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ABSTRACT
Kinematic simulations of ground motion require representations of the earthquake source:
the distribution of final slip, parameters of the source time function, and the velocity of
rupture travel. There is a significant ambiguity in prescribing these physical characteristics,
causing uncertainty in the resultingmotions that needs to be quantified. The representation
integral is an appropriate tool: it allows exact calculation of the source effect in both the near
and far fields in the frequency band of practical interest. The commonly used distributions of
slip have a k-square shape of their wavenumber spectra. Various k-square slips change the
slope of the radiated spectra in the range of ∼−2.5 and −4.0 in both the far and near fields.
The spectra generated by randomly disturbed constant slip are indistinguishable from those
emitted by k-square faults. In both cases, variations in peak values of ground velocity and
acceleration between realizations are relatively insignificant: under ∼15% for the same
hypocenter position. The slopes of the Fourier spectra produced exclusively by the form
of the slip function and the slip heterogeneity are equivalent to using a formal kappa filter
with κ ranging from ∼0.025 to 0.045 s. No ad hoc high-frequency filtering (of kappa or fmax

type) is required if fault finiteness is accounted for. Geometric irregularity of rupture fronts,
at least for the way the front progression is randomized in our case, does not appreciably
affect the slopes of the spectra. Its principal effect is in blurring the directivity, reducing the
sharpness of radiated pulses. The most influential parameter affecting the peak ground
motions for several commonly used slip functions is the maximum velocity of slip: scaling
of vmax causes a proportional scaling in peak ground acceleration. This parameter is themost
important to constrain to reduce ambiguities in predicted ground motions.

KEY POINTS
• What are the variations in ground motions and their spec-

tra due to heterogeneities in rupture characteristics?
• Different realizations of heterogeneous ruptures produce

the effect equivalent to a variable kappa operator.

• Diverse scenarios on finite faults can explain the variations
in the high-frequency behavior of radiated spectra.

INTRODUCTION
Simulation of radiation from large earthquakes via kinematic
models is an important tool in quantitative assessment of seismic
hazards (Beresnev and Atkinson, 2002; Aagaard and Heaton,
2004; Aagaard et al., 2008; Graves et al., 2008; Schmedes and
Archuleta, 2008; Aagaard, Graves, Rodgers, et al., 2010; Aagaard,
Graves, Schwartz, et al., 2010; Graves and Pitarka, 2010, 2016;
Ruiz et al., 2011; Skarlatoudis et al., 2015; Rodgers et al.,
2019, 2020; Infantino et al., 2020; Lee et al., 2020; Fayjaloun
et al., 2021; Razafindrakoto et al., 2021; Pitarka, Akinci, et al.,
2022; Pitarka, Graves, et al., 2022). Models of this type have been
adopted as the Broadband Platform (BBP) for ground-motion

simulation by the Southern California Earthquake Center
(SCEC) (now Statewide California Earthquake Center) (Dreger
and Jordan, 2015). In the kinematic approach, a rupture model
has to be prescribed. The input variables include: the distribution
of static (final) slip on the fault, the temporal shape of slip (the
source time function), and the velocity of rupture propagation.
However, the details of all these quantities, as functions of the
position on the fault, are not well constrained by the source-
inversion studies, allowing a significant leeway in formulating
the specific concepts. The published inversions carry significant
and often unknown uncertainties and trade-offs; their veracity in
many cases cannot be ascertained with confidence (Beresnev,
2003, 2013, 2023b).

Because of the fundamental lack of knowledge, alternative
descriptions of the source process coexist, each considered to
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be equally plausible (see the following for specific examples of
choices). The range of the available input models causes the
uncertainty of the modeling type in the forecasted ground
motions: it needs to be systematically and rigorously quantified
in the entire frequency band of engineering significance up
to ∼50 Hz. Such a quantification remains an open task.
Identifying the characteristics of faulting that are most impor-
tant in controlling the radiation will help focus future obser-
vational efforts on better constraining these specific crucial
parameters.

In the state-of-the-art approach, known as hybrid, as sum-
marized by Graves and Pitarka (2010), low seismic frequencies
are calculated deterministically while higher ones (greater than
∼1 Hz) are calculated stochastically. The hybrid technique is
the basis of the SCEC BBP. However, the stochastic approach
to the simulation of high-frequency content is inaccurate, and
its limitations must be realized. Its key features include the sub-
division of the fault plane into subfaults and the representation
of each as a point-source radiator of an omega-square spec-
trum with random phasing. Contributions from all subfaults
are summed to compute the fault’s radiation. Such a represen-
tation is oversimplified. The field from a single point source is
an asymptotic expression only valid at wavelengths much
exceeding the fault dimensions. It lacks the effects of geometric
interference and the near-field radiation terms playing a key
role close to finite earthquake sources. The summation of ran-
domly disturbed point-source radiation does not correctly
capture the near-fault effects that are important near large
earthquakes.

The stochastic simulations are also known to suffer from the
dependence on the subjective choice of the subfault size
(Beresnev and Atkinson, 2002). First, this approach replaces
the continuous integration over the fault plane with discrete
summation. Second, judgment needs to be made regarding
the assignment of a corner frequency to a subsource based
on its size (Beresnev and Atkinson, 1997, their equation 14;
Graves and Pitarka, 2010, their equation 13). Such an associ-
ation is nonunique. On the other hand, the corner frequency is
a controlling parameter of the resulting radiation spectrum.
The ambiguity that follows is one of the most severe weak-
nesses of stochastic modeling. Most studies make virtually
arbitrary decisions about the subfault size without explicitly
addressing such dependence. Using the stochastic method to
investigate the relative effect of the important characteristics
of faulting, such as the slip distribution, temporal slip function,
or rupture velocity, on seismic radiation may lead to erroneous
conclusions.

In the quantitative assessment of the role of different char-
acteristics of faulting in forming the radiation, the representa-
tion integral of elasticity is a powerful analytical tool. Its key
advantage is that, within the realm of applicability, it represents
the exact seismic field, valid at any frequency and fully
accounting for near-field phenomena. The representation

integral allows the isolation of the pure source effect in a rig-
orous mathematical manner. We will use it to quantitatively
evaluate the relative significance of the various distributions
of static slip, parameters of the source time function, and
irregular rupture fronts in forming earthquake radiation.

THE SIMULATION METHOD
Our simulations are based on the numerical evaluation of the
full representation integral of elasticity for a fault embedded in
an elastic space (Aki and Richards, 1980, their equation 14.37;
Beresnev, 2017b, his equation 1). The numerical procedure is
fully described and validated by Beresnev (2017b), to which the
reader is referred for brevity. The adopted space geometry
allows us to focus on the pure source effect.

