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Nonlinear distortion of signals radiated by vibroseis sources

Andrey V. Lebedev∗ and Igor A. Beresnev∗

ABSTRACT

A model of nonlinearity of the contact between the
vibrator baseplate and the ground is proposed to de-
scribe the distortion of vibroseis signals in the near-field.
A thin layer between the baseplate and the soil exhibits
a strong nonlinear response because of the difference in
its rigidity between the compression and tension phases.
The model allows for a quantitative description of the
transmission of seismic energy into the ground, including
the observed harmonic distortion. However, the contact
nonlinearity does not lead to the dependence of wave
traveltimes on the amplitude of the force applied to the
ground. This fact can be used in field observations to
localize the source of the observed harmonic distortion.

INTRODUCTION

Vibroseis is the principal source of seismic energy in land
exploration. To obtain high-quality earth images, it is impor-
tant to achieve strict control and understanding of an outgoing
signal. The problem of controlling the radiated spectrum has
been considered by many authors (Lerwill, 1981; Sallas and
Weber, 1982; Safar, 1984; Sallas, 1984). Most earlier works are
based on the classic results of Miller and Pursey (1954), who
rigorously studied the seismic radiation from a piston source at
the surface of an elastic half-space. In spite of significant suc-
cess in characterizing this linear problem, many practical issues
arising from the field use of vibroseis sources have remained
theoretically unexplained; they have typically been attributed
to the nonlinearity in the complex system involving the vibrator
and the ground. For example, one difficulty lies in the apparent
amplitude dependence of the traveltime of radiated wavelets
(Martin and Jack, 1990), while another is in the observed dis-
tortion of wavelets (Walker, 1995; Jeffryes, 1996).

Specifically, the traveltime is sometimes found to be depen-
dent on the driving level. Martin and Jack (1990) indicate that
these arrival-time variations might result from the changes in
the physical properties of near-surface layers. Earlier arrival

Manuscript received by the Editor December 2, 2002; revised manuscript received December 1, 2003.
∗Iowa State University, Department of Geological and Atmospheric Sciences, Ames, Iowa, 50011-3212. E-mail: swan@hydro.appl.sci-nnov.ru;
beresnev@iastate.edu.
c© 2004 Society of Exploration Geophysicists. All rights reserved.

time from a lower-energy impulse source was observed and
could be considered as proof of the authors’ assumption. Ap-
parently, the soil in the near-surface layers became softer (hav-
ing lower propagation velocity) as the amplitude of vibrations
increased.

The second problem observed in experiments is the har-
monic distortion of outgoing waves. Walker (1995) proposes
to describe the distortion phenomena using a simple 1D differ-
ential equation of the Duffing type. However, such a generic
model has limited practical value, since the model parameters
were set arbitrarily, and the physical reason for the distortion
was not clear. Also, while the differential equation could de-
scribe the vibrations of the baseplate, it did not involve the
transmission of energy into the ground.

Both problems are believed to be caused by the nonlinear
response of an elastic half-space or some parts of the radiat-
ing system. There are generally two viewpoints expressed in
the literature regarding the range of the distances from the
source at which the medium nonlinearity remains significant.
One viewpoint is that there are contributions of nonlinearity
to signal distortion in both the near- and far-fields of a vibrator.
The harmonics are generated in the vicinity of the baseplate
and continue to grow as the signal propagates as a result of the
slowly accumulating nonlinear distortion of the acoustical type
(e.g., Beresnev et al., 1986; Beresnev and Nikolaev, 1988; Dim-
itriu, 1990). However, a more common approach, for example,
experimentally addressed by Jeffryes (1996), is that the near-
source area is primarily responsible for the generated harmon-
ics, while the propagation beyond this zone remains essentially
linear. We follow this more commonly accepted model of soil
nonlinearity in our study.

The near-source area, contributing to nonlinear distortion,
could be represented as a thin layer between the baseplate and
the soil where large deformations occur. This leads us to the
model of contact nonlinearity, in which the effect of the layer is
approximated by the response of a nonlinear oscillating spring.
However, our goal is not merely to describe the oscillations of
this nonlinear contact. With seismic exploration applications
in mind, we are also interested in rigorously calculating the
radiation of seismic energy from the contact to establish the
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signature of near-source nonlinearity in seismic records. In ac-
cordance with the model, the propagation medium is assumed
to be linear.

We base this approach on the substantial progress in non-
linear acoustics of solids made over the last decade (e.g.,
Naugolnykh and Ostrovsky, 1998; Guyer and Johnson, 1999).
Nonlinearity in the generally disorganized earth materials is
typically attributed to compliant features such as grain con-
tacts, cracks, or voids, which lead to their substantial nonlinear
behavior. It has been shown that the contact between oscil-
lating solid bodies is highly nonlinear, too (Rudenko and Vu,
1994; Solodov, 1998).

The nature of contact nonlinearity could be illustrated as
follows. Soil is a structurally inhomogeneous material that is
in contact with the baseplate along a rough, uneven surface.
The vibrations of the plate lead to the consecutive openings
and closures of the contact points, so that the total contact
surface is constantly changing (Solodov, 1998). This leads to
the variations in an effective elastic modulus of the contact.
Furthermore, the contact region is typically much softer than
the other parts of the interacting bodies (the baseplate and
the consolidated material below); as a result, the deformations
in this intermediate region are large enough to considerably
change the spectrum of radiation. A model of such a contact
and its effect on the radiation are discussed below.

We should point out that the nonlinear distortions of vi-
broseis signals arise from two independent mechanisms: the
hydraulic actuator itself and the ground nonlinearity. In this
paper, we describe the distortion caused by the ground non-
linearity. For hydraulic vibrators, the actuator force itself typ-
ically carries a significant nonlinear distortion well known to
engineers (e.g., Merritt, 1967). Without the loss of generality,
we consider the response of nonlinear ground to the sinusoidal
actuator force. Taking the actuator force in the form of a de-
sired nonsinusoidal function for a particular vibrator type will
incorporate the distortion produced by the actuator.

