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I agree with the statement of Frankel (2019) that the path
attenuation is a factor affecting the shape of the high-
frequency spectrum in the far field. Beresnev (2019,
p. 822) is explicit in acknowledging that the observed steep
high-frequency fall-off “is in addition to the decay produced
by regular anelastic attenuation along the propagation path.”
The term source spectra is used throughout the article of
Beresnev (2019) to emphasize that the discussion was
centered upon the source effect. The regular site and path
contributions apply as usual.

I also previously directly addressed the effect of rupture
complexity on the shape of the seismic spectra in the near
field (Beresnev, 2017). The analysis was performed via
the direct computation of the representation integral of elas-
ticity. Specifically, randomly disturbing the total slip and the
maximum slip rate over the fault plane or introducing asper-
ities did not lead to any appreciable differences in the shape
of the radiated Fourier spectra. It was argued that the func-
tional form of the source time function was the predominant
factor in forming the spectra, although Beresnev (2019,
pp. 822 and 825) repeatedly mentioned that the spectral slope
could be disturbed by the directivity, path, and site effects.

The near-field frequency spectrum can be obtained by
taking the Fourier transform of the representation integral.
For a source time function in the form of a radially propa-
gating rupture

EQ-TARGET;temp:intralink-;df1;55;318Δu�ξ; t� � U�ξ�Δu�t − r=v�; �1�

in which U�ξ� is the distribution of final-slip values over the
fault plane, r is the distance from hypocenter, and v is the
rupture-propagation speed, the Fourier spectrum of the seis-
mic displacement at the observation point x is

EQ-TARGET;temp:intralink-;df2;55;236u�x;ω� � Δu�ω�
ZZ
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(Beresnev, 2017, his equation 4). Here, Δu�ω� is the Fourier
transform of the source time function and F�x; ξ; r;ω� is a
function of complicated form. The integration is carried out
over the fault plane and a homogeneous space with given
elastic constants is assumed. The spectrum of radiation is
thus the one of the source time function, modulated by the
integral representing the finite-fault spatial directivity.
Equation (2) underscores the universal controlling effect
of Δu�ω� over the spectral content of radiation.

As Frankel (2019) mentions, a classic example of the
effect of source finiteness on the radiated spectrum is a uni-
directional rupture propagation with constant velocity. In the
limits of (1) a near-line source with small widthW, extending
to the length L along the coordinate ξ1; (2) small source
dimensions; and (3) the far field, for the rupture propagating
along ξ1, the modulus of equation (2) reduces to
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in which
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in which c is either the P- or S-wave propagation speed, and
Ψ is the angle between the direction to the receiver and the
axis ξ1 (Aki and Richards, 1980, their equation 14.18). The
quantity jI�x;ω�j is the directivity spectrum modifying that
of the source time function owing to the source finiteness.
For constant v, jI�x;ω�j evaluates to

EQ-TARGET;temp:intralink-;df5;313;381jI�x;ω�j � L

���� sinXX
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in which X � �ωL=2��1=v − �cosΨ�=c� (ibid.). It follows, as
Frankel (2019) correctly points out, that the effect of constant
rupture speed results in the multiplication of the underlying
spectrum of the source time function by that of the sinc func-
tion, producing a high-frequency fall-off that is steeper by the
additional factor ofω−1 (Aki and Richards, 1980, their fig. 14.3
and p. 810). However, it is worth asking the question whether
the same effect will hold for a variable rupture velocity.

The directivity spectral modifier I�x;ω� can be general-
ized to a variable rupture speed by replacing the linear time
delay ξ1=v in the integrand of equation (4) by a spatially
variable delay Δt�ξ1� of arbitrary form:
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The integral (equation 6) can then be evaluated numerically.
The subsequent example was produced for a fault with the
length L � 3400 m, corresponding to an Mw 5 earthquake
according to the empirical relationship between fault area
and moment magnitude of Wells and Coppersmith (1994,
their table 2A). The rupture velocity v was randomized to
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result in a spatially variable propagation time as follows. The
fault length was divided into 40 equal intervals with the
length ΔL, and the incremental rupture travel time through
each consecutive ith segment was calculated as
Δti � ΔL=�v�1� η��. The random variable η for each seg-
ment was drawn form a normal distribution with zero mean
and standard deviation of 0.3, constrained to equal −0:9 if its
value accidentally fell below or was equal to −1. The value
of v was chosen as 0:8β, in which β is the S-wave velocity,
which in turn was chosen as 5000=

���
3

p
m=s. The resulting

grid of 40 travel-time values was interpolated to produce
a smooth perturbed curveΔt�ξ1�. Both the constant- and ran-
domized velocity travel-time curves are shown in Figure 1.

Figure 2 compares the directivity spectra jI�x;ω�j of a
radiated shear wave (c � β) for the cases of constant and
randomized rupture speeds andΨ � 0 (radiation in the direc-
tion of rupture propagation). The former case (black line)
was calculated from equation (5) and the latter (gray line)
computed by the numerical evaluation of integral (equation 6)
with the interpolated function Δt�ξ1� in the integrand,
generated as explained.

As pointed out, the constant-speed spectrum (black line)
in Figure 2 is the sinc function with the envelope falling off
as ω−1. However, the high-frequency spectrum for the ran-
domized velocity is nearly flat. As a result, the radiated spec-
trum (equation 3) is controlled by that of the source time
function and is almost unaffected by the source finiteness.
The steeper high-frequency fall-off in the former case is
an artifact caused by the assumption of constant v, which
produces a regular pattern of destructive interference with the
shape of a sinc function (Aki and Richards, 1980, p. 810).
Randomness in the timing of rupture at different parts of the
fault suppresses the regular interference, nearly eliminating
the additional slope. The spectrum of radiation from the
finite source becomes nearly identical to that of the source
time function.

The condition of constant rupture velocity is an idealiza-
tion that admittedly never materializes in reality, eliminating

the possibility of a steeper slope induced by the regular inter-
ference. In the general case, free of the limiting assumptions
leading to equations (3) and (4), the finite-fault radiation is
described by equation (2). The latter shows that the effects of
the finite source size will modulate the underlying slip-func-
tion spectrum Δu�ω� albeit most probably in an irregular and
unpredictable manner. The average dominance of the under-
lying spectrum over the fault directivity in controlling the
seismic radiation (Beresnev, 2017) should thus be recognized
not just as a point-source effect but as a more general phe-
nomenon.

Frankel (2019) argues that the ω−2 spectral fall-off in the
source term of the displacement spectra radiated into the far
field (known as the omega-square model) is widely recog-
nized. This contradicts our own experience. In the study
by Anil-Bayrak and Beresnev (2009), we specifically looked
for the omega-square seismic spectra to resolve the fault-slip
velocities from their corner frequencies. A large database of
all earthquake records of the KiK-net network in Japan avail-
able to date was scanned for the spectra following the model.
The search was conducted for all events in the magnitude
range from 4 to 6 recorded by at least two rock sites. Only
five earthquakes with the required fall-off were found: the
spectra of all others exhibited deviations that could not be
strictly fit with the omega-square assumption. Uchide and
Imanishi (2016) report similar results.
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Figure 1. Rupture-propagation times along the fault for the
constant and randomized velocities.

Figure 2. Moduli of the finite-fault directivity spectra for the
cases of constant and randomly perturbed rupture velocities (black
and gray lines, respectively).
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