The fault is the right-lateral strike-slip. For the near-field
calculations, the observation point is placed at 200 m above
the upper corner of the fault and offset by 200 m in the direc-
tion x2 perpendicular to the fault plane, thus having the coor-
dinates x = {0, 200, 200} m as shown in Beresnev (2017a, his
fig. 1). To compare with known asymptotic cases, we will also
consider an observation point in the far field to be sub-
sequently specified. The integral is computed for the fault-nor-
mal component of the radiated displacement as typically the
larger component being of primary interest to structural-
response analyses (Bray and Rodriguez-Marek, 2004; Beresnev,
2022c), which is subsequently low-pass filtered at 45 Hz
(Beresnev, 2017b). The traces of ground velocity and acceler-
ation are obtained by numerical differentiation of the
displacement seismogram. As detailed by Beresnev (2017b),
differentiation acts to significantly enhance numerical noise,
mandating a high precision in the evaluation of the integral.
Accordingly, unless otherwise stated, all displacement time his-
tories are calculated to the precision of six decimal places. The
need to maintain high precision imposes practical limitations
on the size of the fault that can be realistically analyzed in the
near field. In the latter, for a sufficiently heterogeneous slip
distribution in the integrand, numerical integration stops con-
verging to the required precision already for fault dimensions
approximately corresponding to an M 5 earthquake. For that
reason, all the near-field calculations are performed for a 1200
× 1200 m fault corresponding to an Mw 4 earthquake, accord-
ing to the empirical relationship between the rupture area and
moment magnitude of Wells and Coppersmith (1994, their
table 2A). The average offset U = 0.035 m in this case was cal-
culated as U � M0=�μA�, in which the moment M0 was
obtained from the moment magnitude and the fault area A
from the equation of Wells and Coppersmith. Asymptotic
far-field calculations do not suffer from the lack of conver-
gence; accordingly, they will be performed for anM 5 fault with
the respective U = 0.14 m. The fault dimensions corresponding
to the asymptotic case will be introduced together with the dis-
cussion of the model. The shear modulus μ is calculated as
μ � β2ρ, in which the density ρ was taken as 2700 kg=m3,
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and the shear-wave velocity β was obtained from the P-wave
velocity of 5000 m/s as β � 5000=

���
3

p
m=s. Except when

specifically noted, the rupture speed v is set to the constant
value of 0:8β.

We adopt the source time function that radiates the omega-
square Fourier spectrum into the far field (Beresnev and
Atkinson, 1997, their equation 6). The slip-velocity function
(first derivative of slip) is

Δu
̣ �ξ,t� � U�ξ� t

τ2
e−t=τ ≡ U�ξ�Δụ s�ξ,t�, �1�

τ � U�ξ�
evmax�ξ�

, �2�

in which ξ � fξ1,ξ3g is the position on the fault surface, and
vmax is the peak (maximum) velocity of slip. For convenience,
we have introduced a temporal shape function Δu

̣
s�ξ,t�, to

isolate it from the static slip U�ξ�. The corner frequency of
the radiated omega-square spectrum is the inverse of τ:
ωc � 1=τ (Beresnev, 2001, his equation 3). The slip is controlled
by two fundamental physical parameters:U and vmax, the former
defining the low-frequency asymptotic plateau of the radiated
spectrum in the far field and the latter the strength of high-fre-
quency radiation. Their combination determines the rise time τr
at a point on the fault in both the general omega-n and dynami-
cally compatible slip functions (Beresnev, 2022a, his equations
12 and 13). The quantity τr , therefore, is not an independent
rupture parameter. For example, the rise time for the omega-
square model in equations (1) and (2) is τr � 2:44U=vmax

(Beresnev, 2022a, his equation 13). The equations also show
that, in the omega-square slip-velocity function, the effect of
static slip U cannot be separated from the effect of the shape
functionΔu

̣
s, the latter also depending onU. According to equa-

tions (1) and (2), the source time function and the corner fre-
quency are generally variable over the fault plane.

Guatteri et al. (2004, their figs. 3 and 4) summarized and par-
ameterized the functional forms of slip-rate functions produced
from a large number of dynamic simulations (for brevity, the
article by Guatteri et al., 2004 will subsequently be cited without
the year as Guatteri et al.). They established that the shapes var-
ied in the width of the main pulse and the height of the long tail.
Dynamic simulations conducted by Pitarka, Graves, et al. (2022,
their fig. 6) reproduced a similar range of patterns. Beresnev
(2022a) identified the end-member cases of the Guatteri et al.
shapes as those having a “short pulse, high tail” and a “wide
pulse, low tail” configurations. He found that these limiting cases
are equivalent to the omega-n functions with n ranging from
∼1.5 to 3.5 (n = 2 corresponding to the omega-square case).
Other studies have proposed similar dynamically compatible
analytical generalizations for kinematic modeling (e.g., Tinti
et al., 2005; Liu et al., 2006). All these formulations are approx-
imately equivalent (Graves and Pitarka, 2010, their fig. 3).

The radiated Fourier spectra of the ith component of seis-
mic displacement are computed from the analytical Fourier
transform of the representation integral (Beresnev, 2017a,
his equations 4 and 5),

ui�x,ω��
μ

4πρ

Z Z
Δu�ξ,ω�e−iωΔt�ξ�

�
30γinpγpγqνq −6νinpγp −6niγqνq

R4 t1�ω�

�12γinpγpγqνq −2νinpγp −2niγqνq
α2R2 e−iω

R
α

−
12γinpγpγqνq −3νinpγp −3niγqνq

β2R2 e−iω
R
β �2γinpγpγqνq

α3R
iωe−iω

R
α

−
2γinpγpγqνq − νinpγp −niγqνq

β3R
iωe−iω

R
β

�
dΣ�ξ�, �3�

t1�ω� �
1
ω

�
e−iω

R
β

�
i
R
β
� 1

ω

�
− e−iω

R
α

�
i
R
α
� 1

ω

��
: �4�

Here, Δu�ξ,ω� � U�ξ�=�iω�1� iωτ�2� is the complex spec-
trum of the omega-square source time function; n is the unit
vector in the direction of slip; ν is the unit normal to the fault;
R � jx − ξj, γ � �x − ξ�=R, and α is the P-wave speed. The
double integration is over the fault plane Σ�ξ�. For the
strike-slip fault under consideration, all geometric coefficients
γinpγpγqνq, νinpγp, and niγqνq in the integrand reduce to simple

analytical forms (Beresnev, 2017b, his equations 7; Beresnev,
2021, his equations 2). Unless otherwise noted, the spectra
are calculated to the precision of three decimal places.

Compared to Beresnev (2017a), equation (3) has been writ-
ten in the general way to (1) allow Δu�ξ,ω� to be fault-position
dependent and (2) replace the time delay r=v due to radial
rupture propagation with constant speed to distance r from
the hypocenter with the general fault-position-dependent delay
Δt�ξ�. Hence, Δu�ξ,ω� is now in the integrand, and the phase-
delay exponential multiplier in the integrand has changed from
exp�−iωr=v� to the general exp�−iωΔt�ξ�� (Beresnev and
Roxby, 2021).