The feedback control systems used on modern vibrators are
designed to synchronize the amplitude envelope and phase of
the fundamental frequency component of the ground force to
the pilot signal, although the nonlinearly generated harmonics
are still radiated. These harmonics reduce the accuracy of con-
ventional data processing, which crosscorrelates the far-field
geophone signal with the pilot. Since the signal at geophones
is proportional to the ground force [see equation (B-6)], the
crosscorrelation ideally should be performed with the realisti-
cally distorted ground force, not the pilot, for the best decon-
volution results.

This is the idea behind the processing scheme of the
recently proposed high-fidelity vibratory seismic (HFVS)
method (Allen, 1996; Allen et al., 1998). In the HFVS method,
the ground force is recorded and is used as source signature; any
harmonics generated in the source or its vicinity are included in
the reference signal. The HFVS method cannot be universally
utilized, though, because it requires recording and transmis-
sion of the ground-force signal at every individual shotpoint,
significantly increasing the cost of the surveys, and precludes
vibrator grouping, as it assumes that each vibrator has its own
signature. The universal use of HFVS-type methods would ide-
ally remove the limitations on the accuracy of vibroseis imaging
caused by nonlinear distortions, both at the hydraulics and at
the contact with the ground.

This article is organized as follows. In the first section, we
briefly introduce the model of the vibroseis source. In the sec-
ond section, a contact-type nonlinearity is incorporated. In the
third section, a possible generalization of the model is dis-
cussed. This generalization includes the nonlinear response of
the soil beneath the baseplate extending beyond a thin contact
zone.

VIBROSEIS MODEL

In 1981, Lerwill proposed an equivalent circuit for a vibro-
seis source [a similar model was introduced in the 1940s in the
USSR by G. Gamburtsev (Chichinin, 1984)]. Based on sim-
ple considerations valid for fluids, Lerwill proposed the equa-
tions describing the far-field of the radiated P-wave. His results
were corrected by Sallas and Weber (1982) and Sallas (1984) by
adding a captured mass of the ground and a formula to define
the force acting on the ground. The source was considered small
compared to the wavelength; it could be approximated by a 1D
lumped-parameter vibratory system with masses, springs, and
dashpots. All equivalent parameters of the ground in the Sallas
model could be determined from the rigorous elastodynamic
solutions (Miller and Pursey, 1954). The scheme considered
by Lerwill (1981) and Sallas (1984) is presented in Figure 1,
where z1 is the displacement of the reaction mass and z2 is the
displacement of the baseplate. The auxiliary elements used to
stabilize the baseplate are not shown [see Lerwill (1981) for
the detailed description].

The ground-reaction force Fg is defined in Sallas (1984) by
the acceleration of the captured mass Mg, the deformation of
the captured spring Kg, and the velocity of the dashpot Dg as
a result of radiation (see Figure 2).

−Fg = Mgz̈2 + Dgż2 + Kgz2. (1)

This force can be determined from the measured accelera-
tions of the reaction mass (subscript r ) and the baseplate (sub-
script b) which is assumed inflexible (Sallas and Weber, 1982;
Sallas, 1984):

Fg = Mr z̈1 + Mbz̈2. (2)

The numeric parameters of the equivalent vibroseis circuit
are listed in Table 1. These parameters, corresponding to chalk,
are considered by Lerwill (1981) and Safar (1984). We use them
in our numerical examples to illustrate the typical distortion
associated with nonlinear soil behavior.

Figure 1. The scheme of the vibrator considered by Sallas
(1984). The element Ka is the spring constant for the airbag
suspension of the reaction mass, and Da is the dashpot con-
stant for the airbag, accounting for corresponding losses. The
actuator force is Fa, and the ground-reaction force is Fg.
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LINEAR AND NONLINEAR OSCILLATIONS
OF THE VIBRATOR

Figure 2 presents a simple generalization of the Sallas model.
The scheme is identical to Figure 1, except that an additional
spring is added between the baseplate and the ground to de-
scribe the contact rigidity. The elements of ground reaction—
Kg,Mg, and Dg—are also explicitly shown. Rudenko and Vu
(1994) propose to modeling the nonlinear contact rigidity Kc by
a set of small springs of variable lengths, some being out of the
contact with the ground (right side of Figure 2). This model is
capable of describing a wide range of nonlinear contact behav-
ior, including the Hertz point contact (Johnson, 1985; Landau
et al., 1986) and a full contact. By introducing a distribution of
spring lengths (ground-roughness heights), varying degrees of
contact nonlinearity can be accounted for as well.

The set of equations describing the dynamics of the system
in Figure 2 is similar to that used by Sallas and Weber (1982)
and Sallas (1984), with the additional restoring force Fc from

Figure 2. The circuit used as a model of nonlinear oscillations
of the vibrator. The notations are as in Figure 1. The element
Kc denotes the additional spring corresponding to the nonlin-
ear contact rigidity. The horizontal arrow shows the model of
the contact. The small springs have various heights; some are
activated by vibrations. The quantity z3 is the displacement of
the ground.

Table 1. Parameters of the vibroseis circuit (Figure 1) used in this analysis. The value r0 is the baseplate radius. The values of Kg,
Mg, and Dg correspond to chalk with a density of ρρ = 1800 kg/m3, an S-wave velocity of VS = 1235 m/s, and a P-wave velocity of VP =
2140 m/s (Safar, 1984). The actuator force amplitude is Fa = 79 000 N, corresponding to Lerwill’s data (Lerwill, 1981).

r0 (m) Kg (N/m) Mg (kg) Dg (N/m/s) Ka (N/m) Da (N/m/s) Mb (kg) Mr (kg)

0.865 1.3× 1010 773 7× 106 6.25× 105 104 681 1773

the deformation of the contact spring:

Mr z̈1 + Da(ż1 − ż2)+ Ka(z1 − z2) = −Fa(t),

Mbz̈2 − Da(ż1 − ż2)− Ka(z1 − z2)− Fc = +Fa(t),

Mgz̈3 + Dgż3 + Kgz3 + Fc = 0. (3)

We assume the state of rest in the system as the initial condition.
The term Fa(t) is set to Fa sinωt , where ω is the vibrator’s
operating frequency; subscripts a and b are defined in Figure 1.
As stated in the Introduction, the nonlinearity in the hydraulic
system is not considered in equations (3), and the actuator
force is assumed sinusoidal to isolate the nonlinear distortion
caused by the ground. The baseplate is assumed inflexible. The
effects of the baseplate flexure on radiation will be considered
in separate paper.

