2
0

)
.

The contribution of the flexure to the far field is thus propor-
tional to the far field produced by the displacement as a whole,
multiplied by the factor k2

1R2
0. Similar equations with k2

1R2
0

terms can be obtained for the higher flexural modes. Clearly,
UP is zero for the downgoing (θ = 0) P-wave (the case of total
cancellation of the positive and negative contributions emit-
ted from the different parts of the plate). Assuming k1R0 �
1, the P-wave radiation due to flexure is also negligible rela-
tive to the radiation from a rigid plate for any non-zero angle.
In Appendix B, we show that the flexural vibrations give a
negligible contribution to the total radiated power.

A P P E N D I X B

Radiation impedance and total radiated power
for flexural modes

The standard definition of the modal radiation impedance per
unit area is the ratio of the modal pressure to the modal veloc-

ity normal to the vibrating structure (e.g. Junger and Feit 1986,
eq.2.26). Strictly speaking, the impedance calculation should
involve setting a given modal displacement distribution over
the plate, finding the resulting pressure, and taking their ratio
(a ‘displacement-to-pressure’ approach). However, the level
of complexity in such calculations increases dramatically be-
cause Fredholm integral equations must be solved (Robertson
1966). On the other hand, it is known that the values of the ra-
diation impedance for a uniform pressure distribution (Miller
and Pursey 1954) and uniform displacement distribution
(Bycroft 1956) are only slightly different. For example, it can
be shown using expressions given by Johnson (1985, chapter
3) that the captured rigidity for the uniform displacement is
less than 10% greater than its value obtained for uniform pres-
sure, and we know that the captured rigidity is a good approx-
imation of the absolute impedance in the seismic frequency
band (see discussion of Fig. 2). The same conclusion will there-
fore hold for the modal displacements. Because of this equiv-
alence, a mathematically simpler ‘pressure-to-displacement’
approach is widely used (Gladwell 1968). We follow this ap-
proach in our calculations of the rigorous impedance, by cal-
culating the modal displacement distribution resulting from
given modal pressure and taking the ratio, as illustrated
below.

Using the Fourier–Hankel integral representation of the ra-
diated displacement field (Miller and Pursey 1954, eq.125;
Lebedev and Sutin 1996), we can write the expression for the
vertical component of the surface displacement produced by
a point force as

z2 (r ) = iωF

2πρc3
2

∫ ∞

0

τ
√

γ 2 − τ 2

D(τ )
J0 (k2rτ ) dτ , (B1)

where ρ is the density of the soil beneath the baseplate, γ =
c2/c1, c1 and c2 are the P- and S-wave velocities in the soil, k2 =
ω/c2, F is the force applied to the ground, and D(τ ) = (1 −
2τ 2)2 − 4τ 2

√
(τ 2 − γ 2)(τ 2 − 1) is the Rayleigh denominator.

To calculate the surface displacement produced by a force
distribution over the plate due to the nth mode, F n

g (r ) =
fnψn(r ), where f n is the amplitude factor, this distribution must
be convolved with the Green’s function (B1). This results in
the displacement,

z2 (r ) = iω fn

2πρc3
2 S

∫ ∞

0

τ
√

γ 2 − τ 2

D(τ )
ψ̂n (τ ) J0 (k2rτ ) dτ , (B2)

where ψ̂n(τ ) = 2π
∫ R0

0 ψn(r )rJ0(k2rτ ) dr is the Fourier–Hankel
image of the modal function ψn(r) and S is the plate area.
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The amplitude of the modal displacement in (5) is equal to
the integral

an = 2π

∫ R0

0
z2 (r ) rψn (r ) dr , (B3)

which can be directly verified by substituting (5) in (B3) and
using the orthogonality of the functions ψn(r). Using z2(r) from
(B2) in (B3) then gives

an = iω fn

2πρc3
2 S

∫ ∞

0

τ
√

γ 2 − τ 2

D(τ )
ψ̂2

n (τ ) dτ. (B4)

The radiation impedance per unit area therefore is

Zn ≡ fn

−iωanS
= 2πρc2

k2
2

∫ ∞
0

τ
√

γ 2−τ2

D(τ ) ψ̂2
n (τ ) dτ

. (B5)

In the case of an inflexible baseplate (n = 0), the eigenfunc-
tion is ψ0(r ) = 1/R0

√
π . Its Fourier–Hankel image is ψ̂0(τ ) =

R0(τ ), where (τ ) = 2J1(k2 R0τ )/k2 R0τ , and (B5) reduces to
the corresponding impedance obtained earlier (Lebedev and
Beresnev 2004, eq.C3).

Using the impedance (B5), the total radiated power for the
nth harmonic mode can be calculated as the integral of power
flux over the baseplate area (Junger and Feit 1986). Omitting
simple manipulations, we obtain

W total
n = Re

(
| fn|2

2ZnS2

)
. (B6)

To understand the total power radiated in the flexural modes,
it is useful to consider the high- and low-frequency asymptotic
behaviour of (B6).

As seen from Fig. 2, at high frequencies (k2R0 � 1), the real
part of the radiation impedance dominates over the imaginary
part, and the absolute impedance approaches ρc1 (see Junger
and Feit 1986, figs 5.6, 6.3 and 6.5). Equation (B6) in this case
coincides with the equation for the radiation power in P-waves

(e.g. Lebedev and Beresnev 2004, eq.A6). We conclude that,
at high frequencies, the flexural modes radiate only P-waves.

At low frequencies, the radiation impedance can be approxi-
mated by expression (10). Substituting (10) in (B6) and assum-
ing ω2 � Kn

g /Mn
g, we obtain an asymptotic expression,

W total
n

∼= | fn|2 ω2

2(Kn
g )2S

Dn
g . (B7)

Calculations show (see discussion on how to estimate Kn
g

and Mn
g using the elastic-foundation model in subsection ‘Res-

onance frequencies of flexural deformations’) that the con-
dition ω2 � Kn

g /Mn
g is satisfied in the frequency domain of

interest for most hard surfaces, but may be violated at fre-
quencies above approximately 40 Hz for softer soils such as
mud. Within these limits, (B7) can be used to estimate W total

n ,
thus providing a transparent physical view of the factors con-
trolling the radiated power.

As (B7) shows, because Kn
g is only slightly dependent on the

mode number (see discussion on Fig. 2), in order to understand
the relationship between the power radiated in different modes
for small plate sizes, we only need to compare the values of
Dn

g (ω) = Re(Zn), plotted in Fig. 2 (top). For n = 0 (displace-
ment as a whole), the value of Re(Zn) is nearly constant. As a
result, as (B7) shows, the total radiated power is proportional
to the square of the frequency, which is a well-known result
(Miller and Pursey 1954; Lebedev and Sutin 1996). For the
flexural deformations, however, the value of Re(Zn) for small
plate sizes is much smaller and is scaled as the fourth power of
frequency (Fig. 2, top, solid line), which results in W total

n (ω) in
(B7) becoming proportional to ω6. Because of this trend, the
total power radiated by the flexural modes remains negligibly
small compared with that from the rigid plate at small plate
sizes, just as their contribution to the far field is negligible
(Appendix A).
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