SLIP-DISTRIBUTION MODELS
k−2 model
There is a significant uncertainty in prescribing the spatial dis-
tribution of fault slip for future earthquakes: the models have
ranged from uniform to purely random (Aagaard and Heaton,
2004). A popular slip distribution has the functional form
spatial spectrum for which decays as k−2, in which k is the
wavenumber. The k-square model has often been used in
the synthetic rupture-slip generators for seismic hazard com-
putations (Herrero and Bernard, 1994; Somerville et al., 1999,
pp. 75–76; Mai and Beroza, 2002; Graves and Pitarka, 2010,
p. 2096; Schmedes et al., 2013, p. 1121; Infantino et al., 2020,
pp. 2563–2564; Rodgers et al., 2020, p. 2866).
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A useful asymptotic model illustrating the possible effects of
slip distribution on the spectrum of shear-wave radiation from
finite faults is the approximation of the far field of a small line
source with unidirectional rupture moving with constant
speed,

ui�x,ω� � constΔu
̣
s�ω�U

�
ω

�
cosΨ
β

−
1
v

��
, �5�

in which const is a dimensional constant collapsed here for brev-
ity, and Ψ is the angle between the direction to the receiver and
the fault line (Beresnev, 2022b, his equation 9). Here,U�k� is the
1D spatial Fourier transform of the slip distribution along the
fault line, taken at the wavenumber k � ω�cosΨ=β − 1=v�, and
Δu

̣
s�ω� is the frequency spectrum of the shape function. In this

approximation, this spectrum is assumed to be independent of
the position on the fault, allowing one to take it out of the inte-
gral in equation (3). A subset of such models is, for example, the
radiated spectrum of Herrero and Bernard (1994, their equation
24, also reproduced in their abstract; Beresnev, 2022b). Because
the position dependence of Δu

̣
s�ξ,t� is through the quantity τ

(the inverse of the corner frequency), the latter in equation (5) is
assumed to be constant over the fault. It is a particular case of the
general behavior in equation (2). Equation (5) illustrates that the
Fourier frequency spectrum of the far-field displacement is the
frequency spectrum of the slip-rate function multiplied by the
spatial spectrum of slip. In the following, equation (5) will be
used to provide comparative insight into the results of the accu-
rate numerical modeling with spatially variable τ�ξ� having no
similar restrictions.

We adopt the general k-square spectral model in the form

jU�k1,k3�j �
ULW��������������������������������������������

1� �k1L�2 � �k3W�2
p , �6�

in which jU�k1,k3�j is the 2D amplitude spatial spectrum of slip
over the fault (the Fourier transform is recognized by its argu-
ments); U is the average slip; and L and W are the fault length
and width (Somerville et al., 1999, p. 75; Gallovič and
Brokešová, 2004, their equation 6). The phase in the spectrum
is randomly drawn from the uniform distribution between −π
and π, as done by Graves and Pitarka (2010, their equation
A3). In the case of the square 1200 × 1200 m fault, two spa-
tial-discretization intervals Δξ were investigated, which will be
arbitrarily termed the “coarse”- and “fine”-resolution models:
Δξ � L=99 (N = 100 samples along both length and width)
and Δξ � L=199 (200 samples). This gives the respective
values ofΔξ � 12 and 6 m. The corresponding sampling inter-
val in the spatial-frequency domain in the discrete Fourier
transform is Δs � 1=�NΔξ�, and wavenumber sampling is
Δk � 2πΔs. The discrete values of the complex spectrum at
k from zero to the Nyquist wavenumber 2π�1=�2Δξ�� spaced
at Δk were produced in each direction k1 and k3 from

equation (6) with the random phase. The resulting spatial grid
of spectral values was inverted via the inverse spatial Fourier
transform to obtain U�ξ1,ξ3�, for which real part was taken. If
the minimum of the resulting slip distribution was less than
zero, it was subtracted from all the values to eliminate negative
slip. Also in that case, to avoid the slip on certain parts to be
exactly zero, a small number, equal to one-hundredth of the
modulus of the minimum, was added to the distribution.
The grid U�ξ1,ξ3� was then renormalized by multiplying it

by U=U�ξ1,ξ3�, in which U�ξ1,ξ3� is the average, to offset
the scaling introduced by the discrete Fourier transform and
ensure the correct value of the average slip U for the target
earthquake. The grid was then interpolated with a third-order
polynomial to obtain a smooth function U�ξ1,ξ3� for the
numerical integration.

Randomized model
Similarly to Beresnev (2017a), we will also analyze radiation
from a randomized slip distribution. In this case, the distribu-
tion is generated by superimposing a random component on
constant U to produce U�ξ1,ξ3� � U �1� η�ξ1,ξ3�� in which
the variable η�ξ1,ξ3� is drawn from a normal distribution with
zero mean and standard deviation of 0.3, constrained to equal
−1 if its value accidentally fell below it. The latter modification
to the k−2 model was introduced to avoid an exactly zero slip.
Because −1 exceeds three standard deviations, such a value was
highly unlikely; that is why no further adjustments were made.
Unless otherwise noted, this distribution was generated on a
grid with a step of L=20 in each direction ξ1 and ξ3 and then
interpolated with a third-order polynomial to a smooth
U�ξ1,ξ3�.

EFFECT OF DISTRIBUTION OF STATIC SLIP
Investigations exist that have addressed the effect of different
realizations of slip on the resulting ground motions (e.g.,
Aagaard, Graves, Rodgers, et al., 2010; Infantino et al., 2020).
The frequencies greater than 1 Hz were simulated approxi-
mately through the stochastic method by Aagaard, Graves,
Rodgers, et al. (2010) and via training of artificial neural net-
works by Infantino et al. (2020). What is lacking is a compre-
hensive rigorous study isolating the theoretical source effect in
the entire frequency band, including the near field. The repre-
sentation integral is the appropriate tool for this task.

k−2 model
Far field of a narrow unidirectional rupture. We begin
with the analysis of an asymptotic case of far-field radiation
from a unidirectional rupture moving with constant speed
on a small narrow fault (the Haskell model), for which analyti-
cal solutions are available (e.g., Aki and Richards, 1980, their
equation 14.18). The solution for the shape function Δu

̣
s�t�

that is the same on the entire fault is given by equation (5).
Because our adopted slip-rate spectrum has the omega-square
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shape, and if the slip spectrum U�k� also exhibits the k-square
decay, then the multiplication in equation (5) leads to the ω−4

fall-off in the radiated frequency spectrum.
Beresnev (2022b, his equation 19) generalized equation (5)

to a more realistic, but still 1D, case of Δu
̣
s�ξ,t� depending on

both ξ and t. We wish to complement this earlier analysis with
the exact calculations from the full integral in equation (3),
only restricted by setting the distance to the observation point
within the validity of the far-field condition. As noted earlier,
this case will be analyzed for a fault corresponding to a M 5
earthquake. The length L = 3400 m, approximately corre-
sponding to this magnitude, is again calculated from the
Wells–Coppersmith relationship. The spatial-discretization
interval in both directions is still taken as Δξ � L=99; the nar-
row-width condition is followed by setting W � 5Δξ. There
are N1 � 100 samples along the length and N3 � 6 samples
along the width. The Nyquist wavenumber did not change;
N1 and N3 discrete values of the complex wavenumber spec-
trum were then produced for k1 and k3 from equation (6) with
random phase to be inverted for the k-square 2D slip distri-
bution along the narrow plane.

The most restrictive condition on the distance to the obser-
vation point leading to the small-source approximation is

r0 ≫
2L2

λ
, �7�

in which λ is the wavelength (Aki and Richards, 1980, their
equation 14.12). Using L = 3400 m and λ � �β=50� m (at the
frequency of 50 Hz), we obtain the limits of applicability of the
approximation as r0 ≫ 400 km. Accordingly, the coordinates
of the observation point in this calculation are arbitrarily set to
{104, 0, 0} km. Such distances do not represent practical inter-
est but do provide a useful insight. The specific distance value
does not carry particular significance; it appears as a multiplier
in the constant term in equation (5) and in this approximation
it merely serves as a scaling factor. The hypocenter is in the
middle of the vertical edge of the fault opposite to the obser-
vation point with the coordinates of {0, 0, −W=2} m. The
rupture propagation is thus unilateral toward the observation
station. Until otherwise noted in the discussion of the irregular
rupture fronts, the rupture propagation is radial from the
hypocenter with concentric fronts, although the fronts are
nearly straight on the narrow fault. The time delay is thus
Δt�ξ� � r=v, in which v is constant.