Equations (3) with ground force Mgz̈3+ Dgż3+ Kgz3 corre-
spond to the case of small wave size of the plate (radius of the
baseplate r0 smaller than the radiated wavelengths). Otherwise,
the ground reaction should be written in a more general way
using the Green’s function approach (Appendix C). However,
we show (Figure 3) that the exact approach leads to the cor-
rections that are negligible in the frequency range of practical
interest, which justifies the use of simple equations (3).

Linear contact

We first consider the case of a linear contact with the restor-
ing force described by Hooke’s law, Fc= Kc(z3− z2). The ratio
(transfer function) Fg/Fa as a function of frequency for this
regime of vibrations is shown in Figure 3. The quantity Fg was

Figure 3. Ground-reaction force Fg normalized by input actu-
ator force Fa as a function of frequency for Kc= 1010 N/m. The
other parameters are defined in Table 1. The resonance fre-
quencies ω1/2π = 3 Hz, ω2/2π = 403 Hz, and ω3/2π = 977 Hz
are shown by the arrows. The calculations are made for
chalk. The solid and dashed lines correspond to |Fg/Fa| and
arg(Fg/Fa), respectively. The thin lines show the rigorous so-
lution obtained using the Green’s function method outlined
in Appendix C. The horizontal bar shows the frequency inter-
val of the sweep signal used to calculate the crosscorrelation
function (see Nonlinear Contact section).
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calculated using equation (2), with z1, z2 determined as the so-
lutions of system (3). The system (3) for the linear contact was
solved analytically using the standard Fourier transform tech-
nique. The resulting values of Fg were divided by Fa to obtain
the thick solid line in Figure 3.

At low frequencies, the ground force [equation (2)] is
dominated by the reaction-mass term Mr z̈1, which becomes
Mr z̈1≈ω2 Fa/Ka. The ω2 low-frequency asymptote of Fg/Fa is
clearly seen in Figure 3.

One can distinguish the three resonance frequencies in the
ratio, corresponding to the oscillations of the reaction mass ω1,
the oscillations of the soil near the baseplate ω2, and the reso-
nance of the contactω3. Note that the operating band of Vibro-
seis sources is typically between ω1/2π and ω2/2π (Shneerson
and Mayorov, 1980; Lerwill, 1981). The frequency ω3 was ab-
sent from the original model (Sallas and Weber, 1982; Sallas,
1984); its existence in our model reflects the inclusion of the
contact spring Kc (see Figures 1 and 2). The value of Kc deter-
mines the rigidity of the contact, where it is useful to consider
two limiting cases: Kc= 0 and Kc=∞. In the first case, the
contact region is very soft and the ground force is zero (the re-
action mass and the baseplate vibrate without any reaction of
the ground, z3= 0, z2 6= 0). Obviously, ω3¿ω2 in this case and
the contact spring dominates. The second case corresponds to
the full contact between the baseplate and the soil (z3= z2 6= 0).
Here, ω3Àω2 and the ground spring dominates. The value of
Kc= 1010 N/m corresponds to an intermediate situation of fre-
quency ω3 still higher than ω2, thus modeling the situation of a
well-prepared contact.

The values of the resonance frequencies were determined
as the roots of the characteristic equation for system (3) af-
ter applying the Fourier transform (Landau and Lifshitz, 1976;
chapters 23 and 25). This equation is a third-order polynomial
with respect to ω2:

−Mr MbMgω
6 + (Mr Mb(Kc + Kg)+ Mr Mg(Ka + Kc)

+MgMbKa)ω4 − (Mr (KaKc + KaKg + KgKc)

+MbKa(Kc+ Kg)+MgKaKc)ω2+ KaKcKg= 0. (4)

The dependence of the three resonance frequencies on
ground parameters can be clarified using a simple approach. As
seen from Figure 2 and for the condition ω1¿ω2¿ω3, the fre-
quenciesω1 andω2 can be thought of as the natural frequencies
of the oscillations of the reaction mass attached to the actuator
spring and of the combined baseplate mass and the captured
mass attached to the captured spring, respectively. The fre-
quency ω3 similarly can be viewed as the natural frequency of
the contact spring loaded with the baseplate mass on one end
and the captured mass on the other end. These frequencies can
then be approximated by the formulas describing oscillations
of masses on a spring, ω2

1 ≈ Ka/Mr , ω2
2 ≈ Kg/(Mb+Mg), and

ω2
3 ≈ Kc(Mb+Mg)/MbMg. These formulas show the parameter

dependence of the resonance frequencies in a transparent man-
ner. The values they provide, ω1/2π ≈ 3 Hz, ω2/2π ≈ 476 Hz,
and ω3/2π ≈ 836Hz, are in good agreement with the exact
values obtained from equation (4) (see the exact values for the
resonance frequencies in Figure 3). The heights of the peaks of
the transfer function in Figure 3 will depend on the damping
parameters Da and Dg and decrease as damping increases.

The value of Fg determines the amplitudes of the emitted
waves (see Appendices A and B). The result of rigorous cal-
culations of the ground force, taking into account the finite
dimensions of the source (thin line in Figure 3), is close to the
results based on the approximation of ground reaction [equa-
tion (C-1)] even at high frequencies. This is an important con-
clusion, since the scheme of the rigorous solution of the general
nonlinear problem (3) described in Appendix C is much more
complicated than the solution based on equation (C-1).

In a general case of arbitrary, nonlinear spring Kc, the solu-
tion of system (3) can be obtained by numerical integration,
for example, through the Runge-Kutta scheme. To check the
accuracy of the scheme, we compared the numerical results
with the analytical solution for the linear contact spring above.
We found the relative difference between the numerical and
analytical solutions of system (3) was less than 1.6× 10−10 for
the linear problem. Also, the choice of the integration step
is important in numerical integration of nonlinear differential
equations. Because of this, the step in all of the following cal-
culations was varied until the solution no longer changed.

Nonlinear contact

We next consider the case of bimodular contact nonlinearity,
with the restoring force in the form

Fc= K1(z3− z2)
for

z3≤ z2

and

Fc= K2(z3− z2)
for

z3> z2, (5)
with K1 > K2 (stiffness in compression greater than stiffness in
tension). The value of K1 is equal to Kc for the linear contact
considered above. Model (5) describes a rapid change in rigid-
ity when compression activates the shorter spring (in the case of
two different spring lengths for simplicity; see Figure 2). Note
that, as stated in the Introduction, the nonlinearity is assumed
to be localized at the contact, while the wave propagation from
the contact is assumed to be linear.

General analysis of oscillatory systems with piecewise-linear
parameters has been performed by several workers (e.g., Mah-
fouz and Badrakhan, 1990; Ostrovsky and Starobinets, 1995).
In particular, models with bimodular elasticity are often in-
voked to describe strong nonlinearity in vibratory systems with
backlash, a contact of one piece with another, or behavior of
precompressed elements (Mahfouz and Badrakhan, 1990). The
bimodular elasticity model (5) provides qualitatively similar
time histories zj (t) for any amplitude of the exciting force
(Mahfouz and Badrakhan, 1990; Ostrovsky and Starobinets,
1995). This means that the harmonic distortion depends on
the ratio K1/K2 only and not on the driving-force level. This
feature is easy to understand since the constitutive law [equa-
tion (5)] only distinguishes between the compression and ten-
sion phases, in which the stiffnesses are different. Within a given
phase, the stiffness is constant and does not depend on the am-
plitude level.

Figure 4 shows the spectral power density of the ground-
reaction force and the time histories Fg(t) and Fa(t) for
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K2= 0.1K1. The distortion of the ground-force signal, com-
pared to the input signal, is clear. Recall that all nonlinear
distortions in Figure 4 are attributed to the contact nonlinear-
ity, which explains the dominance of the second harmonic over
the third one. In comparison, the hydraulic nonlinearity of the
actuator is known to produce a stronger third harmonic.

Harmonic distortion is convenient to characterize by the pa-
rameter

DN L = 10 log
∞∑
j=2

Aj

A1
(dB), (6)

where log is base 10 and Aj are the spectral power densities
of harmonics. The value of DN L for the ground-force signal in
Figure 4 is −16 dB, which corresponds to a small contribution
of harmonics to the force relative to the main tone.

The radiated power in P-, S-, and Rayleigh waves at a given
frequency can be calculated from the ground force using equa-
tions (A-1), (A-2), and (A-5), respectively (Appendix A).
These equations are valid for the arbitrary wave size of the
baseplate. If the baseplate is small relative to the shear wave-
length, the harmonic contribution will be magnified with re-
spect to the force signal as a result of a ω2 term in the radiated
power (see Appendix A) and the distortion seen in power will
increase. This is observed in Figure 4 as the magnification in
the harmonic content in the total power (circles) with respect
to the ground force (bars). The maximum value of magnifica-
tion is 30 dB at high frequencies. This value generally depends
on the operating frequency, P- and S-wave velocities in the
ground, and radius of the baseplate. The magnification effect
means that even small nonlinear distortion present in the force
signal at the baseplate will be revealed to a much greater extent
in the far-field signal. (Keep in mind, though, that the attenua-
tion effects have not been considered in the calculation of the
total radiated power.)

The time histories of the ground force and the particle
velocity in the downgoing (propagating in the z-direction)
P-wave are shown in Figure 5. The choice of the vertical di-
rection is caused by the absence of S-wave contribution from
potential (B-5) and the importance of downgoing radiation
in practical applications. The computations were made using

Figure 4. Fourier power spectrum of ground force for the
input frequency of 30 Hz (vertical bars). The circles depict
the combined power radiated in P-, S-, and Rayleigh waves.
Data on both graphs are normalized by the sum of amplitudes
of all harmonics. The distortion in the ground-force signal is
DN L =−16 dB. The radiated-power distortion is DN L =+8 dB.
Time histories of Fa(t) and Fg(t) are shown in the top right
corner. SPD-spectral power density.

equation (B-6) for each spectral component of the ground-
force signal calculated earlier; consequently, the effect of
anelastic attenuation is incorporated. One can observe a sig-
nificant difference between the signal recorded in a borehole
and Fg (Figure 5a). This difference is primarily caused by the
ω-term in equation (B-6), which originates in the differenti-
ation of the ground-force signal. Because anelastic losses for
higher harmonics are greater than for the fundamental, one
can expect the peaks in the far-field time history to smooth out
as distance increases. If the vibroseis source operated as a lin-
ear device, the far-field and the ground-reaction force signals
would be similar (Figure 5b).

So far our discussion has dealt with the solutions of equations
(3) for a pure tonal input excitation. In practical applications,
complex signals having wide frequency spectra, such as sweep
signals, are used. As we consider a linear wave propagation
problem (all nonlinearity resides in the contact spring only),
we can use the superposition principle to construct the solution
for complex input signals as the summation of tonal responses.
We use this approach in studying the effects of contact nonlin-
earity on the correlation functions following; the approach is
characterized as follows.