In this calculation, the slip-velocity function Δu
̣
s�ξ,t� is var-

iable over the fault. This is achieved through the use of equa-
tion (2) to calculate the variable corner frequency (the inverse
of τ). In equation (2), vmax will be set to a constant represen-
tative value of 1 m/s. In doing so, we do not loose generality
because τ still varies in proportion to the k-square distribution
U�ξ� and thus remains a random function of the position. The
average corner frequency over the fault is then calculated as
f c � e vmax=�2πU� � e × 1=�2π × 0:14� � 3:1 Hz, although

it is generally different at every point on the fault following
equation (2).

We generated thirty independent realizations of the k−2 slip
using the algorithm described and computed the radiated dis-
placement spectrum from the narrow fault for all of them. Each
realization generally has a different minimum and maximum
slip; the only constraint is that they all need to share the same
fault-average value. The thirty resulting spectra are plotted
together in Figure 1; because they begin diverging to different
slopes at relatively high frequencies, the band has been
extended to 100 Hz. The two gray straight lines show the
high-frequency slopes visually fitted to the end-member pos-
sibilities in the diverging “conical” area; their fall-off rates (the
powers of frequency) are −2.9 and −3.6. The other cases are
intermediate to these.

Two inferences can be made from Figure 1. First, the high-
frequency slope predicted by equation (5) is −4. In the current
more realistic simulation in which the corner frequency is
allowed to vary across the fault, such an idealized scenario does
not materialize. Now the various parts of the fault contribute
radiation with randomly distributed corner frequencies, which
adds up to the resulting spectrum with a variable slope,
depending on a particular realization. Beresnev (2022b, his
fig. 3), who randomly varied both U�ξ� and vmax�ξ� in equa-
tion (2), showed just two extreme cases for the linear fault, in
which the two respective slopes were −1.5 and −2.6. The thirty
random scenarios in Figure 1 not only confirm the slope vari-
ability but also illustrate that steeper decay should generally be
expected.

Second, the spectral roll-off in all cases substantially exceeds
−2 expected for the classic omega-square point source. This is
the direct consequence of the finiteness of the causative fault.

Figure 1. Amplitude spectra of radiated displacement from the asymptotic
fault model for thirty different realizations of k-square slip. The two gray
straight lines bracket the scatter of possible high-frequency slopes of the
resulting spectra. The black dotted line represents the fitted spectrum of the
equivalent omega-square point source with the high-cut filter kappa applied
to it.
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The general physical explanation of the short-period decay
is in the destructive interference of radiation emanating from
different parts of the fault. Constructive interference only
happens at very long wavelengths, at which the waves from
the entire rupture add up in phase. The finite-fault effect,
therefore, acts as a high-cut filter removing high frequencies
from radiation.

It is well known that ground-motion modeling via omega-
square point sources overpredicts the high-frequency content,
requiring additional ad hoc filtering typically implemented
through the adjustable kappa or fmax operators (Anderson and
Hough, 1984; Boore, 2003, his equations 19 and 20). The true
physical nature of such filtering is still debated; most often, it
is attributed to the near-surface attenuation unaccounted
for by the regular anelastic Q along the propagation path
(Ktenidou et al., 2014). There also are opinions that kappa
is “an empirical parameter” “not measuring any specific physi-
cal phenomenon”, arising from “great simplifications of com-
plex source, path, and site effects” (Palmer and Atkinson, 2023,
pp. 2666–2667).

Beresnev (2022b, 2023a) proposed to invoke the suppres-
sion of high frequencies by fault finiteness to explain the
high-frequency decay as pure source effect, without resorting
to ad hoc filtering. For example, the application of this
approach allowed us to explain the short-period spectra of all
well-recorded earthquakes from the Kiban–Kyoshin network
in Japan in the magnitude range from 4 to 6 (Beresnev,
2023a). The same idea is illustrated in Figure 1. The black dot-
ted line represents the spectrum radiated by an omega-square
point source with the exactly same moment as that of the nar-
row fault at the same distance, multiplied by the kappa oper-
ator exp�−πκf �, fitted with vmax � 0:5 m=s and κ � 0:025 s.
The fitting with κ was carried out to the frequency of
20 Hz, as typically done in the empirical determinations of this
parameter (Boore and Joyner, 1997, their fig. 10). The black
dotted line illustrates that the finite-fault radiation without
additional filtering is equivalent to the point-source radiation
with kappa. The inferred equivalent κ � 0:025 s is well within
the range of the typical values reported in the literature. For
example, Boore and Joyner (1997) deduced its generic value
of 0.035 s for western North America.

Near field. Our investigation of the effect of varying
distributions of k−2 slip on the radiation is continued with
the near-field calculations. In all computations for the 1200
× 1200 m fault, vmax will be set to 0.25 m/s, keeping the average
corner frequency unchanged at 3.1 Hz. The location-specific
frequency, varying according to U�ξ�, is still obtained from
equation (2). We will present the cases for both the coarse
and fine resolutions. An example slip distribution for the
coarse resolution is presented in Figure 2.

To sample the full variability, we set three hypocenter posi-
tions: in the middle of the vertical edge of the fault opposite to

the observation point (coordinates {L, 0, −W=2}), in the
middle of the edge closest to the observation point (coordinates
f0, 0, −W=2g), and in the center of the fault (coordinates
{L=2, 0, −W=2}). These scenarios represent the end members
of rupture directivity corresponding to the forward, reverse,
and neutral cases. Testing the representative range of directiv-
ities by placing the hypocenter in three end-member locations
is chosen rather than using an equivalent number of differently
positioned observation stations. For each hypocenter position,
we again generate thirty realizations of slip distribution for a
total of ninety rupture scenarios. Figure 3 combines the spectra
from all of them. Similarly to Figure 1, the two gray lines indi-
cate the visually fitted end-member slopes: they are −2.7 and
−4.0, consistent in the range with the far-field case of Figure 1.

Unlike Figure 1, the displacement spectra in Figure 3 do not
flatten toward the lowest frequencies. This is the consequence
of the presence of permanent ground displacement near the
fault. In addition, the existence of an equivalent omega-square
point source is impossible near the fault: the slip-velocity func-
tion (1), which describes the far-field displacement, does not
contain the permanent component. The short-period decay
seen is fully due to the source finiteness. One can nonetheless
still attempt to formally fit a point-source spectrum having the
same moment with the kappa operator applied to it to try to
explain the observed fall-off. Because the kappa measurement
only requires fitting the high-frequency part of the spectrum
(Nye et al., 2023), the respective formally determined slope
with κ � 0:040 s is shown by the black dotted line. Similarly
to Figure 1, this inferred κ has a practically plausible value.
Again, in the case of real ground motions, the observed spectral
slope can be deceptively construed as the result of kappa filter-
ing, while in reality, as in Figure 3, it is purely due to finite-fault
dimensions.