The frequencies of discrete Fourier transform are defined by

ωn = 2π
n

N1t
, n = 0, . . . ,

N

2
− 1, (7)

where 1t is the sampling interval of zj (t) and N is the num-
ber of samples. In the following, the Fourier spectrum of the
sweep signal for the ground-reaction force and far-field ve-
locity is synthesized as a sum of the corresponding responses
zj (t) in system (3) (which determine the ground force) for each
frequency defined by equation (7) within the frequency band
of interest. The amplitude of the acting force Fa remains the
same for all frequencies. Since the signals and the crosscorre-
lation function are synthesized in the frequency domain, we
look at the main lobe of the crosscorrelation function only; no
ghosting caused by the harmonic distortion of the fundamen-
tal frequency of the sweep, appearing at regular time intervals
after the main lobe (e.g., Jeffryes, 1996) is shown.

Figure 5. (a) Time histories of the particle velocity in
the downgoing P-wave (thick line) and the ground-reaction
force (thin line). The operating frequency of the vibrator is
30 Hz. The distance between the vibrator and the observa-
tion point |OA| = 100 m, which corresponds to k1 R≈ 10 in
equation (B-6). The anelastic losses were set to η≡ 1/Q= 0.01,
typical of consolidated soil (White, 1983). The phase shift
exp(ik1 R) in equation (B-6), which would correspond to the
fundamental frequency, has been removed. (b) The same
curves corresponding to the linear regime (K2= K1) when
there is no distortion. The scale of the plots is the same.



Nonlinear Distortion of Vibroseis Signals 973

The crosscorrelation function between the far-field and the
ground-force sweep signals (C1(1t)) is shown in Figure 6a. As
stated in the Introduction, this way of processing mimics the
HFVS method. The crosscorrelation between the far-field and
the pilot signals (C2(1t)) is shown in Figure 6b, which illus-
trates the traditional data-processing scheme (Shneerson and
Mayorov, 1980; Martin and Jack, 1990, p. 405). Since we con-
sider only the signal distortion caused by ground nonlinearity,
the pilot signal is assumed to be proportional to Fa. The cross-
correlations are calculated using the inverse fast Fourier trans-
form. One can see that no distortion is observed in the C2(1t)
function (Figure 6b) because the pilot is not distorted at each
emitted frequency. The function C2(1t) is inverted compared
with C1(1t) because of the phase difference of 180◦ between
Fg and Fa within the interval of 15 to 150 Hz, shown by the
horizontal bar in Figure 3.

The width of the crosscorrelation function is inversely pro-
portional to the frequency bandwidth of the emitted signal. A
visible sharpening of C1(1t) (Figure 6a) for the nonlinear oscil-
lations is caused by the expansion of the bandwidth of both the
ground-force and the far-field signals as a result of harmonics
generation. However, it is clear that there is no additional delay
in the arrival time because of the contact nonlinearity, in that
the timing of zero crossings in both the linear and nonlinear
oscillations remains unchanged (Figure 6a; the zero crossing is
indicated by the vertical arrows). The absence of the delay from
nonlinearity is clearly because the source of all distortion is in
the force applied to the ground, not in the wave-propagation
medium.

However, in the case of very strong nonlinearity (lines with
circles), one can observe a delay in the traveltime for C2(1t)
(Figure 6b). Since this delay is absent in C1(1t), it cannot be
from the changes in P-wave velocity beneath the plate. Further-
more, the velocity-change effects are absent from the model
considered. It is therefore important to understand the reason
for this delay.

The free vibrations of a piecewise-linear oscillatory system
consist of the spliced half-periods of sinusoidal functions, as
illustrated in Figure 7. The top half is a sinusoidal signal with
amplitude a1 and half-period T1 and the bottom half is a si-
nusoidal signal with amplitude a2 and half-period T2 (Ostro-
vsky and Starobinets, 1995). Figure 7 corresponds to the case
of bimodular nonlinearity [equation (5)]. The amplitudes and
periods are related through

Ä1a1 = Ä2a2, (8)
where Ä1,2= 2π/T1,2 (Ostrovsky and Starobinets, 1995). The
nature of the shape of the time history is clear: the system

Figure 6. Crosscorrelations between (a) the
far-field signal defined by equation (B-6) and
the ground-reaction force defined by equa-
tion (2) (similar to the HFVS method), and
(b) the far-field signal (B-6) and the pilot
signal (conventional data processing). The
dashed lines correspond to the linear oscil-
lations (K2= K1), and the thin solid lines
correspond to nonlinear oscillations. The ra-
diated signal is sweep from 15 to 150 Hz.
The traveltime is defined as zero crossing
between the first two correlation extremes
(max |C(1t)|) (Martin and Jack, 1990) and
is shown as the vertical lines with arrows
(1t0= |O A|/VP = 47 ms).

switches from one oscillating mode to the other when the rel-
ative displacement z3− z2 passes through zero and instantly
changes the rigidity according to equation (5). The two oscil-
lation modes thus correspond to the compression and tension
phases in the system, in each of which the system oscillates in
a linear manner.

The frequencies Ä1 and Ä2 can be determined from equa-
tion (4) with Kc= K1,2, separately considered for the com-
pression and tension phases. In the case of K2= 0.01K1,
which exhibits the delay in Figure 6b, these frequencies
are Ä1/2π ≡ω3/2π = 977 Hz [Kc= K1 in equation (4)] and
Ä2/2π = 100 Hz [Kc= K2 in equation (4)]. The latter value lies
inside the frequency band of the sweep signal. Because this
is the frequency of one of the system resonances, the spectral
component of the sweep is amplified at this frequency and an
additional phase lag also occurs (see phase of Fg/Fa in Figure 3
at resonance frequency ω3). Because of the amplification, the
effective bandwidth of the radiated signal becomes narrower,
compared with the case of small difference between K1 and K2,
and the crosscorrelation function becomes wider (Figure 6b,
line with circles) in that the relative amplitudes of the side
lobes become higher. The additional phase lag is revealed as a
delay in the crosscorrelation function.