Figure 2. An example realization of coarse k−2 slip on a 1200 × 1200 m fault
(the spatial sampling interval of 12 m). The horizontal and vertical axes are
distances along length and width, respectively. The scale is a slip in meter.
The color version of this figure is available only in the electronic edition.
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Figure 4 presents the time histories of ground velocity and
acceleration, separately for the thirty realizations of the three
directivity cases, illustrating the uncertainty in the time-domain
ground motions due to natural variability in rupture scenarios.
The normal differences between the types of directivity are
clearly seen: short bursts of energy for the forward pulse
(Fig. 4a) versus more protracted lower-amplitude waveforms
backward (Fig. 4c). However, there is relatively little variation
within a single directivity type due to alternative realizations
of slip, except for the backward pulse. In the latter case (Fig. 4c),
the scenario-by-scenario differences are in the later parts of the
waveform, whereas the shapes of the steep arriving fronts in all
cases are nearly independent of a particular fault-slip pattern.
The latter fact is reflected in a relatively low variability in the
peak values. The mean absolute values of peak ground velocity
(PGV) for the cases of forward, neutral, and reverse propagation,
respectively, are 5.1, 3.3, and 1.2 cm/s, with standard deviations
of 0.49, 0.26, and 0.13 cm/s (10%, 8%, and 11% percent of the
mean). For the peak ground acceleration (PGA), the means are
85.1, 51.6, and 17.2 Gal, with the standard deviations of 13.2, 1.9,

and 0.97 Gal (16%, 4%, and 6%
of the mean).

An example slip distribu-
tion for the fine resolution is
presented in Figure 5. The dif-
ference with Figure 2 is that
smaller heterogeneity can now
be sampled in the slip on the
fault plane. Figure 6 is the ana-
log to Figure 3 for the fine-res-
olution case, and Figure 7 is the
analog to Figure 4, with the dif-
ference that the time histories
for the fine-resolution slip were
calculated to the precision of
five digits. The limiting slopes
(gray lines) for the spectra in
Figure 6 are −2.7 and −3.8.
The black dotted line has the
same kappa value of 0.040 s
as in Figure 3. The mean abso-
lute values of PGV for the cases
of forward, neutral, and reverse
propagation in Figure 7 are 5.2,
3.3, and 1.1 cm/s, respectively,
with the standard deviations of
0.48, 0.25, and 0.16 cm/s (9%,
8%, and 15% of the mean).
For the PGA, the means are
82.8, 50.3, and 16.7 Gal, with
the standard deviations of 10.3,
4.0, and 1.6 Gal (12%, 8%, and
10% of the mean), respectively.

Figure 3. Amplitude spectra of radiated displacement from the 1200 × 1200 m
coarse-resolution model at the point in the near field for three hypocenter end-
member positions and thirty different k-square slip realizations for each. The
meaning of the gray straight lines is the same as in Figure 1. The black dotted line
represents the equivalent omega-square point source spectrum with the high-cut
kappa filter applied to it, fitted to the high-frequency part of the resulting spectra.

Figure 4. Ground-velocity (left) and acceleration (right) traces for the coarse-resolution model, k-square slip.
(a) Forward, (b) neutral, and (c) reverse directivity cases, with thirty different realizations of k-square slip in
each. The apparent thick lines are not separate graphs but the result of the clustering of several overlapping curves.
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All main inferences regarding the case of the finer slip remain
unchanged relative to the coarser distribution: the cases are sta-
tistically indistinguishable. Considering that the ninety scenarios
in the coarse- and fine-resolution cases were independently gen-
erated and thus different, we in addition conducted the follow-
ing test. We produced a fine-resolution slip and then resampled
it by taking every other slip value on the grid, thus increasing
Δξ from 6 to 12 m. The hypocenter was in the middle of the
fault. We then interpolated both distributions and computed the
radiated spectra. On the scale of Figures 2 and 5, there was no
visible difference between the two slip images. When plotted
together on the scale of Figures 3 and 6, the spectra were also
visually identical. This observation illustrates the fact that it is
not the small-scale heterogeneity of slip that produces the high-
frequency radiation. In this test, one of the slips is smoother, but
the general pattern of the distribution of corner frequencies
across the fault is still preserved. As a result, the same spectral
slope is produced. The lack of conspicuous differences between
the shapes of the spectra or the pulses emitted by faults with the
difference in the smallest heterogeneity of a factor of two may
have consequences for the ability of the slip-inversion algo-
rithms to resolve the fine detail on the faults. Because there
is no appreciable difference in the resulting seismic data, the
details may be elusive for recognition.

Randomized model
To compare the signatures in the seismic fields, impressed by
the strictly k−2 ruptures relative to randomly disturbed slip, we
repeat the simulations leading to Figures 1, 3, and 4 (now for
the coarse resolution only) for the randomized model.

Far-field of a narrow unidirectional rupture. We again
begin with the far field of the narrow fault. The stochastic

component that was superimposed on constant slip was in this
case generated on a grid with the step of L=99; all other param-
eters are the same as for the k−2 narrow-fault simulation.
Similarly to Figure 1, the spectra radiated by thirty different real-
izations are shown in Figure 8. The limiting slopes (gray lines)
are −2.6 and −3.3; the kappa value of the black dotted line
is 0.027 s. The single high-frequency slope predicted by equa-
tion (5) in this case is −3. It is reduced from −4 relative to the
k-square model given the change in the term U �ω�cosΨβ − 1

v��: the
underlying slip is now constant, disturbed by the added white-
like noise, but a constant has the spectral fall-off of negative one.
However, as in Figure 1, this simple prediction does not materi-
alize because of the same “heterogenization” of the spectral slope
produced by the fluctuations of the corner frequency over the
fault. Comparison between Figures 1 and 8 indicates that the
radiated spectra between the two models are statistically indis-
tinguishable: as long as the corner frequency is allowed to fluc-
tuate, the specific form of the spatial spectrum of the final slip no
longer controls the spectral behavior of radiation. A particular
realization of spectral decay forms as a result of the incoherent
superposition of waves from various parts of the rupture.

Near field. Figure 9 is the analog of Figure 3 now for the ran-
domly disturbed constant slip, sharing all other parameters.
The ninety realizations shown were generated for the same
positions of the hypocenter. The slopes of the limiting gray
lines are −3.0 and −3.8, and the kappa value for the black dot-
ted line is 0.045 s.

Figure 10 is the analog to Figure 4 for the random model.
The mean absolute values of PGV for the cases of forward, neu-
tral, and reverse propagation are 5.3, 3.3, and 1.1 cm/s, respec-
tively, with the standard deviations of 0.09, 0.04, and 0.04 cm/s
(2%, 1%, and 4% of the mean). For the PGA, the means are

Figure 5. An example realization of fine k−2 slip on a 1200 × 1200 m fault
(the spatial sampling interval of 6 m). The horizontal and vertical axes are
distances along length and width, respectively. The scale is a slip in meter.
The color version of this figure is available only in the electronic edition.

Figure 6. Amplitude spectra of radiated displacement from the 1200 ×
1200 m fine-resolution model at the point in the near field for three
end-member positions of the hypocenter and thirty different realizations of
k-square slip for each. The meaning of the gray straight lines and the black
dotted line is the same as in Figure 3.

2876 • Bulletin of the Seismological Society of America www.bssaonline.org Volume 114 Number 6 December 2024

Downloaded from http://pubs.geoscienceworld.org/ssa/bssa/article-pdf/114/6/2869/7055679/bssa-2023285.1.pdf
by Iowa State University Library user
on 11 December 2024



87.1, 50.5, and 17.2 Gal, with
the standard deviations of
4.3, 1.6, and 0.6 Gal (5%, 3%,
and 3% of the mean). What
is noticeable is a much lesser
variability in the waveforms
from the randomized rupture
in Figure 10 compared to the
k−2 counterparts in Figures 4
and 7, although the spectra in
Figures 3, 6, and 9 share a com-
parable diversity in the slopes.
The average peak values of
velocity and acceleration are
nearly insensitive to a particu-
lar shape the distribution of
slip takes: k-square or random-
ized constant.

In terms of the comparative
spectral behavior between
the k−2 and random slips
(Figs. 3, 6, and 9), similarly to
the far-field narrow-fault
model, there is no statistical
difference between all the slip
models. The same explanation
can be invoked: as long as the
corner frequency is allowed to
randomly fluctuate across the
fault, the resulting incoherent
summation overwhelms the
otherwise distinctly different
spectral decays that would

Figure 8. Amplitude spectra of radiated displacement from the asymptotic
fault model for thirty different realizations of random slip. The meaning of
the gray straight lines and the black dotted line is the same as in Figure 1.

Figure 9. Amplitude spectra of radiated displacement from the 1200 ×
1200 m model at the point in the near field for three end-member posi-
tions of the hypocenter and thirty different realizations of random slip. The
meaning of the gray straight lines and the black dotted line is the same as in
Figure 3.

Figure 7. Ground-velocity (left) and acceleration (right) traces for the fine-resolution model, k-square slip.
(a) Forward, (b) neutral, and (c) reverse directivity cases, with thirty different realizations of k-square slip in
each. The apparent thick lines are not separate graphs but the result of the clustering of several overlapping curves.
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have resulted if the shape function Δu
̣
s had been independent

of the location and the slope had been fully controlled by
equation (5).

Beresnev (2017a) also investigated the effect of introducing
roughness into the static slip U�ξ� and concluded that such
randomization did not affect the radiated high-frequency spec-
tra in any appreciable manner. The difference with the present
study is that the earlier work only considered the shape func-
tion Δu

̣
s independent of ξ. In that case, the high-frequency

spectrum of radiation could be expected to be controlled by
the spatial spectrum of slip as in equation (5), but the addition
of a white-noise-like component to U does not change the
slope of its spectrum. In the present study, both U�ξ� and
Δu

̣
s�ξ,t� are allowed to be functions of the position: the

resulting fluctuations in the corner frequency at various ξ
do affect the slope formation as we have seen in Figures 1, 3,
6, 8, and 9.

Crempien and Archuleta (2017) also investigated the effects
of different spatially randomized kinematic rupture scenarios
on the variability in the resulting ground motions. The impor-
tant difference between their study and ours is that the authors
enforced the ω-square shape of the emitted spectra (Crempien
and Archuleta, 2017, p. 3456 and their fig. 7), whereas we

Figure 10. Ground-velocity (left) and acceleration (right) traces for the
random-slip model. (a) Forward, (b) neutral, and (c) reverse directivity
cases, with thirty different realizations of randomized slip in each.
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employ an ω-square slip-velocity function (equations 1 and 2)
but let radiation from all the parts of the fault stack independ-
ently to form any shape of the resulting spectrum. As we have
seen, the naturally forming slopes will then be significantly
steeper than −2.

EFFECT OF IRREGULAR RUPTURE FRONTS
Until relatively recently, modelers typically assumed a constant
value (usually, a fraction of β) of rupture-propagation velocity
(e.g., Beresnev and Atkinson, 1997, 2002; Somerville et al.,
1999, their table 1; Motazedian and Atkinson, 2005; Aagaard
et al., 2008, p. 992; Ruiz et al., 2011; Infantino et al., 2020,
p. 2564). Realistic fracture propagation is undoubtedly more
complex, with a significant stochastic component added to
the travel time. It has also become clear that assuming a smooth
travel law creates artifacts of regular interference (Beresnev and
Roxby, 2021).

It follows that including randomness in fracture travel
should be a necessary feature of realistic earthquake models.
However, the exact timing of the progression of cracks across
fault planes has remained beyond the reach of source-dynam-
ics inversions; there remains significant freedom in how to
define irregular fronts. We avoid formulating specific depend-
ences of rupture velocity on depth or its scaling with local slip,
as in the model by, for example, Graves et al. (2008) and
Graves and Pitarka (2010, their equations 4–6), as insuffi-
ciently constrained and will instead focus on pure effects of
rupture-travel complexity excluding all other factors. To this
end, a uniform slip will be considered.

Along with the form of the source time function and the slip
distribution, a variable rupture velocity is another factor poten-
tially affecting the high-frequency decay of seismic spectra.
If the velocity changes in a smooth, nonstochastic fashion, a
particular slope can be obtained in an ad hoc manner by con-
structing a specific timing of rupture travel. For the model of a
small line source in the far field with a constant shape function,
governed by equation (5), examples were supplied by Hisada
(2000, the author’s fig. 6) and Beresnev and Roxby (2021, their
figs. 1 and 3a). In both studies, the addition of a stochastic
component to rupture timing led to flattening of the high-fre-
quency spectra by elimination of artifacts of orderly interfer-
ence. Beresnev and Roxby (2021, their fig. 4b) corroborated
this conclusion for the same 3D model as in the present study
for the case of a constant shape function. They considered
strictly circular ruptures, arrival for which was stochastically
disturbed as they traveled.

Graves et al. (2008) and Aagaard, Graves, Rodgers, et al.
(2010) studied the effect of variable rupture velocity on radi-
ation from large scenario earthquakes on the San Andreas
fault. The frequencies greater than 1 Hz were simulated
through the stochastic method. As noted earlier, this technique
does not represent the near field accurately and suffers from
the dependence on the subjective choice of the size of subfaults.

We continue exploring the effects of variable rupture speed
using the full representation integral; the difference with the
work of Beresnev and Roxby (2021) is that the requirement
of concentric rupture fronts is eliminated: the travel is now
anisotropic, with independent randomized velocity law con-
structed at each azimuth.

To isolate the pure effect of a geometrically irregular front, we
consider the case of the 1200 × 1200 m fault with the uniform
slip U = 0.035 m and vmax � 0:25 m=s. The hypocenter is
placed in the middle, corresponding to the case of “neutral”
directivity. We thus sample the pure front-randomness effect.
The observation point is in the near field as before. The
travel-time complexity is introduced into Δt�ξ� as follows.
The full 360° in radial directions from the hypocenter were
divided into 72 lines spaced at 5°. The diagonal of the fault
was broken also into 72 equal intervals with the length Δr each,
and the incremental travel time through each consecutive ith
segment was calculated as Δti � Δr=�v�1� η��. The constant
velocity v was set to 0:8β. The random variable η was drawn
from the normal distribution with zero mean and the desired
standard deviation, constrained to equal −0.9 if it accidentally
fell below or was equal to −1. A slight departure from the similar
algorithm of generating η for the randomized slip distributions
was needed to avoid infinite values of Δti. Considering the stan-
dard deviations tested below, the value of η � −1 was highly
unlikely and probably never materialized. In addition, if
v�1� η� exceeded 1:5β, it was kept at 1:5β, allowing supershear
propagation. This procedure was repeated for all 72 azimuthal
directions. A new η was drawn each time the travel time was
advanced through each segment Δr, independently in all the
azimuths. The process resulted in an azimuthally anisotropic
and temporally disordered discrete travel-time function
Δt�ri,φj� on a grid in the polar coordinates with the center
at the rupture-initiation point. This function was then interpo-
lated with a third-order polynomial to produce a smooth dis-
tribution of travel time to a desired point {r, φ} on the fault.
To obtain the distribution Δt�ξ� needed for the integration
in equation (3), the polar coordinates of a point were converted
into the Cartesian {ξ1, ξ3}.