These values of the frequencies Ä1 and Ä2 do not depend
on the amplitude of oscillations (the driving level) because
there is only one compression rigidity and only one tension
rigidity in the system, no matter how large the amplitude level
(refer to the Nonlinear Contact section). So while model (5)
shows the delay in the crosscorrelation function, this delay is
not amplitude dependent.

The dependence of the delay on the driving level neverthe-
less occurs if model (5) is substituted with a more complicated
nonlinear function describing the contact rigidity, in which case

Figure 7. General view of displacement time history in a vibra-
tory system with piecewise rigidity equation (5).
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each driving amplitude is associated with different rigidities.
This leads to the different values of frequencies Äi and the
different phase lags in the correlation function at each force
level. We hypothesize that the dependence of traveltime on
the driving level, observed by Martin and Jack (1990), may be
explained by this mechanism. The detailed analysis of such a
general model is beyond the scope of this paper.

NONLINEAR RESPONSE OF SOIL
BENEATH THE BASEPLATE

At frequencies ω<ω2, which correspond to the small wave
size of the baseplate, the ground-reaction force mostly depends
on the captured rigidity Kg (Safar, 1984). Its value is deter-
mined as

Kg = 2Er0

1− ν2
, (9)

where E and ν are the Young’s modulus and Poisson’s ra-
tio of the ground (Safar, 1984; Johnson, 1985); respectively.
Equation (9) describes the rigidity of the elastic cylinder with
radius r0 and length πr0/2, deformed along its axis; the value
of Kg is thus controlled by the properties of the ground near
the baseplate.

Figure 8 exhibits the distribution of the amplitudes of vol-
umetric and shear stress, which control the level of ground
deformation, near the baseplate at 100 Hz. The maximum vol-
umetric stress is 0 dB, and the maximum shear stress is−16 dB.
This corresponds to a maximum volumetric and shear strain
as small as 7× 10−6 and 2× 10−6, respectively. If we hypoth-
esize that the deviation from the linear response in solids is
observed at the strain on the order of 10−6 and higher (White,
1983; Guyer and Johnson, 1999), we can conclude from Figure 8
that, even at high frequencies, the large nonlinear deformations
occur near the baseplate only. Only a small region beneath the
plate is then responsible for the distortion of the signal. The
captured rigidity Kg, controlled by the material properties in
this region, become a nonlinear function.

This reasoning leads us to the conclusion that the model (3)
can be generalized to describe not only a strong nonlinear re-
sponse in the contact area but also the nonlinear elasticity in
the soil itself. One can see from Figure 2 that the two springs Kc

and Kg are connected in series. The nonlinear properties of Kg

are therefore be revealed in the behavior of z1, z2, which define

Figure 8. Stress in soil on a vertical section be-
neath the baseplate. The vertical axis is the
depth, and the horizontal axis is the radial dis-
tance from the baseplate center. The problem
considered is axisymmetric relative to the z-
axis. The vertical arrows show the edge of
the baseplate. All values are in decibels with
respect to the value of Fg/πr 2

0 , which corre-
sponds to the normal stress. The lines depict
the levels of−20,−30,−40, and−50 dB. The
calculations were made based on the numer-
ical integration of equations (B-1) and (B-2)
and Hooke’s law. (a) Volumetric stress. (b)
Shear stress.

the ground-reaction force (2), in a similar way as the proper-
ties of the contact spring Kc are revealed, at frequencies below
ω2. Note that the frequencies used in seismic exploration are
typically in this range. It follows that the nonlinear response
of the ground beneath the plate can be described by the same
model (3) with the properly characterized rigidity of the non-
linear ground spring Kg. The effects on the radiation will be
similar to those for the model of contact nonlinearity.

CONCLUSIONS

The harmonic distortion of the signal generated by a vibra-
tory source resulting from contact nonlinearity can be under-
stood using a simple model. The contact-nonlinearity model
used has clear physical meaning: it involves the difference in the
restoring force between the compression and tension phases
that is typical of structurally inhomogeneous media (Guyer
and Johnson, 1999). An additional distortion of the particle-
velocity signal, recorded by geophones in the far-field, with
respect to the ground force, occurs. In this case, the geophone
signal is proportional to the time derivative of the ground force;
as a result, all harmonics are amplified.

The use of crosscorrelation function between the ground
force and the signal from a geophone in the far-field allows one
to make a judgment about the origin of the distortion. If the
distortion is localized in the contact area, no changes in the trav-
eltime depending on the driving-force level will be observed.

The nonlinearity of the ground in the near-field of the base-
plate can be naturally incorporated into the same model.
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APPENDIX A

RADIATED POWER

As shown by Lebedev and Sutin (1996), the following ex-
pressions for the power radiated in P- and S-waves from a
monochromatic vibrator can be obtained [similar expressions
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are found in Miller and Pursey (1954)]:

WP =πω(λ+ 2µ)k3
1

∫ π/2

0
|φP(θ)|2 R2 sin θdθ = k2

1 F2
g

4πρc1
I1,

(A-1)

WS=πωµk3
2

∫ π/2

0
|ψS(θ)|2 R2 sin θdθ = k2

2 F2
g

4πρc2
I2, (A-2)

where λ and µ are the Lame-constants, kj =ω/cj , c1 is the
P-wave velocity, c2 is the S-wave velocity, ρ is the soil density,
and Fg is the amplitude of the ground-reaction force. To cal-
culate the spectral power density of radiated power for non-
monochromatic signals, one needs to substitute F2

g with the
spectral power density of the ground-reaction force for each
frequency ω. The functions φP andψS are the scalar and vector
potentials (B-4) and (B-5) (the vector ψS is directed clockwise
with respect to the z-axis), which are inversely proportional
to the distance from the source to the observation point R,
and θ is the angle between the radius vector R and the z-axis
(Figure 2). The origin of the coordinate system coincides with
the center of the source. The integrals I1,2 are