Three values of the standard deviation in η were tested: 0.1,
0.2, and 0.3. The resulting rupture fronts are depicted in
Figure 11. The shape of the contour for every particular azi-
muth is probably mostly affected by a single large fluctuation
in η, which is then preserved for all subsequent propagation
distances along the azimuth. Figure 12 presents the respective
radiated spectra, ground velocities, and ground accelerations,
together with the case of zero standard deviation (radial travel
with constant velocity). For the irregular rupture fronts, the
spectra were calculated to the precision of two and the traces
to the precision of three digits.

The spectra in Figure 12 are coded by the same color: there
is no visible difference between them, except for random scat-
ter. The decay of the fitting straight line is −3.5, and the
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parameter kappa of the black dotted line is 0.045 s. On the
other hand, the velocity and acceleration traces in the case of
the standard deviation of 0.3 (the gray lines in Fig. 12) are
conspicuously different from the other three. Significant
irregularity in the rupture velocity is thus seen to affect the
resulting ground velocity and acceleration to a much greater
extent than the frequency spectra. This result is opposite to
what we have seen as the effect of the irregular distribution
of slip, in which case the slip complexity distinctly disturbed
the spectral slopes but not the shapes of the pulses (Figs. 1, 3, 4,
and 6–10). The sharpness of the pulses in Figure 12 in the case
of the largest irregularity is reduced, blurring the effect
of directivity. The same reduction in the contrast between
the forward- and reverse-radiated pulses by irregular rupture
travel was noted by Beresnev (2021), where strictly circular
ruptures with randomly varying velocities were considered.

The absence of the effect of anisotropic disorderly rupture
propagation on the resulting frequency spectra, with respect to
travel with constant velocity, does not agree with the way ran-
domized travel distinctly flattened the slopes of the spectra in
our previous work (Beresnev and Roxby, 2021, their fig. 4b).
The only difference between the two studies is that concentric
(isotropic) fronts with stochastically disturbed timing were
considered previously, while anisotropic, geometrically chaotic
fronts have been presently allowed, as shown in Figure 11. The
only explanation that we can invoke at this time is that orderly
circular fronts, even if accelerating/decelerating in a chaotic
fashion, still produce radiation that correlates over different
parts of the fault, creating quasi-regular interference and form-
ing specific spectral slopes. True randomness of the geometri-
cally incoherent fronts does not add any constant value to the
spectral decay, as compared to the case of the constant rupture
velocity (0:8β in our case) (Fig. 12), except supplying a purely
random scatter. The effect on the velocity and acceleration
traces is substantial, though. A conclusion, of value to future
simulations, is that the way the rupture progression along the
fault plane is randomized is important in forming the resulting

seismic spectral behavior. Because there is no unique way to
introduce such randomness (e.g., compare our Fig. 11 with
fig. 1 of Graves and Pitarka, 2016), this line of study should
be continued.

A limiting factor on the possible complexity of the rupture
process in our study, being based on the exact mathematical
computation of the representation integral, is the required
numerical precision that needs to be maintained. Beyond a cer-
tain level of heterogeneity, the integral stops converging to a
reasonable number of digits.

EFFECT OF SLIP VELOCITY
A conclusion from our earlier studies (Beresnev, 2017a, his
figs. 6 and 7; Beresnev, 2022a, his fig. 7) is that the parameter
vmax of the slip-velocity function exerts a predominant influ-
ence on the strength of high-frequency radiation for both
the general omega-n and dynamically compatible functions.
This is explained by the strong power-of-n dependence of the
high-frequency spectral level on vmax. For example, the omega-
square spectrum of the function Δu

̣ �ξ,t� in equation (1) at
ω≫ ωc reduces to

jΔụ �ξ,ω�j � e2
v2max

U
ω−2, �8�

that is, the spectrum scales as v2max (Beresnev, 2022a, his equa-
tion 24). We verify this inference using the present approach, in
which the general variability in the corner frequency in Δu

̣ �ξ,t�
over the finite-fault plane, as in equations (2) and (3), is allowed.
To that effect, we fix a single realization of the k-square slip with
the hypocenter in the middle of the fault and compare the radi-
ation for two vmax values 0.25 and 1 m/s at the same observation
point in the near field as before. The corner frequency is

Figure 11. Geometry of the rupture fronts corresponding to the three values
of standard deviation in the random variable η: (a) 0.1, (b) 0.2, and (c) 0.3.
The contour lines are spaced at 50 ms. The fault representation is as in
Figures 2 and 5.
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randomly varying, inversely proportional to U�ξ� as per equa-
tion (2). According to the theoretical quadratic dependence
(equation 8) of the spectral level on vmax, we expect that the
high-frequency spectra will be different by approximately a
factor of sixteen.

Figure 13 depicts the spectra, their ratio, and the traces cor-
responding to the two slip-velocity values, all other parameters
being the same. The near-field high-frequency spectra behave
as expected: their ratio fluctuates around the predicted value
of sixteen, shown by a straight dotted line for reference.
The increase in vmax boosts the time-domain characteristics
of ground motion: the PGV increases from 3.1 to 6.6 cm/s,
and the PGA increases from 47 to 175 Gal. Recall that the
entire diversity of possible k-square slips, for the same central
hypocenter position as here, led to the variation in PGVs and
PGAs of less than ten percent, as measured as standard
deviation divided by the mean.

From our experience, the conclusion that vmax is the most
influential parameter does not depend on the particular choice
among the common source time functions in a broad range
tested. Beresnev (2022a, his fig. 7) showed the same quadratic
dependence of the high-frequency spectra on vmax, as in equa-
tion (8), for both the ω−2 and Guatteri et al. slips. In a different
study (Beresnev, 2024), we compared the effect on the traces of
ground displacement, velocity, and acceleration computed for
the same point in the near field as in the present work. Three
fault sizes were considered corresponding to Mw 4, 5, and 6
earthquakes. For each, radiation was calculated for three
slip functions: the dynamically compatible one of Liu et al.
(2006) (a smooth version of the Guatteri et al. case), the
omega-square (n = 2), and the omega-cube (n = 3) shapes.
They all were assigned the identical values of the parameters
U and vmax. For all the faults, once these defining parameters
were fixed, all the slip functions led to indiscernible differences
in the radiated time histories in the frequency band up
to 45 Hz.