I1 =
∫ π/2

0

42
1(θ) cos2 θ sin θ(1− 2γ 2 sin2 θ)2(

4γ 3 cos θ sin2 θ

√
1− γ 2 sin2 θ + (1− 2γ 2 sin2 θ)2

)2
dθ,

(A-3)

I2 =
∫ π/2

0

42
2(θ) sin2 2θ sin θ(γ 2 − sin2 θ)∣∣2 sin θ sin 2θ

√
γ 2 − sin2 θ + cos2 2θ

∣∣2 dθ,

(A-4)

with γ = c2/c1 and 4 j (θ)= 2J1(kj r0 sin θ)/(kj r0 sin θ), j = 1, 2.
The term J1(·) is the first-order Bessel function, and r0 is the
radius of the baseplate. At low frequencies (kj r0¿ 1), the func-
tions 41,2(θ) are approximately equation to one. The function
43(τ ) below has the same asymptote.

Similarly, the power radiated in the Rayleigh wave is

WR =
k2

2τ
2
1 F2

g4
2
3(τ1)

4ρc2

(
d D

dτ

∣∣∣∣
τ=τ1

)2 ×
(1− 2τ 2

1

)2(1+ 4τ 2
1 − 4γ 2

)√
τ 2

1 − γ 2

+ 4τ 2
1

(
τ 2

1 − γ 2
)
(4τ 2

1 − 3)√
τ 2

1 − 1
− 4

(
2τ 2

1 − 1
)

×
(
1+ 4τ 2

1 − 2γ 2
)√(
τ 2

1 − γ 2
)(
τ 2

1 − 1
)+ (τ 2

1 − γ 2
)(

4τ 2
1 − 1

)√
τ 2

1 − γ 2 +
√
τ 2

1 − 1


(A-5)

where τ1 is the real root of the Rayleigh function

D(τ ) = (1− 2τ 2)2 − 4τ 2
√

(τ 2 − γ 2)(τ 2 − 1),

and where

43(τ1) = 2J1(k2r0τ1)
k2r0τ1

.

Note that, as follows from equations (A-1), (A-2), and (A-5),
the power in the P-, S-, and Rayleigh waves at low frequencies is
magnified by a factor proportional toω2, relative to the ground-
force amplitude, at each radiated frequency. This leads to the
magnification in the harmonic content in the far-field signal as
discussed in the text in connection with Figure 4.

The terms 42
2,3 have the asymptotic behavior of (k2r0)−5 for

k2r0À 1. Therefore, one can expect the decrease in the radia-
tion efficiency in S- and Rayleigh waves at high frequencies. The
exception is the P-wave, which dominates the high-frequency
radiation. For the P-wave, because the term42

1(θ)∝ δ(θ)/ sin θ
for k1r0À 1, where δ(θ) is Dirac’s delta function, the radiation
power Wp is equal to

WP =
F2

g

2πρc1r 2
0

. (A-6)

Equation (A-6) has no ω-dependent terms. Therefore, no
magnification of distortion in the far-field occurs at high fre-
quencies (k1r0À 1).

APPENDIX B

WAVEFIELD AT LONG DISTANCES FROM THE SOURCE

The scalar φ and the vectorψ potentials of the displacement
vector at an arbitrary point of an elastic half-space can be writ-
ten as the following integrals (Lebedev and Sutin, 1996):

φ = − F

2πρc2
2

×
∫ ∞

0

4(τ )τ (2τ 2 − 1)J0(xτ ) exp
(
iy
√
γ 2 − τ 2

)
D(τ )

dτ

≡ − F

4πρc2
2

×
∮

C

4(τ )τ (2τ 2 − 1)H (1)
0 (xτ ) exp(iy

√
γ 2 − τ 2)

D(τ )
dτ,

(B-1)

ψ = + i F

πρc2
2

×
∫ ∞

0

4(τ )τ 2
√
γ 2 − τ 2 J1(xτ ) exp

(
iy
√

1− τ 2
)

D(τ )
dτ

≡ + i F

2πρc2
2

×
∮

C

4(τ )τ 2
√
γ 2 − τ 2 H (1)

1 (xτ ) exp
(
iy
√

1− τ 2
)

D(τ )
dτ ,

(B-2)

where 4(τ )= 2J1(k2r0τ )/(k2r0τ ); J0(·) and J1(·) are the Bessel
functions of zero and first orders; H (1)

0 (·) and H (1)
1 (·) are the

Hankel functions of zero and first orders of the first kind;
x= k2r , y= k2z are the dimensionless polar coordinates of the
observation point; and F is the force applied to the elastic half-
space (F =−Fg). The contour of integration C is chosen to sat-
isfy the Sommerfeld radiation conditions (Aki and Richards,
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1980). Integrals (B-1) and (B-2) contain the contributions of
Rayleigh waves [poles of D(τ )] and body waves (stationary
points) (Aki and Richards, 1980). The body waves are the most
important ones from a seismic exploration standpoint.

Let us consider a limiting case of x, y→∞, with x/y= tan θ ,
x= k2 Rsin θ , and y= k2 Rcos θ , where R=√r 2+ z2. ForχÀ 1,
the contribution from a stationary-phase point to an integral
of the type

∫
C

g(t) exp(χ f (t))dt is (Aki and Richards, 1980)∫
C

g(t) exp(χ f (t))dt =
∑

j

√
−2π

f ′′(t j )χ
g(t j ) exp(χ f (t j )),

(B-3)
where t j are the roots of f ′(t)= 0.