Linear matrix inversions of seismic and geodetic data
for slip distributions on earthquake faults commonly use the
representation of the slip-rate function by isosceles triangles
(e.g., Lay et al., 2011; Yoshida et al., 2011; Zhu et al., 2022).
The temporal shape of the ground-velocity pulse is controlled
by the second derivative of the triangle,

Δü�t� � v2max

U
, 0 ≤ t <

T
2
, �9a�

Δü�t� � −
v2max

U
,

T
2
≤ t < T , �9b�

in which T is the total duration (Beresnev, 2023b, his equations
4a and 4b). A popular method of nonlinear inversion, which
simultaneously solves for several unknown rupture parameters
by minimizing an objective function (e.g., Hayes, 2017; Koch
et al., 2019; Goldberg et al., 2022), employs the technique of
Ji et al. (2002) that in turn uses the slip-rate form of a cosine

Δu
̣ �t� � U

1 − cos�2πt=T�
T

, �10�

Figure 12. (a) The amplitude spectra of radiated displacement, (b) the
ground-velocity traces, and (c) the ground-acceleration traces corre-
sponding to the constant-velocity case and the three rupture fronts in
Figure 11. The gray straight line in the spectra indicates the high-frequency
slope. The meaning of the black dotted line in the spectra is the same as in
Figure 3. The gray velocity and acceleration traces correspond to the
greatest standard deviation of 0.3 in the random variable η.
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(Ji et al., 2002, their equation 2). The second derivative is

Δü�t� � 2π
U
T2 sin

�
2π

t
T

�
: �11�

For both the triangular slip in equation (9) and the cosine form in
equation (11), the duration is the proxy for the slip velocity
through the same formula T � 2U=vmax. Substituting into equa-
tion (11) gives

Δü�t� � π

2
v2max

U
sin

�
2π

t
T

�
: �12�

One can see that, given that ground velocity is controlled
by high frequencies, the factor v2max=U universally appears
in all measures of high-frequency radiation, both in the spec-
tral (as in equation 8) and temporal (as in equations 9 and 12)
domains, for all the popular source time functions that we have
analyzed. The same factor appears in the temporal represen-
tation of the omega-square ground-velocity pulse (Beresnev,
2023b, his equation 5). The quadratic dependence of the
high-frequency levels on the maximum rate of slip and hence
the dominant effect of vmax on radiation comes out as a uni-
versal conclusion.

CONCLUSIONS
Our goal has been to document the variability in frequency- and
time-domain characteristics of ground motions in kinematic
simulations caused by the uncertainty in the rupture scenarios.
The rupture characteristics investigated include the postulated
distribution of static slip, the geometry of the rupture fronts,
and the maximum rate of slip. We have used the omega-square
slip-velocity function (equation 1), in which the corner fre-
quency was allowed to randomly vary across the fault as it would
in all realistic situations (equation 2).

It is known that the high-frequency roll-off of the Fourier
spectra, radiated into the far field by small 1D sources, in the
case of the identical temporal shape of the slip-velocity function
over the entire fault, is controlled by the spatial spectrum of the
slip distribution, as exemplified by equation (5). In this situation,
the corner frequency is constant everywhere. However, in the
more realistic scenarios of Δu

̣ �ξ,t� changing over the fault,

Figure 13. (a) Amplitude spectra of radiated displacement, (b) their ratio,
(c) the ground-velocity traces, and (d) the ground-acceleration traces cor-
responding to the values of maximum slip velocity vmax � 0:25 (black color in
the spectra and traces) and 1 m/s (gray color). The horizontal dotted line in the
ratio shows the reference value of sixteen.
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the control of the Fourier spectral decay by the shape of the
wavenumber spectrum of slip is lost in both the near and far
fields. The same natural variability in the spectral slopes,
between roughly −2.5 and −4.0 (the power of frequency), is
observed for multiple realizations of both k−2 and randomly
perturbed slip. This behavior is explained by the heterogeniza-
tion of the corner frequency over different parts of the fault, with
a particular slope at the observation point forming as a result of
the summation of radiation with a variety of corner frequencies.
The slope is not affected by two different spatial resolutions of
the same slip, changed by a factor of two in our case.

The steep decay rates in the high-frequency spectra, sub-
stantially exceeding the fall-off of −2 of the underlying slip-
velocity function, can explain the additional high-cut filtering
that is required in modeling strong-motion radiation through
omega-square point sources. It is well known that in the latter
case, the application of kappa or f max operators is needed to
artificially reduce the spectra to greater decays. However,
the combination of finite-fault geometry and heterogeneous
slip has the same effect on the radiated fields as a formal kappa
operator with κ ranging from ∼0.025 to 0.045 s, without the
need for additional filtering. Such kappa values are well in the
typically reported range; for example, the values experimen-
tally measured in the San Francisco Bay area by Nye et al.
(2023, caption to their fig. 4) mostly fall within 0.028 and
0.045 s. Parolai (2018) proposed to explain the same kappa fil-
tering by scattering on near-surface heterogeneities; however,
the study did not quantify whether the resulting extra decay
was in the range of the typical values of this parameter.

Even though all examples have been generated for either
Mw 4 or 5 faults, the inferred fall-off rates, equivalent to kappa
filtering, are not expected to be magnitude dependent. For
example, in the case of the unidirectional line rupture moving
with constant speed, when the slip is constant, the slope of
U �ω�cosΨβ − 1

v�� in equation (5) changes to −1 (Aki and Richards,
1980, p. 810). This additional fault-finiteness-induced decay is
independent of the size of the fault.

The variability in peak ground motions is insignificant
throughout all k−2 or random ruptures in the set of scenarios
considered. For the same hypocenter position, the variations in
peak velocities and accelerations from one realization to
another, expressed as the ratio of standard deviation to the
mean, are under ∼15% for all the slip types, be it random
or k−2. There is no statistical difference between the frequency
and time domain characteristics of radiation from k−2 or purely
random distributions, in both near and far fields.

The coarse and fine k−2 slip models, in which the size of the
smallest detail is different by a factor of two, produce indistin-
guishable spectra and waveforms. This fact may have adverse
consequences for the ability of waveform-inversion algorithms
for slip distributions to resolve details on earthquake faults.

Unlike the slip distributions, the geometric complexity of the
rupture fronts, in which ruptures chaotically accelerate and slow

down in various directions, does not affect the slopes of the radi-
ated spectra, at least in the examples considered. However,
increasing irregularity is seen to blur the fault’s directivity in
the sense of reducing the sharpness of radiated pulses.

Although a specific choice of slip distribution and its fine
structure exert a minor effect on the peak values of the resulting
ground motions, the choice of the peak slip velocity has an over-
whelming influence. The PGA increases in about the same pro-
portion as the average vmax on the fault. Spatial heterogeneity is
not required to produce extreme ground motions: even ruptures
with constant slip can do so (Beresnev,2022c). A compilation
of literature sources suggests that peak slip velocities may lie
in the range of ∼0.1–2 m/s (Anil-Bayrak and Beresnev, 2009;
Anderson, 2010; Beresnev, 2022c); that is, they may change
by a factor of 20 or even beyond. A focus of future observational
effort should be directed toward better constraining the realistic
range of change in this parameter: this is where the greatest
uncertainty in the forecasted peak ground motions may reside.

The fact that the results of this study have been obtained for
the faults corresponding toM 4 and 5 earthquakes is motivated
by the need to achieve the required precision of the evaluation
of the representation integral with highly variable integrands.
However, because the conclusions are naturally explained by
the physical shape of the slip function and the effects of geo-
metric interference, they are not expected to substantially
change if the dimensions of the fault are increased.

DATA AND RESOURCES
There are no new data or resources to report for this article. All infer-
ences were made through the analyses of the respective equations and
literature sources as indicated.
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