Using expression (B-3) in integrals (B-1) and (B-2), after
transformations, one obtains the equations describing the po-
tential of a P-wave (also see Miller and Pursey, 1954),

φP = +i
F41(θ) cos θ(1− 2γ 2 sin2 θ)

4γ 3 cos θ sin2 θ

√
1− γ 2 sin2 θ + (1− 2γ 2 sin2 θ)2

× exp(ik1 R)
2πρωc1 R

, (B-4)

and on S-wave

ψS = +i
F42(θ) sin 2θ

√
γ 2 − sin2 θ

2 sin θ sin 2θ
√
γ 2 − sin2 θ + cos2 2θ

× exp(ik2 R)
2πρωc2 R

. (B-5)

Equations (B-4) and (B-5) are valid in the far-field only
(k1,2 RÀ 1). The terms41,2(θ), defined in Appendix A, describe
the directivity patterns resulting from a finite source size. The
downgoing P-wave (propagating in the z-direction) produces
a vertical particle velocity Vz:

Vz≡−iω
∂φP

∂R

∣∣∣∣
θ=0
=+i

k1 F exp(ik1 R)
2πρc1 R

×exp
(
−k1 Rη

2

)
.

(B-6)
We added the term exp(−k1 Rη/2) to equation (B-6) to de-

scribe medium dissipation (anelastic attenuation). For har-
monic processes, the anelastic losses are usually added as an
imaginary part of the corresponding elasticity modulus (Aki
and Richards, 1980; White, 1983). Such an approach is valid if
the inverse quality factor η≡ 1/Q is much less than unity and
the dissipation can be treated as perturbation to the solution
without losses. If the force signal F is distorted, this distortion
will be magnified in the velocity signal (B-6) as a result of the
multiplication by the factor k1.

APPENDIX C

GREEN’S FUNCTION AND THE RIGOROUS
FORMULATION OF PROBLEM (3)

The captured mass, rigidity, and damping factor in the ex-
pression for the ground-reaction force

−Fg = Mgz̈3 + Dgż3 + Kgz3 (C-1)

used in equation (3) are defined for the small wave size of the
baseplate (Safar, 1984; Sallas, 1984). This size for higher har-

monics generally is not small. As a result, the values of Mg,
Kg, and Dg may not be the same for the harmonics as for the
main tone. This is why the approach characterized by equation
(C-1) may not be valid for the case when the harmonic distor-
tion is high and the ground reaction resulting from harmonic
contribution is compatible with the reaction at the main tone.
(The total harmonic distortion parameter DN L for the ground-
reaction force is not small.)

To determine the ground-reaction force for the arbitrary
wave size of the baseplate, one needs to develop a more general
approach, which could be outlined as follows. Integrals (B-1)
and (B-2), combined with Hooke’s law, allow one to calculate
the radiation impedance (Miller and Pursey, 1954, chapter 6)
for a monochromatic acting force. The impedance is defined as
the ratio of the ground force to the mean value (the baseplate
is assumed rigid under vibrations) of the ground velocity over
the area of contact πr 2

0 . This leads to the following equation
for the radiation impedance Zinp:

Zinp ≡ −Fg

ż3
≡ i

ωY(ω)
, (C-2)

where the subscript inp stands for input and where

Y(ω) ≡ z3(ω)
Fg(ω)

= iω

2πρc3
2

∫ +∞
0

τ
√
γ 2 − τ 2

D(τ )
42(τ )dτ .

(C-3)
One can see that Y(ω), by its definition, is the transfer function
for the average displacement z3(ω) (the output) obtained from
the ground force Fg(ω) (the input) at each emitted frequency.

First, let us ensure that the field calculations based on equa-
tions (C-2) and (C-3) accurately match the known power radi-
ation characteristics of equations (A-1), (A-2), and (A-5). The
total radiation power (WP +WS+WR) is equal to (Aki and
Richards, 1980)

W = Re

( |Fg|2
2Zinp

)
. (C-4)

The numerical evaluation of integral (C-3) shows that, at
low frequencies, radiation impedance behaves as Zinp

∼= i K g/ω,
with Kg as defined in equation (9). From equation (C-4), the
radiated power is then proportional to F2

gω
2 or has the same

frequency dependence as equations (A-1), (A-2), and (A-5) at
low frequencies. Similarly, at high frequencies Zinp

∼= ρc1πr 2
0 ,

and equation (C-4) leads to the expression identical to expres-
sion (A-6), also derived from equations (A-1), (A-2), and (A-5)
as their combined high-frequency limit. This shows that the so-
lution (C-2)–(C-3) indeed ensures the required behavior of
radiated power.

One can also see that the difference in the frequency de-
pendence of Fg/Fa between the accurate solution based on ex-
pressions (C-2) and (C-3) and the approximation of the ground-
reaction force in the form (C-1) (thick and thin lines in Figure 3)
is small enough to be neglected even at high frequencies, where
the baseplate is no longer small compared to the wavelengths;
at low frequencies, the two solutions simply coincide.

Let us now finalize building the general solution. Based on
expressions (C-2) and (C-3), the ground force for the arbitrary
wave size of the plate and arbitrary displacement can be ob-
tained as follows. Green’s function, which, by definition, is the
time-domain equivalent of the transfer function, is equal to
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the inverse Fourier transform of Y(ω). To convert the average
displacement of the plate into the ground-reaction force [the
inverse of expression (C-3)], we use 1/Y(ω). Green’s function
becomes

G(t) = 1
2π

∫ +∞
−∞

exp(−iωt)
Y(ω)

dω, (C-5)

where Y(ω) is defined by expression (C-3).
Finally, the ground-reaction force for arbitrary z3(t) is

Duhamel’s integral (the convolution of Green’s function and
z3):

−Fg(t) = G(t)⊗ z3(t) ≡
∫ t

−∞
G(t − ζ )z3(ζ )dζ . (C-6)

This determines the ground-reaction force in a general case.
The expression for the ground-reaction force (C-1), used in
the last equation in system (3), should then be substituted
with expression (C-6); as a result, the last equation in system
(3) is rewritten as G(t)⊗ z3(t)+ Fc(t)= 0. System (3) will be-
come a set of nonlinear integro-differential equations, which is
much more difficult to solve than the set of original differential
equations (3).
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